Carbon Nanotube-Titanium Composites-based Antennas for 6G Wireless Networks: Performance Evaluation

Authors

  • Jafaar Fahad A. Rida Department of Communication Engineering, College of Engineering, University of Sumer, Dhiqar, Iraq.
  • Basim Abood College of Technical, Department of Computer Technology Engineering, Imam Ja'afar Al-Sadiq University, Thi-Qar, Iraq.

DOI:

https://doi.org/10.31181/dmame8220251555

Keywords:

CNT-Ti Composite Antennas, 6G Wireless Networks, Radio Frequency Antennas, and Communication Systems

Abstract

The development of innovative communication systems employing carbon nanotube–titanium (CNT–Ti) composite-based antennas remains a challenging task, particularly with regard to optimising their performance. Consequently, the design phase assumes a critical role in advancing these antennas. In this context, the performance of CNT–Ti composite antennas was assessed for their potential application in future 6G wireless communication networks. These antennas exhibited notable characteristics, including high efficiency, wide bandwidth, considerable flexibility, and improved impedance features, rendering them well-suited for 6G networks and high-speed data transmission. Furthermore, the analysis of CNT–Ti composite antennas revealed superior properties relative to conventional antennas, such as enhanced electrical conductivity, low loss tangent, minimal energy dissipation, high signal efficacy, broad bandwidth, and reduced voltage standing wave ratio (VSWR). Although antennas with specialised directional patterns, such as those used in satellite communications, may face constraints in widespread application due to their large size and high manufacturing costs, the study emphasised that further research should focus on optimising the production processes, cost-efficiency, design scalability, and long-term reliability of these antennas. Such investigations would facilitate their sustainable integration into large-scale wireless network technologies.

Downloads

Download data is not yet available.

References

[1] Thomson Reuters and DinarStandard, State of the Global Islamic Economy Report 2018/19, Dubai: Dubai Islamic Economy Development Centre, 2018. [Online]. Available: https://www.zawya.com/en/press-release/state-of-the-global-islamic-economy-report-2018-19-islamic-economy-marks-steady-growth-ocw95h4a

[2] S. Secinaro, D. Calandra, A. Secinaro, V. Muthurangu, and P. P. Biancone, "The role of artificial intelligence in accounting: Machine learning and deep learning," Journal of Applied Accounting Research, vol. 22, no. 1, pp. 185–205, 2021, doi: 10.1108/JAAR-10-2019-0124.

[3] M. M. Chaudry and M. N. Riaz, Halal Food Production, 2nd ed., Boca Raton, FL: CRC Press, 2014, doi: 10.1201/b16768.

[4] Abbaoui, H., Aoud, S. E. E., Ali, S. U., Ghammaz, A., Belahrach, H., & Ibnyaich, S. (2025). Design, analysis and implementation of an optimized cost-effective octagonal patch antenna with UWB characteristics for 5G applications and beyond. AEU-International Journal of Electronics and Communications, 190, 155655. https://doi.org/10.1016/j.aeue.2024.155655

[5] Ahammed, T. B., Patgiri, R., & Nayak, S. (2023). A vision on the artificial intelligence for 6G communication. Ict Express, 9(2), 197-210. https://doi.org/10.1016/j.icte.2022.05.005

[6] Akbar, M. S., Hussain, Z., Ikram, M., Sheng, Q. Z., & Mukhopadhyay, S. (2022). 6G survey on challenges, requirements, applications, key enabling technologies, use cases, AI integration issues and security aspects. arXiv preprint arXiv:2206.00868. https://doi.org/10.48550/arXiv.2206.00868

[7] Akyildiz, I. F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE access, 8, 133995-134030. https://doi.org/10.1109/ACCESS.2020.3010896

[8] Ali, S. M., Sovuthy, C., Imran, M. A., Socheatra, S., Abbasi, Q. H., & Abidin, Z. Z. (2020). Recent advances of wearable antennas in materials, fabrication methods, designs, and their applications: State-of-the-art. Micromachines, 11(10), 888. https://doi.org/10.3390/mi11100888

[9] Amram Bengio, E., Senic, D., Taylor, L. W., Headrick, R. J., King, M., Chen, P., Little, C. A., Ladbury, J., Long, C. J., & Holloway, C. L. (2019). Carbon nanotube thin film patch antennas for wireless communications. Applied Physics Letters, 114(20). https://doi.org/10.1063/1.5093327

[10] Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I., & Alhammadi, A. (2023). 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alexandria Engineering Journal, 64, 245-274. https://doi.org/10.1016/j.aej.2022.08.017

