A hybrid method for occupations selection in the bio-circular-green economy project of the national housing authority in Thailand


  • Busaba Phurksaphanrat Thammasat University Research Unit in Industrial Statistics and Operational Research, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Thailand
  • Saruntorn Panjavongroj Thammasat University Research Unit in Industrial Statistics and Operational Research, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Thailand




Fuzzy Logarithmic Full Consistency Method (FUCOM-LF), Combined Compromise Solution (CoCoSo), Bio-Circular-Green Economy (BCG), Multi-Criteria Decision Making (MCDM), Sustainable Development, Sustainability.


The National Housing Authority (NHA) in Thailand has developed a new project with the aim of sustainable development based on the Bio-Circular-Green (BCG) economy for improving the quality of life of people in the country. It not only provides houses to live in but also promotes income generation by choosing and promoting the appropriate occupations for the people. Choosing appropriate occupations within the BCG economy is a complex decision-making process, as there are likely to be many factors to consider for each community. To, address this challenge, a novel hybrid approach combining the Fuzzy Logarithmic Full Consistency Method (FUCOM-LF) and the Combined Compromise Solution (CoCoSo) is introduced. This hybrid method effectively evaluates the sustainability of different occupations and identifies appropriate occupations for the community by ensuring full consistency in weighing the relevant criteria and high-resolution discrimination of alternatives. The proposed comprehensive BCG occupation selection framework serves as a general framework for NHA that can be applied to any community. Additionally, this research provides a compilation of support guidelines for each occupation. Through a case study community, the practicality and effectiveness of the hybrid method and the proposed framework in selecting the appropriate occupations are demonstrated.


Download data is not yet available.


Akbari, M., Meshram, S. G., Krishna, R. S., Pradhan, B., Shadeed, S., Khedher, K. M., Sepehri, M., Ildoromi, A. R., Alimerzaei, F., & Darabi, F. (2021). Identification of the groundwater potential recharge zones using MCDM models: Full Consistency Method (FUCOM), Best Worst Method (BWM) and Analytic Hierarchy Process (AHP). Water Resources Management, 35(14), 4727–4745. https://doi.org/10.1007/s11269-021-02924-1

Akmaludin, A., Sihombing, E. G., Dewi, L. S., Rinawati, R., & Arisawati, E. (2022). Collaboration of profile matching and MCDM-AHP methods on employee selection for promotion. SinkrOn, 7(2), 321–332. https://doi.org/10.33395/sinkron.v7i1.11203

Badi, I., & Kridish, M. (2020). Landfill site selection using a novel FUCOM-CODAS model: A case study in Libya. Scientific African, 9, 1–10. https://doi.org/10.1016/j.sciaf.2020.e00537

Bonab, S. R., Haseli, G., Rajabzadeh, H., Ghoushchi, S. J., Hajiaghaei-Keshteli, M., & Tomaskova, H. (2023). Sustainable Resilient Supplier Selection for Iot Implementation Based on the Integrated Bwm and Trust Under Spherical Fuzzy Sets. Decision Making: Applications in Management and Engineering, 6(1), 153–185. https://doi.org/10.31181/dmame12012023b

Bröring, S., Laibach, N., & Wustmans, M. (2020). Innovation types in the bioeconomy. Journal of Cleaner Production, 266, 1–12. https://doi.org/10.1016/j.jclepro.2020.121939

Bugge, M. M., Hansen, T., & Klitkou, A. (2016). What is the bioeconomy? A review of the literature. Sustainability (Switzerland), 8(7), 1–22. https://doi.org/10.3390/su8070691

Carus, M., & Dammer, L. (2018). The circular bioeconomy-concepts, opportunities, and limitations. Industrial Biotechnology, 14(2), 83–91. https://doi.org/10.1089/ind.2018.29121.mca

Chen, Q. Y., Liu, H. C., Wang, J. H., & Shi, H. (2022). New model for occupational health and safety risk assessment based on Fermatean fuzzy linguistic sets and CoCoSo approach. Applied Soft Computing, 126(109262), 1–14. https://doi.org/10.1016/j.asoc.2022.109262

