A Hybrid Statistical–Fuzzy Decision Framework for Housing and Rental Price Dynamics: Evidence from Spain

Authors

  • Manuel Monge Universidad Francisco de Vitoria, Madrid, Spain, Universidad Europea de Madrid, Spain
  • Rafael Hurtado CUNEF Universidad, Madrid, Spain
  • Juan Infante Universidad Villanueva, Madrid, Spain.

DOI:

https://doi.org/10.31181/dmame8220251560

Keywords:

Decision-Support Framework; Housing Market Analytics; Spain; Rental Prices; Fractional Integration; Cointegration; Causality; Real Estate Decision-Making

Abstract

Real estate markets demand a nuanced comprehension of the evolving interplay between housing prices and rental rates. Traditional economic theory posits that rents drive property prices; however, contemporary evidence indicates a reversal, suggesting that fluctuations in housing prices can, in fact, influence rent levels. This study introduces a decision-support analytics framework to address this phenomenon, combining fractional integration (ARFIMA), fractional cointegration (FCVAR), and time–frequency domain causality analysis. Examination of the Spanish housing market yields three key insights. First, housing prices display persistent responses to shocks, causing rental rates to revert to equilibrium only over intermediate periods. Second, causality analyses reveal that property values significantly influence rental dynamics, confirming a directional effect. Third, long-term cointegration is evident, implying that rental adjustments facilitate the realignment of the housing–rental system towards equilibrium. The proposed framework equips real estate investors, policymakers, and urban planners with enhanced tools for decision-making, supporting refined risk assessment, optimal investment timing, and evidence-based housing affordability strategies. Overall, the findings advance management and economic policy-making by demonstrating how sophisticated time-series methodologies can inform sustainable housing market interventions.

Downloads

Download data is not yet available.

References

[1] Ara, M. A., Tamanna, M. S., & Ali, M. (2025). A hybrid AHP and statistical validation approach for sustainable supplier selection in the apparel industry. Discover Sustainability, 6, 538. https://doi.org/10.1007/s43621-025-01416-1

[2] Bao, T., & Hommes, C. (2019). When speculators meet constructors: Positive and negative feedback in experimental housing markets. Journal of Economics Dynamics and Control, 107, 103730. https://doi.org/10.1016/j.jedc.2019.103730

[3] Bokhari, S., & Geltner, D. (2011). Loss aversion and anchoring in commercial real estate pricing: Empirical evidence and price index implications. Real Estate Economics, 39(4), 635. https://doi.org/10.1111/j.1540-6229.2011.00308.x

[4] Cadigan, J., Schmitt, P., Shupp, R., & Swope, K. (2011). The holdout problem and urban sprawl: Experimental evidence. Journal of Urban Economics, 69(1), 72. https://ideas.repec.org/a/eee/juecon/v69y2011i1p72-81.html

[5] Bhutta, N., Dokko, J., & Shan, H. (2017). Consumer ruthlessness and mortgage default during the Great Recession. Journal of Housing Economics, 36, 40–54. https://doi.org/10.1111/jofi.12523

[6] Ciner, Ç. (2011). Eurocurrency Interest Rate Linkages: A Frequency Domain Analysis. International Review of Economics and Finance, 20, 498. https://ideas.repec.org/a/eee/reveco/v20y2011i4p498-505.html

[7] Collins, S. M., & Isaac, R. M. (2012). Holdout: Existence, information, and contingent contracting. The Journal of Law and Economics, 55(4), 793. https://doi.org/10.1086/665830

[8] Cypher, M., Price, S. M., Robinson, S., & Seiler, M. J. (2018). Price signals and uncertainty in commercial real estate transactions. The Journal of Real Estate Finance and Economics, 57, 246. https://doi.org/10.1007/s11146-017-9617-0

[9] Echaves García, A. (2017). El difícil acceso de los jóvenes al mercado de vivienda en España: precios, regímenes de tenencia y esfuerzos. Cuadernos de Relaciones Laborales, 35(1), 127. https://doi.org/10.5209/CRLA.54986

[10] Geerts, M., vanden Broucke, S., & De Weerdt, J. (2023). A Survey of Methods and Input Data Types for House Price Prediction. ISPRS International Journal of Geo-Information, 12(5), 200. https://doi.org/10.3390/ijgi12050200

