Optimal energy mix in relation to multi-criteria decision-making (MCDM), review and further research directions


  • Maja Mrkić-Bosančić Ministry of Energy and Mining of Republika Srpska, Bosnia and Herzegovina
  • Srđan Vasković Faculty of Mechanical Engineering, University of East Sarajevo, Bosnia and Herzegovina
  • Petar Gvero Faculty of Mechanical Engineering, University of Banja Luka, Bosnia and Herzegovina
  • Gojko Krunić Faculty of Production and Management, University of East Sarajevo, Bosnia and Herzegovina




The need for a transition to a society that will meet its energy needs from local resources and with minimal negative environmental impact is no longer presented as an option but as a necessity. Energy resources are limited, and it is necessary to ensure that they are properly used and managed in a sustainable manner. Optimal redistribution of energy supply from different energy generation and distribution options to end users within the local community is called the energy mix. What sets itself the task is to find this way of sustainable use of all available energy and energy types from local communities, different regions to the entire country. This is not a simple task, because it includes many variables that must all be considered. Therefore, it is necessary to classify and define universal criteria (sustainability), which describe ways of supplying energy and energy in a particular locality. The criteria mainly describe energy needs, availability of energy resources, existing technologies, economic and environmental indicators, qualitative and quantitative values of different energy supply options. This paper aims to review the state of play in optimal energy mix research in relation to    the local community. Also, this paper provides an overview and importance of the application of MCDM methods in this area. As a way out, in this paper we propose conclusions, directions and research opportunities in the field of seeking the optimal energy mix supply for local community, region or state, connected to the importance MCDM tools.


Download data is not yet available.

Author Biography

Petar Gvero, Faculty of Mechanical Engineering, University of Banja Luka, Bosnia and Herzegovina

Faculty of Mechanical Engineering, University of Banja Luka, Banja Luka


Abid, F. & Bahloul S. (2011). Selected MENA countries’ attractiveness to G7 investors. Economic Modelling, 28(5), 2197-2207. https://doi.org/10.1016/j.econmod.2011.06.013.

Afgan, N.H. & Carvalho, M.G. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, vol. 27, 739-755, 2002. 27(8), 739-755. https://doi.org/10.1016/S0360-5442(02)00019-1.

Al-Aomar, R. (2010). A combined AHP-Entropy method for deriving subjective and objective criteria weights. The International Journal of Industrial Engineering: Theory, Applications and Practice, 17(1), 12-24.

Amri, F., Bouattane, O., Khalili, T., Raihani, A., & Bifadene, A. (2015). Toward an Evolutionary Multi-Criteria Model for the Analysis and Estimation of Wind Potential. Journal of Power and Energy Engineering, 3(11), 14-28. http://dx.doi.org/10.4236/jpee.2015.311002

Arikan, Y., Arslan, O.P. & Cam E. (2015). The analysis of wind data with rayleigh distribution and optimum turbine and cost analysis in Elmadağ, Turkey. 15, pp. 1907-1912. IU-JEEE Vol. 15(1), 1907-1912.

Arnette, A., & Zobel, C.W. (2012). An optimization model for regional renewable energy development. Renewable and Sustainable Energy Reviews, 16(7), 4606-4615. https://doi.org/10.1016/j.rser.2012.04.014.

Ayodele, T.R. (2015). Determination of Probability Distribution Function for Modelling Global Solar Radiation: Case Study of Ibadan, Nigeria. International Journal of Applied Science and Engineering, 3(3), 233-245.

Balint, P. J., Stewart, R. E., Desai, A. & Walters, L. C. (2011). Wicked environmental problems. Island Press, Washington DC. https://doi.org/10.5822/978-1-61091-047-7

Baskut, O., Ozgener, O. & Ozgener, L. (2010). Effects of meteorological variables on exergetic efficiency of wind turbine power plants. Renewable and Sustainable Energy Reviews, 14(9), 3237-3241. https://doi.org/10.1016/j.rser.2010.06.002.

Becker, S., Frew B. A., Andresen, G. B., Zeyer, T., Schramm, S., Greiner, M., Jacobson, M. Z. (2014). Features of a fully renewable US electricity system: Optimized mixes. Energy, 71, 443-458. https://doi.org/10.1016/j.energy.2014.05.067.