Chen, Y., Chen, C. Y., & Hsieh, T. (2011). Exploration of sustainable development by applying green economy indicators. Environmental Monitoring and Assessment, 182(1–4), 279–289. https://doi.org/10.1007/s10661-011-1875-3

Corvellec, H., Stowell, A. F., & Johansson, N. (2022). Critiques of the circular economy. Journal of Industrial Ecology, 26(2), 421–432. https://doi.org/10.1111/jiec.13187

Demir, G., Damjanović, M., Matović, B., & Vujadinović, R. (2022). Toward sustainable urban mobility by using fuzzy-FUCOM and fuzzy-CoCoSo methods: the case of the SUMP Podgorica. Sustainability (Switzerland), 14(9), 1–27. https://doi.org/10.3390/su14094972

Dietz, T., Börner, J., Förster, J. J., & von Braun, J. (2018). Governance of the bioeconomy: A global comparative study of national bioeconomy strategies. Sustainability (Switzerland), 10(9), 1–20. https://doi.org/10.3390/su10093190

Durmić, E., Stević, Z., Chatterjee, P., Vasiljevic, M., & Tomasevic, M. (2020). Sustainable supplier selection using combined FUCOM – Rough SAW model. Reports in Mechanical Engineering, 1(1), 34–43. https://doi.org/10.31181/rme200101034c

Dwivedi, P. P., & Sharma, D. K. (2022). Application of Shannon entropy and CoCoSo methods in selection of the most appropriate engineering sustainability components. Cleaner Materials, 5(100118), 1–7. https://doi.org/10.1016/j.clema.2022.100118

Ecer, F., & Pamucar, D. (2020). Sustainable supplier selection: A novel integrated fuzzy Best Worst Method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. Journal of Cleaner Production, 266(121981), 1–18. https://doi.org/10.1016/j.jclepro.2020.121981

El-Chichakli, B., von Braun, J., Lang, C., Barben, D., & Philp, J. (2016). Five cornerstones of a global bioeconomy. Nature, 535, 221–223.

Erceg, Ž., Starčević, V., Pamučar, D., Mitrović, G., Stević, Ž., & Žikić, S. (2019). A new model for stock management in order to rationalize costs: ABC-FUCOM-interval rough CoCoSo model. Symmetry, 11(1527), 1–29. https://doi.org/10.3390/SYM11121527

Fazlollahtabar, H., Smailbašić, A., & Stević, Ž. (2019). FUCOM method in group decision-making: Selection of forklift in a warehouse. Decision Making: Applications in Management and Engineering, 2(1), 49–65. https://doi.org/10.31181/dmame1901065f

Feizi, F., Karbalaei-Ramezanali, A. A., & Farhadi, S. (2021). FUCOM-MOORA and FUCOM-MOOSRA: New MCDM-based knowledge-driven procedures for mineral potential mapping in greenfields. SN Applied Sciences, 3(3), 1–19. https://doi.org/10.1007/s42452-021-04342-9

Franek, J., & Kashi, K. (2014). A review and critique of MADM methods application in business and management. International Journal of the Analytic Hierarchy Process, 6(2), 180–201. https://doi.org/10.13033/isahp.y2014.010

Ghoushchi, S. J., Jalalat, S. M., Bonab, S. R., Ghiaci, A. M., Haseli, G., & Tomaskova, H. (2022). Evaluation of Wind Turbine Failure Modes Using the Developed SWARA-CoCoSo Methods Based on the Spherical Fuzzy Environment. IEEE Access, 10(August), 86750–86764. https://doi.org/10.1109/ACCESS.2022.3199359

Haseli, G., Torkayesh, A. E., Hajiaghaei-Keshteli, M., & Venghaus, S. (2023). Sustainable resilient recycling partner selection for urban waste management: Consolidating perspectives of decision-makers and experts. Applied Soft Computing, 137, 110120. https://doi.org/10.1016/j.asoc.2023.110120