[11] Hirota, S., Suzuki-Löffelholz, K., & Udagawa, D. (2020). Does owners’ purchase price affect rent offered? Experimental evidence. Journal of Behavioral and Experimental Finance, 25, 100260. https://doi.org/10.1016/j.jbef.2019.100260

[12] Ikromov, N., & Yavas, A. (2012). Asset characteristics and boom and bust periods: An experimental study. Real Estate Economics, 40(3), 603. https://doi.org/10.1111/j.1540-6229.2012.00333.x

[13] Jiang, W., Lu Qiu, W., Lin, S. H., Lv, H., Zhao, X., & Cong, H. (2023). A New Hybrid Decision-Making Model for Promoting Sustainable Social Rental Housing. Sustainability, 15(8), 6420. https://doi.org/10.3390/su15086420

[14] Keshavarz-Ghorabaee, M., Amiri, M., Hashemi-Tabatabaei, M., Zavadskas, E. K., & Kaklauskas, A. (2020). A New Decision-Making Approach Based on Fermatean Fuzzy Sets and WASPAS for Green Construction Supplier Evaluation. Mathematics, 8(12), 2202. https://doi.org/10.3390/math8122202

[15] Khan, M. J., Alcantud, J. C. R., & Akram, M. (2025). Separable N-soft sets: A tool for multinary descriptions with large-scale parameter sets. Applied Intelligence, 55, 561. https://doi.org/10.1007/s10489-025-06435-z

[16] Kırca, M., Canbay, Ş., & Pirali, K. (2020). Is the relationship between oil-gas prices index and economic growth in Turkey permanent? Resources Policy, 69, 101838. https://doi.org/10.1016/j.resourpol.2020.101838

[17] Kitchens, C., & Roomets, A. (2015). Dealing with eminent domain. Journal of Behavioral and Experimental Economics, 54, 22. https://doi.org/10.1016/j.socec.2014.11.004

[18] Nicula, A. S., Ternauciuc, A., & Vasiu, R. A. (2025). A Smart Housing Recommender for Students in Timișoara. Applied Sciences, 15(14), 7869. https://doi.org/10.3390/app15147869

[19] Parente, M. D., & Winn, A. M. (2012). Bargaining behavior and the tragedy of the anticommons. Journal of Economic Behavior & Organization, 84(2), 475. https://doi.org/10.1016/j.jebo.2012.08.002

[20] Sadovnikova, N., Savina, O., Parygin, D., Churakov, A., & Shuklin, A. (2023). Application of Scenario Forecasting Methods and Fuzzy Multi-Criteria Modeling in Substantiation of Urban Area Development Strategies. Information, 14(4), 241. https://doi.org/10.3390/info14040241

[21] Seiler, M. J. (2015). The role of informational uncertainty in the decision to strategically default. Journal of Housing Economics, 27, 49. https://doi.org/10.2139/ssrn.2465107

[22] Stanton, R., & Wallace, N. (2011). The Bear’s Lair: Index Credit Default Swaps and the Subprime Mortgage Crisis. Review of Financial Studies, 24(11), 3250–3280. https://doi.org/10.1093/rfs/hhr064

[23] Swope, K., Wielgus, R., Schmitt, P., & Cadigan, J. (2011). Contracts, behavior, and the land-assembly problem: An experimental study. https://www.usna.edu/EconDept/RePEc/usn/wp/usnawp29.pdf

[24] Tastan, H. (2015). Testing for spectral Granger causality. The Stata Journal, 15(4), 1157. https://doi.org/10.1177/1536867X1501500411

[25] Villalba, P., Sánchez-Garrido, A. J., Yepes-Bellver, L., & Yepes, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. https://doi.org/10.3390/math13162649

[26] Zhou, G., Li, C., Wang, J., & Wu, J. (2023). Market Preferences of Different Operators of Long-Term Rental Apartments in a Fuzzy Environment. Buildings, 13(6), 1418. https://doi.org/10.3390/buildings13061418

[27] Zillante, A., Schwarz, P. M., & Read, D. C. (2014). Land aggregation using contingent and guaranteed payments. Southern Economic Journal, 80(3), 702. https://doi.org/10.4284/0038-4038-2012.047

Downloads

Published

2025-10-20

How to Cite

Manuel Monge, Rafael Hurtado, & Juan Infante. (2025). A Hybrid Statistical–Fuzzy Decision Framework for Housing and Rental Price Dynamics: Evidence from Spain. Decision Making: Applications in Management and Engineering, 8(2), 496–508. https://doi.org/10.31181/dmame8220251560