Bhattacharya, A. & Kojima, S. (2012). Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method. Energy Policy, 40, 69-80. https://doi.org/10.1016/j.enpol.2010.09.031.

Biswas, P.P., Suganthan, P.N., Qu, B.Y. & Amaratunga G. A.J. (2018). Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power. Energy, 150, 1039-1057. doi:https://doi.org/10.1016/j.energy.2018.03.002.

Bosančić, M. M., Vasković, S., Gvero P. (2022). Optimization of energy mix and possibilities of its application in energy transition using multicriteria approach, Thermal Science, https://doi.org/10.2298/TSCI221013224M

Bracale, A., Caramia, P., Carpinelli, G., Di Fazio, A.R. & Ferruzzi, G. (2013). A Bayesian method for short-term probabilistic forecasting of photovoltaic generation in smart grid operation and control. Energies, 6(2), 733-747. https://doi.org/10.3390/en6020733

Brand, B., & Missaoui, R. (2014). Multi-criteria analysis of electricity generation mix scenarios in Tunisia. Renewable and Sustainable Energy Reviews, 39, 251-261. https://doi.org/10.1016/j.rser.2014.07.069.

Brandweiner, O. (2009). Lower return temperatures within District heating Systems – A Comparison of Danish and German District heating Systems. Lower return temperatures within District heating Systems – A Comparison of Danish and German District heating Systems. Aalborg: Master’s Thesis, Department of Development and Planning, Aalborg University.

Buckley, J.J. (1990). Stochastic versus possibilistic programming. Fuzzy Sets and Systems, 34(2), 173-177. https://doi.org/10.1016/0165-0114(90)90156-Z.

Buyukozkan, Guleryuz, S. (2016). Fuzzy Multi Criteria Decision Making Approach for Evaluating Sustainable Energy Technology Alternatives. International Journal of Renewable Energy Sources,1, 1-6.

Cabrol, L. & Rowley, P. (2012). Towards low carbon homes – a simulation analysis of building-integrated air-source heat pump systems. Energy and Buildings, 48, 127-136. https://doi.org/10.1016/j.enbuild.2012.01.019.

Carraro, C., Tavoni, M., Longden, T. & Marangoni, G. (2013). The Optimal Energy Mix in Power Generation and the Contribution from Natural Gas in Reducing Carbon Emissions to 2030 and Beyond. CESIFO Working paper No. 4432, Category 10: Energy and Climate ECO. http://dx.doi.org/10.2139/ssrn.2340509

Chai J., Liu, J. & Ngai, E. (2013). Application of decision making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872-3885. https://doi.org/10.1016/j.eswa.2012.12.040.

Chang, T.P. (2010). Investigation on Frequency Distribution of Global Radiation Using Different Probability Density Functions. International Journal of Applied Science and Engineering, 8(2), 99-107. 10.6703/IJASE.2010.8(2).99

Chao, H. (2011). Efficient pricing and investment in electricity markets with intermittent resources. Energy Policy, 39(7), 3945-3953. https://doi.org/10.1016/j.enpol.2011.01.010.

Cherif, H. & Belhadj, J. (2014). “Energy output estimation of hybrid Wind-Photovoltaic power system using statistical distributions. Journal of Electrical Systems, 10(2), 117-132.

Connolly, D. & Mathiesen, B.V. (2014). A technical and economic analysis of one potential pathway to a 100% renewable energy system. International Journal of Sustainable Energy Planning and Management, 1, 7-28.