Kardung, M., Cingiz, K., Costenoble, O., Delahaye, R., Heijman, W., Lovrić, M., van Leeuwen, M., M’barek, R., van Meijl, H., Piotrowski, S., Ronzon, T., Sauer, J., Verhoog, D., Verkerk, P. J., Vrachioli, M., Wesseler, J. H. H., & Zhu, B. X. (2021). Development of the circular bioeconomy: Drivers and indicators. Sustainability (Switzerland), 13(1), 1–24. https://doi.org/10.3390/su13010413

Keha Sukpracha. (2022). 56-1 One Report. https://www.kha.co.th/investor-relation/

Khan, F., Ali, Y., & Pamucar, D. (2022). A new fuzzy FUCOM-QFD approach for evaluating strategies to enhance the resilience of the healthcare sector to combat the COVID-19 pandemic. Kybernetes, 51(4), 1429–1451. https://doi.org/10.1108/K-02-2021-0130

Khan, S., & Haleem, A. (2021). Investigation of circular economy practices in the context of emerging economies: A CoCoSo approach. International Journal of Sustainable Engineering, 14(3), 357–367. https://doi.org/10.1080/19397038.2020.1871442

Khoshnava, S. M., Rostami, R., Zin, R. M., Štreimikiene, D., Yousefpour, A., Strielkowski, W., & Mardani, A. (2019). Aligning the criteria of green economy (GE) and sustainable development goals (SDGs) to implement sustainable development. Sustainability (Switzerland), 11(4615), 1–23. https://doi.org/10.3390/su11174615

Khosravi, M., Haqbin, A., Zare, Z., & Shojaei, P. (2022). Selecting the most suitable organizational structure for hospitals: An integrated fuzzy FUCOM ‑ MARCOS method. Cost Effectiveness and Resource Allocation, 20(29), 1–17. https://doi.org/10.1186/s12962-022-00362-3

Kumar, V., Kalita, K., Chatterjee, P., Zavadskas, E. K., & Chakraborty, S. (2022). A SWARA-CoCoSo-based approach for spray painting robot selection. Informatica (Netherlands), 33(1), 35–54. https://doi.org/10.15388/21-infor466

Lai, H., Liao, H., Long, Y., & Zavadskas, E. K. (2022). A hesitant Fermatean fuzzy CoCoSo method for group decision-making and an application to blockchain platform evaluation. International Journal of Fuzzy Systems, 24(6), 2643–2661. https://doi.org/10.1007/s40815-022-01319-7

Lim, Y. R., Ariffin, A. S., Ali, M., & Chang, K. L. (2021). A hybrid MCDM model for live-streamer selection via the fuzzy Delphi method, AHP, and TOPSIS. Applied Sciences (Switzerland), 11(19), 1–15. https://doi.org/10.3390/app11199322

Marsh, A. T. M., Velenturf, A. P. M., & Bernal, S. A. (2022). Circular economy strategies for concrete: implementation and integration. Journal of Cleaner Production, 362(132486), 1–17. https://doi.org/10.1016/j.jclepro.2022.132486

Narang, M., Joshi, M. C., Bisht, K., & Pal, A. (2022). Stock portfolio selection using a new decision-making approach based on the integration of fuzzy CoCoSo with heronian mean operator. Decision Making: Applications in Management and Engineering, 5(1), 90–112. https://doi.org/10.31181/dmame0310022022n

National Housing Authority. (2022). Project for improving the environment and life quality of community members. https://www.nha.co.th/en/

NSTDA. (2021). Bio-Circular-Green economy action plan 2021-2027 summary.

Ocampo, L. (2022). Full Consistency Method (FUCOM) and weighted sum under fuzzy information for evaluating the sustainability of farm tourism sites. Soft Computing, 8(1991), 1–28. https://doi.org/10.1007/s00500-022-07184-8

Palapleevalya, P., Poboon, C., & Mungcharoen, T. (2017). Development of sustainable consumption and production indicators for industrial sector according to circular economy principles in Thailand. Interdisciplinary Research Review, 16(6), 13–18.