[11] Burke, P., Rutherglen, C., & Yu, Z. (2006). Carbon nanotube antennas. Nanomodeling II, 41-45. https://doi.org/10.1117/12.678970

[12] Chaccour, C., Soorki, M. N., Saad, W., Bennis, M., Popovski, P., & Debbah, M. (2022). Seven defining features of terahertz (THz) wireless systems: A fellowship of communication and sensing. IEEE Communications Surveys & Tutorials, 24(2), 967-993. https://doi.org/10.1109/COMST.2022.3143454

[13] Chakradhar, A., Kumar, S., Sristi, J., & Kumar, P. P. (2023). Evolution and Potential Application of 6G Wireless Communication in Smart Cities. 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 9798350382471. https://doi.org/10.1109/UPCON59197.2023.10434562

[14] Dash, S., & Patnaik, A. (2024). Advancements in Terahertz Antenna Design. arXiv preprint arXiv:2412.19156. https://doi.org/10.48550/arXiv.2412.19156

[15] Douhi, S., Labihi, S., Eddiai, A., Lakrit, S., El Achaby, M., & Al-Gburi, A. J. A. (2025). Design, characterization, and electromagnetic performance of a flexible wideband RF antenna using composite materials. Journal of Science: Advanced Materials and Devices, 10(1), 100847. https://doi.org/10.1016/j.jsamd.2024.100847

[16] Fung, C. K. M., Xi, N., & Balasubramaniam Shanker, K. W. C. L. (2008). Design and Experimental Testing of Nano Antenna for Carbon Nanotube (CNT) Based Infrared Sensors. IEEE SENSORS 2008 Conference. https://warwick.ac.uk/fac/sci/eng/research/grouplist/sensorsanddevices/mbl/database/ieeesensors08/PDFs/Papers/363_6379.pdf

[17] Fung, C. K. M., Xi, N., Shanker, B., Lai, K. W. C., Zhang, J., Chen, H., & Luo, Y. (2008). Design and fabrication of nano antenna for carbon nanotube infrared detector. 2008 8th IEEE Conference on Nanotechnology, 1424421047. https://doi.org/10.1109/NANO.2008.67

[18] Haque, M. A., Nirob, J. H., Nahin, K. H., Singh, N. S. S., Paul, L. C., Algarni, A. D., ElAffendi, M., & Ateya, A. A. (2024). Regression supervised model techniques THz MIMO antenna for 6G wireless communication and IoT application with isolation prediction. Results in Engineering, 24, 103507. https://doi.org/10.1016/j.rineng.2024.103507

[19] Hasan, M. M., Islam, M. T., Alam, T., Kirawanich, P., Alamri, S., & Alshammari, A. S. (2024). Metamaterial loaded miniaturized extendable MIMO antenna with enhanced bandwidth, gain and isolation for 5G sub-6 GHz wireless communication systems. Ain Shams Engineering Journal, 15(12), 103058. https://doi.org/10.1016/j.asej.2024.103058

[20] Hussein, M. M., Saafan, S. A., Abosheiasha, H., Abd El-Hameed, A. S., Zhou, D., Salem, M., & Darwish, M. A. (2023). Design, characterization, fabrication, and performance evaluation of ferroelectric dielectric resonator antenna for high-speed wireless communication applications. Journal of Alloys and Compounds, 968, 172170. https://doi.org/10.1016/j.jallcom.2023.172170

[21] Jurn, Y. N., Malek, M. F., Liu, W.-W., & Rahim, H. A. (2015). Performance assessment of the simulation modeling approach of SWCNT at THz and GHz antenna applications. 2015 IEEE 12th Malaysia International Conference on Communications (MICC), 1509000194. https://doi.org/10.1109/MICC.2015.7725442

[22] Kamath, S., Anand, S., Buchke, S., & Agnihotri, K. (2024). A review of recent developments in 6G communications systems. Engineering Proceedings, 59(1), 167. https://doi.org/10.3390/engproc2023059167

[23] Krishna, K. G., & Singh, A. P. (2023). Wireless Networking for 5G And 6G using Millimeter-Wave Technological Innovation. 2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC), 9798350357769. https://doi.org/10.1109/PEEIC59336.2023.10450826

[24] Kumar, K., Vani, V. D., Raj, V. H., Dutt, A., Kunekar, P., & Sahu, D. N. (2024). Cutting-Edge Communication: Integrated Satellite-Aerial 6G Networks for Point-to-Point Connectivity. 2024 7th International Conference on Contemporary Computing and Informatics (IC3I), 9798350350067. https://doi.org/10.1109/IC3I61595.2024.10829221