Cristobal, J. S. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renewable Energy, 36(2), 498-502. https://doi.org/10.1016/j.renene.2010.07.031

Dev S., Aherwar A. & Patnaik, A. (2020). Material Selection for Automotive Piston Component Using Entropy-VIKOR Method. Silicon 12(4), 155-169. https://doi.org/10.1007/s12633-019-00110-y

Dincern, I., Hussain, M.M. & Al-Zaharnah, I. (2004). Analysis of sectoral energy and exergy use of Saudi Arabia. International Journal of Energy Research, 28(3), 205-243. https://doi.org/10.1002/er.962

Doris, E., McLaren, J., Healey, V. & Hockett, S. (2009). State of the States 2009: Renewable Energy Development and the Role of Policy. Technical Report NREL/TP-6A2-46667. October 2009. National Renewable Energy Laboratory, U.S. Department of Energy, Ofice of Energy Eficiency and Renewable Energy. https://doi.org/10.2172/965526

Faundez, P. (2017). Renewable energy in the equilibrium mix of electricity supply sources. Energy Economics, 67, 28-34. https://doi.org/10.1016/j.eneco.2017.07.015

Figueira J., Greco, S. & Ehrgott, M. (2005). Multi criteria Decision Analysis: State of the Art Surveys. Springer New York, NY. https://doi.org/10.1007/978-1-4939-3094-4

Fontella, E.A. (1979). Energy and the economy. Keynote paper, Energy Systems Analysis. International Conference, Dublin, Ireland (1979).

Geem, Y.W. & Kim, J.H. (2016). Optimal Energy Mix with Renewable Portfolio Standards in Korea. Sustainability, 8(5), 423. https://doi.org/10.3390/su8050423

Ginevičius, R. (2011). A new determining method for the criteria weights in multicriteria evaluation. International Journal of Information Technology & Decision Making, 10(6), 1067–1095. https://doi.org/10.1142/S0219622011004713

Gomes, C.F.S., dos Santos, M., Teixeira, L.F.H.d.S.d.B., Sanseverino, A.M., & Barcelos, M.R.d.S. (2020). SAPEVO-M: A Group Multicriteria Ordinal Ranking Method. Pesquisa Operacional, 40, e226524. https://doi.org/10.1590/0101-7438.2020.040.00226524

Gong, M., Wall, G., & Werner, S. (2012). Energy and exergy analysis of district heating systems. In 13th International Symposium on District Heating and Cooling, Copenhagen, Denmark, Sept. 3-4, 2012 (pp. 55-60).

Grujić, M., Ivezić, D. & Živković, M. (2014). Application of multi-criteria decision-making modelfor choice of the optimal solution for meeting heatdemand in the centralized supply system in Belgrade. Energy, 67(1), 341-350.

Guwaeder, A. & Ramakumar, R. (2018). Statistical Analysis of PV Insolation Data. IEEE PVSC-44, 1112-1126.

Gwo-Hshiung, T., Tzay-an, S. & Chien-Yuan, L. (1992). Application of multicriteria decision making to the evaluation of new energy system development in Taiwan. Energy, 17(10), 983-992. https://doi.org/10.1016/0360-5442(92)90047-4.

Haller, M., Ludig, S. & Bauer N. (2012). Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage. Renewable and Sustainable Energy Reviews, 16(5), 2687-2695. https://doi.org/10.1016/j.rser.2012.01.080.

Heide, D., Lueder von Bremen, Greiner, M., Hoffmann, C., Speckmann, M., Bofinger, S. (2010). Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renewable Energy, 35(11), 2483-2489. https://doi.org/10.1016/j.renene.2010.03.012

Hepbasli, A. & Alsuhaibani, Z. (2011). Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development. Renewable and Sustainable Energy Reviews, 15(6), 2810-2815. https://doi.org/10.1016/j.rser.2011.02.031.

Hirth, L. (2017). The European Electricity Market Model EMMA. Retrieved from https://emma-model.com/

Hogan, W.W., & Parikh, S.C. (1977). Comparison of models of energy and the economy. Stanford Energy Modelling Forum Working Paper EMF 1. 4.

Hong, S., Bradshaw, C.J.A. & Brook, B.W. (2013). Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis. Energy Policy, 56, 418-424. https://doi.org/10.1016/j.enpol.2013.01.002.

Hwang, C.L. & Yoon, K.P. (1981). Multiple attribute decision making:methods and application, (Vol. 186). Springer, New York. http://dx.doi.org/10.1007/978-3-642-48318-9

Ibrahim, O., Fardoun, F., Younes, R. & Louahlia-Gualous, H. (2014). Air source heat pump water heater: dynamic modeling, optimal energy management and mini-tubes condensers. Energy, 64, 1102-1116. https://doi.org/10.1016/j.energy.2013.11.017.