Pamucar, D., Deveci, M., Canıtez, F., & Bozanic, D. (2020). A fuzzy full consistency method-Dombi-Bonferroni model for prioritizing transportation demand management measures. Applied Soft Computing Journal, 87(105952), 1–25. https://doi.org/10.1016/j.asoc.2019.105952

Pamucar, D., & Ecer, F. (2020). Prioritizing the weights of the evaluation criteria under fuzziness: The fuzzy full consistency method – FUCOM-F. Facta Universitatis, Series: Mechanical Engineering, 18(3), 419–437. https://doi.org/10.22190/fume200602034p

Pamucar, D., Ecer, F., & Deveci, M. (2021). Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology. Science of the Total Environment, 788(147763), 1–21. https://doi.org/10.1016/j.scitotenv.2021.147763

Pamucar, D., & Faruk Görçün, Ö. (2022). Evaluation of the European container ports using a new hybrid fuzzy LBWA-CoCoSo’B techniques. Expert Systems with Applications, 203(117463), 1–17. https://doi.org/10.1016/j.eswa.2022.117463

Pamucar, D., Stević, Ž., & Sremac, S. (2018). A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry, 10(9), 1–22. https://doi.org/10.3390/sym10090393

Panjavongroj, S., & Phruksaphanrat, B. (2022). Selection of ERP system and the best practice by hybrid method : A case study of Thai automotive supply chain network. Journal of Intelligent & Fuzzy Systems, 43(6), 7617–7631. https://doi.org/10.3233/JIFS-221476

Peng, X., Zhang, X., & Luo, Z. (2020). Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artificial Intelligence Review, 53(5), 3813–3847. https://doi.org/10.1007/s10462-019-09780-x

Pfau, S. F., Hagens, J. E., Dankbaar, B., & Smits, A. J. M. (2014). Visions of sustainability in bioeconomy research. Sustainability (Switzerland), 6(3), 1222–1249. https://doi.org/10.3390/su6031222

Popović, M. (2021). An MCDM approach for personnel selection using the CoCoSo method. Journal of Process Management and New Technologies, 9(3–4), 78–88. https://doi.org/10.5937/jpmnt9-34876

Qiyas, M., Naeem, M., Khan, S., Abdullah, S., Botmart, T., & Shah, T. (2022). Decision support system based on CoCoSo method with the picture fuzzy information. Journal of Mathematics, 2022, 1–11. https://doi.org/10.1155/2022/1476233

Seesung, W. (2021). Media exposure to and knowledge of the BCG economic development policy model of the Thai people. Jurnal Komunikasi Pembangunan, 19(02), 83–96. https://doi.org/10.46937/19202136509

Sofuoğlu, M. A. (2019). Fuzzy applications of FUCOM method in manufacturing environment. Journal of Polytechnic, 23(1), 189–195. https://doi.org/10.2339/politeknik.586036

Stegmann, P., Londo, M., & Junginger, M. (2020). The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resources, Conservation and Recycling: X, 6(100029), 1–17. https://doi.org/10.1016/j.rcrx.2019.100029

Thailand: a labor market profile. (2013). In Thailand : a labor market profile. ILO.

Vukovic, N., Pobedinsky, V., Mityagin, S., Drozhzhin, A., & Mingaleva, Z. (2019). A study on green economy indicators and modeling: Russian context. Sustainability (Switzerland), 11(17), 1–13. https://doi.org/10.3390/su11174629

Wang, Y. M., & Chin, K. S. (2011). Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology. International Journal of Approximate Reasoning, 52(4), 541–553. https://doi.org/10.1016/j.ijar.2010.12.004

Wesseler, J., & Von Braun, J. (2017). Measuring the bioeconomy: Economics and policies. Annual Review of Resource Economics, 9, 275–298. https://doi.org/10.1146/annurev-resource-100516-053701

Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501–2519. https://doi.org/10.1108/MD-05-2017-0458

Zafaranlouei, N., Ghoushchi, S. J., & Haseli, G. (2023). Assessment of sustainable waste management alternatives using the extensions of the base criterion method and combined compromise solution based on the fuzzy Z-numbers. In Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26380-z



How to Cite

Phurksaphanrat, B., & Panjavongroj, S. (2023). A hybrid method for occupations selection in the bio-circular-green economy project of the national housing authority in Thailand. Decision Making: Applications in Management and Engineering, 6(2), 177–200. https://doi.org/10.31181/dmame622023741