[25] Lu, G., Wang, J., Xie, Z., & Yeow, J. T. (2021). Carbon-based THz microstrip antenna design: A review. IEEE Open Journal of Nanotechnology, 3, 15-23. https://doi.org/10.1109/OJNANO.2021.3135478

[26] Moxley, M., & Kirkici, H. (2024). Multi-walled Carbon Nanotubes Patch Antenna. Authorea Preprints. https://www.techrxiv.org/doi/full/10.36227/techrxiv.172470814.40208925

[27] Oughton, E., Geraci, G., Polese, M., Shah, V., Bubley, D., & Blue, S. (2024). Reviewing wireless broadband technologies in the peak smartphone era: 6G versus Wi-Fi 7 and 8. Telecommunications Policy, 48(6), 102766. https://doi.org/10.1016/j.telpol.2024.102766

[28] Pang, J., Bachmatiuk, A., Yang, F., Liu, H., Zhou, W., Rümmeli, M. H., & Cuniberti, G. (2021). Applications of carbon nanotubes in the internet of things era. Nano-Micro Letters, 13(1), 191. https://doi.org/10.1007/s40820-021-00721-4

[29] Rawat, A., Yadav, D., & Tiwari, M. (2023). A review on mmWave antennas for wireless cellular communication. 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), 1665464089. https://doi.org/10.1109/ICCMC56507.2023.10084024

[30] Sarycheva, A., Polemi, A., Liu, Y., Dandekar, K., Anasori, B., & Gogotsi, Y. (2023). 949 2D Titanium Carbide (MXene) for Wireless Communication. In MXenes: From Discovery to Applications of Two-Dimensional Metal Carbides and Nitrides (pp. 949-970). Jenny Stanford Publishing. http://doi.org/10.1201/9781003306511-48

[31] Serghiou, D., Khalily, M., Brown, T. W., & Tafazolli, R. (2022). Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions. IEEE Communications Surveys & Tutorials, 24(4), 1957-1996. https://doi.org/10.1109/COMST.2022.3205505

[32] Shin, H., Park, S., Kim, L., Kim, J., Kim, T., Song, Y., & Lee, S. (2024). The future service scenarios of 6G telecommunications technology. Telecommunications Policy, 48(2), 102678. https://doi.org/10.1016/j.telpol.2023.102678

[33] Swetha, M., Muneshwara, M., Murali Manohara Hegde, A., & Lu, Z. (2023). 6G wireless communication systems and its applications. In Machine Learning and Mechanics Based Soft Computing Applications (pp. 271-288). Springer. https://doi.org/10.1007/978-981-19-6450-3_25

[34] Ticku, A., Sidana, S., Sinha, A., Sathesh, S., Uniyal, M., Kumar, B., Sinha, R. S., Raj, P., Al-Khayyat, A., & Sikarwar, M. (2024). Next-Gen IoT: 5G Realities and 6G Possibilities. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 9798350370249. https://doi.org/10.1109/ICCCNT61001.2024.10724540

[35] Vu, D.-N., Dao, N.-N., Won, D., & Cho, S. (2023). Potential enabling technologies for 6G mobile communication networks: A recent review. 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), 9798350335385. https://doi.org/10.1109/ICUFN57995.2023.10199909

[36] Wang, C., Zhang, N., Liu, C., Ma, B., Zhang, K., Li, R., Wang, Q., & Zhang, S. (2024). New advances in antenna design toward wearable devices based on nanomaterials. Biosensors, 14(1), 35. https://doi.org/10.3390/bios14010035

[37] Yunus, N. A. M., Hanapi, Z. M., & Kamarudin, S. (2024). 6G on the Horizon: Technologies, Requirements, Trends, and Potential Techniques. 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), 9798350395914. https://doi.org/10.1109/ICECET61485.2024.10698610

[38] Zeydan, E., Arslan, S., & Turk, Y. (2024). 6G wireless communications for industrial automation: Scenarios, requirements and challenges. Journal of Industrial Information Integration, 42, 100732. https://doi.org/10.1016/j.jii.2024.100732

Downloads

Published

2025-09-15

How to Cite

Jafaar Fahad A. Rida, & Basim Abood. (2025). Carbon Nanotube-Titanium Composites-based Antennas for 6G Wireless Networks: Performance Evaluation. Decision Making: Applications in Management and Engineering, 8(2), 444–464. https://doi.org/10.31181/dmame8220251555