Jahan, A., Ismail, M.Y., Sapuan, S.M. & Mustapha F. (2009). Material screening and choosing methods – a review. Materials & Design, 31(2), 696-705. https://doi.org/10.1016/j.matdes.2009.08.013.

Johnston, J., Mileva, A., Nelson, J.H. & Kammen, D.M. (2013). SWITCH-WECC: Data, Assumptions, and Model Formulation. University of California: Berkeley, CA, USA.

Joshi, A.S., Dincer, I., & Reddy. B.V. (2009). Thermodynamic assessment of photovoltaic systems. Solar Enrgy, 83(8), 1139-1149. https://doi.org/10.1016/j.solener.2009.01.011.

Kabakian, V., & El Sayed, L. (2014). Optimal renewable energy mix of the power sector by 2020: Investment Cost Implications for Lebanon. This report was prepared by the team working for the Climate Change Coordination Unit (CCCU) at the Ministry of En.

Kelly, N.J. & Cockroft, J. (2011). Analysis of retrofit air source heat pump performance: results from detailed simulations and comparison to field trial data. Energy and Buildings, 43(1), 239-245. https://doi.org/10.1016/j.enbuild.2010.09.018.

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry, 13(4), 525-553.

Khaliq, A., & Kaushik, S.C. (2004). Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat. Applied Thermal Engineering, 24(13), 1785-1795. https://doi.org/10.1016/j.applthermaleng.2003.12.013.

Kiss, V.M. (2016). Modelling the energy system of Pécs – The first step towards a sustainable city. Energy, 80, 373-387. https://doi.org/10.1016/j.energy.2014.11.079.

Klein, S.J.W. & Whalley, S. (2015). Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis. Energy Policy, 79, 127-149. https://doi.org/10.1016/j.enpol.2015.01.007.

Kocer, A. A., Yuksel, Y. E., & Ozturk, M. (2014). Thermodynamic and environmental assessment of a wind turbine system. In Proceedings of the 5th international symposium on sustainable development (pp. 219-228). International Burch University Sarajevo, Bosnia and Herzegovina.

Kolios, A.J., Rodriguez-Tsouroukdissian., A. & Salonitis, K. (2016). Multi-criteria decision analysis of offshore wind turbines support structures under stochastic inputs. Ships and Offshore Structures, 11(1), 38-49. https://doi.org/10.1080/17445302.2014.961295

Komiyama, R., & Fujii, Y. (2014). Assessment of massive integration of photovoltaic system considering rechargeable battery in Japan with high time-resolution optimal power generation mix model. Energy Policy, 66, 73-89. https://doi.org/10.1016/j.enpol.2013.11.022

Koroneos, C., Spachos, T., & Moussiopoulos, N. (2003). Exergy analysis of renewable energy sources. Renewable Energy, 28(2), 297-310. https://doi.org/10.1016/S0960-1481(01)00125-2.

Kumar, M., & Samuel, C. (2017). Selection of Best Renewable Energy Source by Using VIKOR Method. Technology and Economics of Smart Grids and Sustainable Energy, 2(8), 10 pages. doi:https://doi.org/10.1007/s40866-017-0024-7

Lootsma, F. A. (1999). Multi-criteria Decision Analysis via Ratio and Difference Judgement (Vol. 29). New York: Springer New York, NY. https://doi.org/10.1007/b102374

Løken, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. https://doi.org/10.1016/j.rser.2005.11.005.

Lund, H. (2006). Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply. Renewable Energy, 31(4), 503-515. https://doi.org/10.1016/j.renene.2005.04.008.

Lund, H. (2014). Chapter 3 - Methodology: Choice Awareness Strategies, in Renewable Energy Systems (Second Edition). ISBN: 9780124095953.

Makkonen, S. (2017). Cost-Optimal Implementation of District Heating and Cooling to an Existing Community, Master Thesis. Aalto University, School of Engineering.

Malkawi, A.S. Al-Nimr, M., & Azizi, D. (2017). „A multi-criteria optimization analysis for Jordan's energy mix. Energy, 127, 680-696. https://doi.org/10.1016/j.energy.2017.04.015.

