"Thin" Structure of Relations in MCDM Models. Equivalence of the MABAC, TOPSIS(L1) and RS Methods to the Weighted Sum Method

Authors

DOI:

https://doi.org/10.31181/dmame7220241088

Keywords:

Multi-criteria decision making, Multi-method model, Relative performance indicator, Thin structure of relations, WSM, MABAC, TOPSIS, Ranking based on the rating of alternatives

Abstract

This paper introduces the conceptual framework of the multi-criteria decision-making (MCDM) rank model, which embodies the integration and harmonization of the aggregation method, the weighing method, the decision matrix normalization technique, and the selection of distance metrics. This definition serves to broaden the spectrum of acceptable MCDM methodologies for problem-solving and specifiing the associated tools. A Multi-Method Model (3M) approach is employed for multi-criteria selection to enhance the reliability of the results. The methodology is outlined for adjusting the rankings of alternatives to account for the distinguishability of ratings in a particular MCDM model using the Relative Performance Indicator (RPI) of alternatives. Through RPI, four methods are established for aggregating individual characteristics of alternatives that yield identical results: Weighted Sum Model (WSM), Multi-Attributive Border Approximation area Comparison (MABAC), Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS (L1)), and Ratio System approach (RS), eliminating the need to duplicate these methods in the 3M approach. A comprehensive comparison of numerous multi-criteria methods is conducted based on two lists: ranking and rating. Additionally, a method for step-by-step linear transformation of alternative ratings obtained from various MCDM models is defined, facilitating comparison and aggregation of ratings.

Downloads

Download data is not yet available.

References

Sałabun, W., Wątróbski, J., & Shekhovtsov, A. (2020). Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry, 12, 1549. https://doi.org/10.3390/sym12091549

Rezk, H., Mukhametzyanov, I. Z., Al-Dhaifallah, M., & Ziedan, H. A. (2021). Optimal Selection of Hybrid Renewable Energy System Using Multi-Criteria Decision-Making Algorithms. CMC-Computers Materials & Continua, 68, 2001–2027. https://doi.org/10.32604/cmc.2021.015895

Chatterjee, P., Athawale, V. M., & Chakraborty, S. (2009). Selection of materials using compromise ranking and outranking methods. Materials & Design, 30(10), 4043-4053. https://doi.org/10.1016/j.matdes.2009.05.016 DOI: https://doi.org/10.1016/j.matdes.2009.05.016

Chatterjee, P. & Chakraborty, S. (2014). Flexible manufacturing system selection using preference ranking methods: A comparative study. International Journal of Industrial Engineering Computations, 5, 315-338. https://doi.org/10.5267/j.ijiec.2013.10.002 DOI: https://doi.org/10.5267/j.ijiec.2013.10.002

Emovon, I., Norman, R. A. & Murphy, A. J. (2018). Hybrid MCDM based methodology for selecting the optimum maintenance strategy for ship machinery systems. Journal of Intelligent Manufacturing, 29, 519–531. https://doi.org/10.1007/s10845-015-1133-6 DOI: https://doi.org/10.1007/s10845-015-1133-6

Wang, P., Zhu, Z., Wang, Y. (2016). A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Information Sciences, 345, 27–45. https://doi.org/10.1016/j.ins.2016.01.076 DOI: https://doi.org/10.1016/j.ins.2016.01.076

Amiri, M., Zandieh, M., Soltani, R., & Vahdani, B. (2009). A hybrid multi-criteria decision-making model for firms competence evaluation. Expert Systems with Applications, 36, 12314–12322. https://doi.org/10.1016/j.eswa.2009.04.045 DOI: https://doi.org/10.1016/j.eswa.2009.04.045

Büyüközkan, G., & Çifçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green supplier. Expert Systems with Applications, 39, 3000–3011. https://doi.org/10.1016/j.eswa.2011.08.162 DOI: https://doi.org/10.1016/j.eswa.2011.08.162

