Application of an Optimized Version of Modified Elman Neural Network Using Improved Pelican Optimizer for Energy System Marginal Price Forecasting
DOI:
https://doi.org/10.31081/dmame8220251606Keywords:
System Marginal Price, Prediction, Modified Elman Neural Network, Fréchet distance, Improved Pelican Optimization Algorithm.Abstract
Following the liberalisation of the electricity sector and its transition to a competitive market structure, price volatility has intensified, as electricity tariffs are now formed through market-based pricing mechanisms. Electricity price time series exhibit complex properties, including pronounced instability, strong non-linearity, and substantial fluctuations. In response to these characteristics, this study concentrates on the development of a day-ahead system marginal price (SMP) forecasting framework based on an enhanced Elman Neural Network (ENN). To improve the predictive capability of the proposed ENN, a modified pelican optimisation algorithm is employed to optimise its parameters. For the selection of short-term input variables, the Pearson correlation coefficient is applied to identify the most relevant factors. In contrast, long-term input variables are determined by incorporating the discrete Fréchet distance, alongside seasonal attributes, day-type information, forecasted load, and historical SMP values. A comprehensive dataset spanning fifteen years is used to evaluate the effectiveness of the proposed model. The empirical results demonstrate that the suggested approach achieves superior forecasting accuracy compared with conventional SMP prediction methods, confirming its effectiveness for electricity market price forecasting.
Downloads
References
[1] Aghajani, G., & Ghadimi, N. (2018). Multi-objective energy management in a micro-grid. Energy Reports, 4, 218-225. https://doi.org/10.1016/j.egyr.2017.10.002
[2] Akbary, P., Ghiasi, M., Pourkheranjani, M. R. R., Alipour, H., & Ghadimi, N. (2019). Extracting appropriate nodal marginal prices for all types of committed reserve. Computational Economics, 53(1), 1-26. https://doi.org/10.1007/s10614-017-9716-2
[3] Alferaidi, A., Yadav, K., Alharbi, Y., Razmjooy, N., Viriyasitavat, W., Gulati, K., Kautish, S., & Dhiman, G. (2022). Distributed Deep CNN‐LSTM Model for Intrusion Detection Method in IoT‐Based Vehicles. Mathematical Problems in Engineering, 2022(1), 3424819. https://doi.org/10.1155/2022/3424819
[4] Anastasiadis, A., Konstantinopoulos, S., Kondylis, G., Vokas, G. A., & Salame, M. J. (2018). Carbon tax, system marginal price and environmental policies on Smart Microgrid operation. Management of Environmental Quality: An International Journal, 29(1), 76-88. https://doi.org/10.1108/MEQ-11-2016-0086
[5] Bagheri, M., Nurmanova, V., Abedinia, O., Naderi, M. S., Naderi, M. S., & Ghadimi, N. (2018). A novel wind power forecasting based feature selection and hybrid forecast engine bundled with honey bee mating optimization. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-6. https://doi.org/10.1109/EEEIC.2018.8493805
[6] Bahmanyar, D., Razmjooy, N., & Mirjalili, S. (2022). Multi-objective scheduling of IoT-enabled smart homes for energy management based on Arithmetic Optimization Algorithm: A Node-RED and NodeMCU module-based technique. Knowledge-Based Systems, 247, 108762. https://doi.org/10.1016/j.knosys.2022.108762
[7] Cai, W., Mohammaditab, R., Fathi, G., Wakil, K., Ebadi, A. G., & Ghadimi, N. (2019). Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach. Renewable Energy, 143, 1-8. https://doi.org/10.1016/j.renene.2019.05.008
[8] Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K., & Razmjooy, N. (2019). Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Reports, 5, 1616-1625. https://doi.org/10.1016/j.egyr.2019.11.013
[9] Cao, Y., Wu, Y., Fu, L., Jermsittiparsert, K., & Razmjooy, N. (2019). Multi-objective optimization of a PEMFC based CCHP system by meta-heuristics. Energy Reports, 5, 1551-1559. https://doi.org/10.1016/j.egyr.2019.10.029