Mardani, A., Jusoh, A., Nor, K.MD., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic research 28(1), 516-571. https://doi.org/10.1080/1331677X.2015.1075139

Massoud, G. (2015). Techno-Economic Optimization of Danish Decentralized Combined Heat and Power District Heating Plants - A Comparative Analysis of a Retrofitted District Heating Plant & Modification of Institutional levies. Master’s Thesis, Department Department of Sustainable Energy Planning & Management, Aalborg University.

Mendes, C., & Soares, I. (2014). Renewable energies impacting the optimal generation mix: The case of the Iberian Electricity Market. Energy, 69, 23-33. https://doi.org/10.1016/j.energy.2013.11.003.

Meng B., Chi G. (2015). New combined weighting model based on maximizing the difference in evaluation results and its application. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/239634

Mondal, M.A.H., Kennedy, S., & Mezher T. (2014). Long-term optimization of United Arab Emirates energy future: Policy implications. Applied Energy, 114, 466-474. https://doi.org/10.1016/j.apenergy.2013.10.013.

Mourmouris, J.C. & Potolias, C. (2013). A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: a case study Thassos, Greece. Energy Policy, 52, 522-530. https://doi.org/10.1016/j.enpol.2012.09.074.

Opricović, S. (1994). Optimizacija sistema. Naučna knjiga, Beograd.

Opricović, S. (1998) Multicriteria Optimization of Civil Engineering Systems. PhD Thesis, Faculty of Civil Engineering, Belgrade, 302.

Østergaard, P.A. (2009). Reviewing optimization criteria for energy systems analyses of renewable energy integration. Energy, 34(9), 1236-1245. https://doi.org/10.1016/j.energy.2009.05.004.

Ouahabi, M.H. (2017). Analyzing wind speed data and wind power density of Tetouan city in Morocco by adjustment to Weibull and Rayleigh distribution functions. Wind Engineering, 41(3), 174-184. https://doi.org/10.1177/0309524X17709908

Ozgener, O., & Ozgener, L. (2007). Exergy and reliability analysis o f wind turbine systems : A case study. Renewable and Sustainable Energy Reviews, 11(8), 1811-1826. https://doi.org/10.1016/j.rser.2006.03.004.

Ozturk, M. (2011). Energy and exergy assessments for potential wind power in Turkey. International Journal of Exergy, 8(2), 211-226. https://doi.org/10.1504/IJEX.2011.038519

Paish, O. (2002). Small hydro power: technology and current status. Renewable and Sustainable Energy Reviews, 6(6), 537-556. https://doi.org/10.1016/S1364-0321(02)00006-0.

Palmintier, B. (2013). Incorporating Operational Flexibility into Electric Generation Planning: Impacts and Methods for System Design and Policy Analysis. 253-272. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for determining weight coefficients of criteria in mcdm models: Full consistency method (FUCOM). Symmetry, 10(9), 393-411.

Pamučar, D., Ecer, F., Cirovic, G., & Arlasheedi, M. A. (2020). Application of improved best worst method (BWM) in real-world problems. Mathematics, 8(8), 1342-1356. https://doi.org/10.3390/math8081342

Pappala, V.S., Erlich, I., Rohrig, K,. & Dobschinski J. (2009). A stochastic model for the optimal operation of a wind-thermal power system. IEEE Transactions on Power Systems, 24(2), 940-950. https://doi.org/10.1109/TPWRS.2009.2016504.

Parajuli, A. (2016). A Statistical Analysis of Wind Speed and Power Density Based on Weibull and Rayleigh Models of Jumla, Nepal. Energy and Power Engineering, 8(7), 271-282. http://dx.doi.org/10.4236/epe.2016.87026

Pašić, M., Bijelonja, I., & Vučijak, B. (2009). Uvod u kvantitativne tehnike operacionog menadžmenta, Mašinski fakultet, ISBN 978-9958-601-25-5.

Pohekar, S.D. & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning. Renewable and Sustainable Energy Reviews, 8(4), 365-381. https://doi.org/10.1016/j.rser.2003.12.007.