Kuo, M. S., & Liang, G. S. (2011). Combining VIKOR with GRA techniques to evaluate service quality of airports under fuzzy environment. Expert systems with applications, 38(3), 1304-1312. https://doi.org/10.1016/j.eswa.2010.07.003 DOI: https://doi.org/10.1016/j.eswa.2010.07.003

Pamučar, D., Mihajlović, M., Obradović, R., & Atanasković, P. (2017). Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model. Expert systems with applications, 88, 58-80. http://dx.doi.org/10.1016/j.eswa.2017.06.037 DOI: https://doi.org/10.1016/j.eswa.2017.06.037

Hafezalkotob, A., Hafezalkotob, As., Liao, H., & Herrera, F. (2019). An overview of MULTIMOORA for multi-criteria decision-making: Theory, developments, applications, and challenges. Information Fusion, 51, 145-177. https://doi.org/10.1016/j.inffus.2018.12.002

Baležentis, T., & Zeng, S. (2013). Group multi-criteria decision making based upon interval–valued fuzzy numbers: an extension of the MULTIMOORA method, Expert Systems with Applications, 40(2), 543–550. https://doi.org/10.1016/j.eswa.2012.07.066 DOI: https://doi.org/10.1016/j.eswa.2012.07.066

Baležentis, T., & Baležentis, A. (2017). A Survey on Development and Applications of the Multi-criteria Decision Making Method MULTIMOORA. Journal of Multi-Criteria Decision Analysis, 21(3-4), 209-222. https://doi.org/10.1002/mcda.1501 DOI: https://doi.org/10.1002/mcda.1501

Kou, G., Lu, Y., Peng, Yi., & Shi, Y. (2012). Evaluation of classification algorithms using MCDM and rank correlation. International Journal of Information Technology & Decision Making, 11(1), 197-225. https://doi.org/10.1142/S0219622012500095 DOI: https://doi.org/10.1142/S0219622012500095

Bhaskar, A. S., & Khan A. (2022). Comparative analysis of hybrid MCDM methods in material selection for dental applications. Expert Systems with Applications, 209, 118268. https://doi.org/10.1016/j.eswa.2022.118268

Chatterjee, S., & Chakraborty, S. (2021). Material selection of a mechanical component based on criteria relationship evaluation and MCDM approach Materials Today. International Conference on Materials, Processing & Characterization, 44(1), 1621-1626. https://doi.org/10.1016/j.matpr.2020.11.817

Altuntas, S., Dereli, T., & Yilmaz, M. K. (2015). Evaluation of excavator technologies: application of data fusion based MULTIMOORA methods. Journal of Civil Engineering and Management, 21(8), 977–997. https://doi.org/10.3846/13923730.2015.1064468 DOI: https://doi.org/10.3846/13923730.2015.1064468

Wu, X., Liao, H., Xu, Z., Hafezalkotob, A., & Herrera, F. (2018). Probabilistic linguistic MULTIMOORA: a multi-criteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE Transactions on Fuzzy Systems, 26(6), 3688–3702. https://doi.org/10.1109/TFUZZ.2018.2843330

Boyacı, A. Ç. & Tüzemen, M. Ç. (2022). Multi-criteria decision-making approaches for aircraft-material selection problem. International Journal of Materials and Product Technology, 64(1), 45–68. https://dx.doi.org/10.1504/IJMPT.2022.120246

Mukhametzyanov, I., & Pamučar, D. (2018). Sensitivity analysis in MCDM problems: A statistical approach. Decision Making: Applications in Management and Engineering, 1(2), 51‒80. https://doi.org/10.31181/dmame1802050m DOI: https://doi.org/10.31181/dmame1802050m

Hwang, C. L., & Yoon, K. (1981). Multiple Attributes Decision Making: Methods and Applications. A State-of-the-Art Survey. Springer-Verlag. DOI: https://doi.org/10.1007/978-3-642-48318-9_3

Chakraborty, S., & Zavadskas, E. K. (2014). Applications of WASPAS method as a multi-criteria decision-making tool. Informatica, 25(1), 1‒20. https://doi.org/10.15388/Informatica.2014.01 DOI: https://doi.org/10.15388/Informatica.2014.01

Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. PhD thesis, Faculty of Civil Engineering, Belgrade, 2(1), 5–21.

Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1 DOI: https://doi.org/10.1016/S0377-2217(03)00020-1

Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European journal of operational research, 24(2), 228-238. https://doi.org/10.1016/0377-2217(86)90044-5 DOI: https://doi.org/10.1016/0377-2217(86)90044-5

Pastijn H., & Leysen, J. (1989). Constructing an outranking relation with ORESTE. Mathematical and Computer Modelling, 12(10-11), 1255-1268. https://doi.org/10.1016/0895-7177(89)90367-1 DOI: https://doi.org/10.1016/0895-7177(89)90367-1

Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and cybernetics, 35(2), 445-469.

Zavadskas, E. K., Antuchevičienė, J., Šaparauskas, J., & Turskis Z. (2013). MCDM methods WASPAS and MULTIMOORA: verification of robustness of methods when assessing alternative solutions. Economic computation and economic cybernetics studies and research, 47(2), 5–20.

Mareschal, B. (1988). Weight stability intervals in multicriteria decision aid. European Journal of Operational Research, 33, 54‒64. https://doi.org/10.1016/0377-2217(88)90254-8 DOI: https://doi.org/10.1016/0377-2217(88)90254-8

Ma, J., Fan, Z. P., & Huang, L. H. (1999). A subjective and objective integrated approach to determine attribute weights. European Journal of Operational Research, 112(2), 397–404. https://doi.org/10.1016/S0377-2217(98)00141-6 DOI: https://doi.org/10.1016/S0377-2217(98)00141-6

Lin, C., & Kou, G. (2021). A heuristic method to rank the alternatives in the AHP synthesis. Applied Soft Computing Journal, 100, 106916. https://doi.org/10.1016/j.asoc.2020.106916

Mukhametzyanov, I. Z. (2021). Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy, CRITIC, SD. Decision Making: Applications in Management and Engineering, 4(2), 76-105. https://doi.org/10.31181/dmame210402076i DOI: https://doi.org/10.31181/dmame210402076i

Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335–342. https://doi.org/10.1016/j.matdes.2014.09.022 DOI: https://doi.org/10.1016/j.matdes.2014.09.022

Mukhametzyanov, I. Z. (2023). Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems: Inversion, Displacement, Asymmetry. International Series in Operations Research & Management Science, Springer. https://doi.org/10.1007/978-3-031-33837-3

Mukhametzyanov, I. Z. (2023). On the conformity of scales of multidimensional normalization: an application for the problems of decision making. Decision Making: Applications in Management and Engineering, 6(1), 399–341. https://doi.org/10.31181/dmame05012023i DOI: https://doi.org/10.31181/dmame05012023i

Mukhametzyanov, I. Z. (2023). Elimination of the domain’s displacement of the normalized values in MCDM tasks: the IZ-method. International Journal of Information Technology & Decision Making, https://doi.org/10.1142/S0219622023500037

Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centres using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications, 42, 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057 DOI: https://doi.org/10.1016/j.eswa.2014.11.057

Mukhametzyanov, I. Z. (2020). ReS-algorithm for converting normalized values of cost criteria into benefit criteria in MCDM tasks. International Journal of Information Technology and Decision Making, 19(5), 1389–1423. https://doi.org/10.1142/S0219622020500327

Published

2024-06-24

How to Cite

Mukhametzyanov, I., & Pamucar, D. (2024). "Thin" Structure of Relations in MCDM Models. Equivalence of the MABAC, TOPSIS(L1) and RS Methods to the Weighted Sum Method. Decision Making: Applications in Management and Engineering, 7(2), 418–442. https://doi.org/10.31181/dmame7220241088