[10] Dehghani, M., Ghiasi, M., Niknam, T., Kavousi-Fard, A., Shasadeghi, M., Ghadimi, N., & Taghizadeh-Hesary, F. (2020). Blockchain-based securing of data exchange in a power transmission system considering congestion management and social welfare. Sustainability, 13(1), 90. https://doi.org/10.3390/su13010090
[11] Ebrahimian, H., Barmayoon, S., Mohammadi, M., & Ghadimi, N. (2018). The price prediction for the energy market based on a new method. Economic research-Ekonomska istraživanja, 31(1), 313-337. https://doi.org/10.1080/1331677X.2018.1429291
[12] Eiter, T., & Mannila, H. (1994). Computing discrete Fréchet distance. https://www.kr.tuwien.ac.at/staff/eiter/et-archive/files/cdtr9464.pdf
[13] Eslami, M., Moghadam, H. A., Zayandehroodi, H., & Ghadimi, N. (2019). A new formulation to reduce the number of variables and constraints to expedite SCUC in bulky power systems. Proceedings of the national academy of sciences, india section a: physical sciences, 89(2), 311-321. https://doi.org/10.1007/s40010-017-0475-1
[14] Fan, X., Sun, H., Yuan, Z., Li, Z., Shi, R., & Ghadimi, N. (2020). High voltage gain DC/DC converter using coupled inductor and VM techniques. IEEE Access, 8, 131975-131987. https://doi.org/10.1109/ACCESS.2020.3002902
[15] Fan, X., Sun, H., Yuan, Z., Li, Z., Shi, R., & Razmjooy, N. (2020). Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system. Energy Reports, 6, 325-335. https://doi.org/10.1016/j.egyr.2020.01.009
[16] Fei, X., Xuejun, R., & Razmjooy, N. (2023). Optimal configuration and energy management for combined solar chimney, solid oxide electrolysis, and fuel cell: a case study in Iran. Energy sources, Part A: recovery, utilization, and environmental effects, 45(4), 9794-9814. https://doi.org/10.1080/15567036.2019.1680770
[17] Firouz, M. H., & Ghadimi, N. (2016). Concordant controllers based on FACTS and FPSS for solving wide-area in multi-machine power system. Journal of Intelligent & Fuzzy Systems, 30(2), 845-859. https://doi.org/10.3233/IFS-151807
[18] Gao, W., Darvishan, A., Toghani, M., Mohammadi, M., Abedinia, O., & Ghadimi, N. (2019). Different states of multi-block based forecast engine for price and load prediction. International Journal of Electrical Power & Energy Systems, 104, 423-435. https://doi.org/10.1016/j.ijepes.2018.07.014
[19] Gong, W., & razmjooy, N. (2022). A new optimisation algorithm based on OCM and PCM solution through energy reserve. International Journal of Ambient Energy, 43(1), 2299-2312. https://doi.org/10.1080/01430750.2020.1730952
[20] Guo, Y., Dai, X., Jermsittiparsert, K., & Razmjooy, N. (2020). An optimal configuration for a battery and PEM fuel cell-based hybrid energy system using developed Krill herd optimization algorithm for locomotive application. Energy Reports, 6, 885-894. https://doi.org/10.1016/j.egyr.2020.04.012
[21] Jain, M., Maurya, S., Rani, A., & Singh, V. (2018). Owl search algorithm: a novel nature-inspired heuristic paradigm for global optimization. Journal of Intelligent & Fuzzy Systems, 34(3), 1573-1582. https://doi.org/10.3233/JIFS-169452
[22] Leng, H., Li, X., Zhu, J., Tang, H., Zhang, Z., & Ghadimi, N. (2018). A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting. Advanced Engineering Informatics, 36, 20-30. https://doi.org/10.1016/j.aei.2018.02.006
[23] Li, X., Niu, P., & Liu, J. (2018). Combustion optimization of a boiler based on the chaos and Levy flight vortex search algorithm. Applied Mathematical Modelling, 58, 3-18. https://doi.org/10.1016/j.apm.2018.01.043
[24] Liu, J., Chen, C., Liu, Z., Jermsittiparsert, K., & Ghadimi, N. (2020). An IGDT-based risk-involved optimal bidding strategy for hydrogen storage-based intelligent parking lot of electric vehicles. Journal of Energy Storage, 27, 101057. https://doi.org/10.1016/j.est.2019.101057