Polatidis, H., Haralambopoulos, D., Munda, G. & Vreeker, R. (2006). Selecting an appropriate multi-criteria decision aid technique for renewable energy planning, Energy Sources. 1(1), 181-193. https://doi.org/10.1080/009083190881607

Pope, K., Dincer, I. & Naterer, G.F. (2010). Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renewable Energy, 35(9), 2102-2113. https://doi.org/10.1016/j.renene.2010.02.013.

Redha, M.A., Dincer, I., & Gadalla, M. (2011). Thermodynamic performance assessment of wind energy systems: an application. Energy, 36(7), 4002-4010. https://doi.org/10.1016/j.energy.2011.05.001.

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.

Rosen, M.A. (2001). Energy- and exergy-based comparison of coal-fired and nuclear steam power plants. Exergy, An International Journal, 1(3), 180-192. https://doi.org/10.1016/S1164-0235(01)00024-3.

Rosen, M.A. & Bulucea, C.A. (2009). Using Exergy to Understand and Improve the Efficiency of Electrical Power Technologies. Entropy, 11, 820-835. https://doi.org/10.3390/e11040820

Rosen, M.A. & Dincer, I. (1997). Sectoral energy and exergy modeling of Turkey. Journal of Energy Resources Technology, 119(3), 200-204. https://doi.org/10.1115/1.2794990.

Saaty, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation. McGraw-Hill: New York, NY, USA.

Saaty, T.L. (1988). What is the analytic hierarchy process? Mathematical Models for Decision Support. NATO ASI Series, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83555-1_5.

Saaty, T.L. (1996). Decision Making with Dependence and Feedback: The Analytic Network Process. RWS Publications: Pittsburgh, PA, USA, Volume 4922.

Şahin, M. (2021). A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy. International Journal of Environmental Science and Technology, 18, 1591–1616. https://doi.org/10.1007/s13762-020-02922-7

Sahin, A.D., Dincer, I., & Marc, A.R. (2007). Thermodynamic analysis of solar photovoltaic cell systems. Solar Energy Materials and Solar Cells, 91(2-3), 153-159. https://doi.org/10.1016/j.solmat.2006.07.015.

Saiah, S.B.D. & Stambouli, A.B. (2017). Prospective analysis for a long-term optimal energy mix planning in Algeria: Towards high electricity generation security in 2062. Renewable and Sustainable Energy Reviews, 73, 26-43. https://doi.org/10.1016/j.rser.2017.01.023.

Scolari, E., Sossan, F. & Paolone, M. (2016). Irradiance prediction intervals for PV stochastic generation in microgrid applications. Solar Energy, 139, 116-129. https://doi.org/10.1016/j.solener.2016.09.030.

Shanmugasundar, G., Sapkota, G., Čep, R., & Kalita, K. (2022). Application of MEREC in Multi-Criteria Selection of Optimal Spray-Painting Robot. Processes, 10(6), 1172-1191.

Siahkali, H., & Vakilian, M. (2010). Stochastic unit commitment of wind farms integrated in power system. Electric Power Systems Research, 80(9), 1006-1017. https://doi.org/10.1016/j.epsr.2010.01.003.

Singh, R., Murty, H., Gupta, S., & Dikshit, A. (2009). An overview of sustainability assessment methodologies. Ecological Indicators, 18(1), 281-299. https://doi.org/10.1016/j.ecolind.2011.01.007.

Siva, R.V., Kaushik, S.C., Tyagi, S.K. & Panwar, N.L. (2010). An approach to analyse energy andexergy analysis of thermal power plants: A review, Smart Grid and Renewable Energy, 1, 143-152. https://doi.org/10.4236/sgre.2010.13019

Sliogeriene, J., Turskis, Z., & Streimikiene, D. (2013). Analysis and Choice of Energy Generation Technologies: The Multiple Criteria Assessment on the Case Study of Lithuania. Energy Procedia, 32, 11-20. https://doi.org/10.1016/j.egypro.2013.05.003.

Surianu, F.D., Borlea, I., Jigoria-Oprea, D., & Lustrea, B. (2012). Comparative study of the opportunity to use Renewable Energy Sources to supply Residential Consumers. 1, pp. 81-85. International Conference on Renewable Energies and Power Quality, (ICREPQ'12). https://doi.org/10.24084/REPQJ10.230

Thangavelu, S.L., Khambadkone, A.M., & Karimi, I.A. (2015). Long-term optimal energy mix planning towards high energy security and low GHG emission. Applied Energy, 154, 959-969. https://doi.org/10.1016/j.apenergy.2015.05.087

Theodorou, S., Florides, G. & Tassou, S. (2010). The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, A review. Energy Policy, 38(12), 7783-7792. https://doi.org/10.1016/j.enpol.2010.08.038.

Trutnevyte, E. (2013). EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective. Applied Energy, 111, 593-601. https://doi.org/10.1016/j.apenergy.2013.04.083.

Tummala, V.R. & Čupić, M. (1991). Savremeno odlučivanje. Naučna knjiga, Beograd.

Vasković, S. (2016). Razvoj modela za ocjenu prihvatljivosti energetskih lanaca pri proizvodnji energije i energenata iz biomase. Doktorska disertacija – Univerzitet u Istočnom Sarajevu Mašinski fakultet.

Vasković, S., Gvero, P., Medaković, V. & Halilović, V. (2016). Energy Chains Optimization for Selection of Sustainable Energy Supply. Chapter in Book “Sustainable Supply Chain Management”, ISBN 978953-51-4711-4, INTECH 2016. Dr. Evelin Krmac (Ed.), InTech, https://doi.org/10.5772/62537

Vidal-Amaro, J. J., Østergaard, P. A., & Sheinbaum-Pardo, C. (2015). Optimal energy mix for transitioning from fossil fuels to renewable energy sources–The case of the Mexican electricity system. Applied Energy, 150, 80-96.

Vitaljić, H. (2006). Potencijal obnovljivih izvora energije za smanjenje emisija CO2, magistarski rad, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje.

Wang, Y. M., Parkan, C. (2005). Multiple attribute decision making based on fuzzy preference information on alternatives: Ranking and weighting. Fuzzy Sets and Systems, 331–346. https://doi.org/10.1016/j.fss.2005.02.018

Wang, J.J., Jing, Y.Y., Zhang, C.F. & Zhao J.H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. 13(9), 2263-2278. https://doi.org/10.1016/j.rser.2009.06.021.

Weijermars, R., Taylor, P., Bahn, O., Das, S.R. & Wei, Y. (2012). Review of models and actors in energy mix optimizatione can leader visions and decisions align with optimum model strategies for our future energy systems (Vol. 1). Energy Strategy Reviews, 1 5-18. https://doi.org/10.1016/j.esr.2011.10.001.

Xydis, G. (2012). Effects of air psychrometrics on the exergetic efficiency of a wind farm at a coastal mountainous site – an experimental study. Energy, 37(1), 632-638. https://doi.org/10.1016/j.energy.2011.10.039.

Zafar, S., & Gadalla, M. (2013). Energy Production through Wind using Personal use Wind Turbines: A UAE case study. International Mechanical Engineering Congress and Exposition. San Diego: ASME Congress 2013. California, USA. http://dx.doi.org/10.1115/IMECE2013-66323

Zardari, N.H., Ahmed, K., Shirazi, S.M., & Yusop, Z.B. (2015). Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-12586-2

Zavadskas, E.K., Turskis, Z., & Kildienė, S. (2014). State Of Art Surveys Of Overviews On MCDM/MADM Methods. Technological and Economic Development of Economy, 20(1), 165-179. https://doi.org/10.3846/20294913.2014.892037

Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology & Decision Making, 15(02), 267-283.

Žižović, M., & Pamucar, D. (2019). New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decision Making: Applications in Management and Engineering, 2(2), 126-137.



How to Cite

Mrkić-Bosančić, M., Vasković , S., Gvero, P., & Krunić, G. (2023). Optimal energy mix in relation to multi-criteria decision-making (MCDM), review and further research directions. Decision Making: Applications in Management and Engineering, 6(2), 43–73. https://doi.org/10.31181/dmame622023766