[25] Mir, M., Shafieezadeh, M., Heidari, M. A., & Ghadimi, N. (2020). Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction. Evolving Systems, 11(4), 559-573. https://doi.org/10.1007/s12530-019-09271-y
[26] Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural computing and applications, 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7
[27] Mirzapour, F., Lakzaei, M., Varamini, G., Teimourian, M., & Ghadimi, N. (2019). A new prediction model of battery and wind-solar output in hybrid power system. Journal of Ambient Intelligence and Humanized Computing, 10(1), 77-87. https://doi.org/10.1007/s12652-017-0600-7
[28] Noh, J., & Cho, H. C. (2020). Forecasting System Marginal Price Using Multilayer Perceptron and Nonlinear Autoregressive exogenous model. Journal of the Korean Society of Mineral and Energy Resources Engineers, 57(6), 585-592. https://doi.org/10.32390/ksmer.2020.57.6.585
[29] Ramezani, M., Bahmanyar, D., & Razmjooy, N. (2021). A new improved model of marine predator algorithm for optimization problems. Arabian Journal for Science and Engineering, 46(9), 8803-8826. https://doi.org/10.1007/s13369-021-05688-3
[30] Rim, C., Piao, S., Li, G., & Pak, U. (2018). A niching chaos optimization algorithm for multimodal optimization. Soft Computing, 22(2), 621-633. https://doi.org/10.1007/s00500-016-2360-2
[31] Shin, S., & Yoo, H. (2021). An Error Correction Model for Long Term Forecast of System Marginal Price. Journal of the Korea Academia-Industrial cooperation Society, 22(6), 453-459.
[32] Sun, L., Han, X.-F., Xu, Y.-P., & Razmjooy, N. (2021). Exergy analysis of a fuel cell power system and optimizing it with Fractional-order Coyote Optimization Algorithm. Energy Reports, 7, 7424-7433. https://doi.org/10.1016/j.egyr.2021.10.098
[33] Tian, M.-W., Yan, S.-R., Han, S.-Z., Nojavan, S., Jermsittiparsert, K., & Razmjooy, N. (2020). New optimal design for a hybrid solar chimney, solid oxide electrolysis and fuel cell based on improved deer hunting optimization algorithm. Journal of Cleaner Production, 249, 119414. https://doi.org/10.1016/j.jclepro.2019.119414
[34] Yang, Z., Ghadamyari, M., Khorramdel, H., Alizadeh, S. M. S., Pirouzi, S., Milani, M., Banihashemi, F., & Ghadimi, N. (2021). Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems. Renewable and Sustainable Energy Reviews, 148, 111295. https://doi.org/10.1016/j.rser.2021.111295
[35] Yang, Z., Liu, Q., Zhang, L., Dai, J., & Razmjooy, N. (2020). Model parameter estimation of the PEMFCs using improved barnacles mating optimization algorithm. Energy, 212, 118738. https://doi.org/10.1016/j.energy.2020.118738
[36] Ye, H., Jin, G., Fei, W., & Ghadimi, N. (2024). High step-up interleaved dc/dc converter with high efficiency. Energy sources, Part A: recovery, utilization, and environmental effects, 46(1), 4886-4905. https://doi.org/10.1080/15567036.2020.1716111
[37] Yu, D., Wang, Y., Liu, H., Jermsittiparsert, K., & Razmjooy, N. (2019). System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Reports, 5, 1365-1374. https://doi.org/10.1016/j.egyr.2019.09.039
[38] Yuan, Z., Wang, W., Wang, H., & Razmjooy, N. (2020). A new technique for optimal estimation of the circuit-based PEMFCs using developed sunflower optimization algorithm. Energy Reports, 6, 662-671. https://doi.org/10.1016/j.egyr.2020.03.010
[39] Zhi, Y., Weiqing, W., Haiyun, W., & Razmjooy, N. (2021). New approaches for regulation of solid oxide fuel cell using dynamic condition approximation and STATCOM. International Transactions on Electrical Energy Systems, 31(2), e12756. https://doi.org/10.1002/2050-7038.12756
[40] Δαρδαμάνης, Α. (2022). Evaluation of machine learning models for predicting the system marginal price of an electricity system–Italian SMP Day-Ahead forecasting Πανεπιστήμιο Πειραιώς]. http://dx.doi.org/10.26267/unipi_dione/1944
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Decision Making: Applications in Management and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.


