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In this study, a novel risk assessment framework designed for evaluating the 
challenges of plastic packaging waste management in the context of reverse 
logistics is introduced. The framework leverages Failure Mode Effect Analysis 
(FMEA) to address decision-making in a fuzzy environment. To augment the 
traditional FMEA risk criteria, encompassing severity (S), occurrence (O), and 
detection (D), three additional essential risk criteria are introduced: cost of 
failure (C), complexity of failure resolution (H), and impact on business (I). 
These newly incorporated criteria significantly enhance the capacity to 
convey the multifaceted risks inherent in reverse logistics for the plastic 
recycling sector. Furthermore, a comprehensive literature review and expert 
validation are conducted to identify ten distinct failure modes. To subjectively 
and objectively determine the risk criteria weightings, a combination of 
Analytic Hierarchy Process (AHP) and LOgarithmic Percentage Change-
driven Objective Weighting (LOPCOW) is employed. Finally, the Additive 
Ratio Assessment (ARAS) approach is applied to prioritize such failure modes. 
Recognizing the inherent imprecision and uncertainty associated with human 
decision-making, the trapezoidal fuzzy set (TrFS) is adopted throughout all 
decision-making processes. To showcase the proposed framework 
effectiveness, the framework is applied as a case study to a waste plastic 
recycling manufacturer in Thailand.  
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1. Introduction 
 In the past decade, there has been growing global concern regarding environmental pollution 

attributed to plastic packaging waste. Current estimates indicate that the annual global 
accumulation of plastic packaging waste has reached an astonishing 14 million tons [1]. This surge in 
plastic waste is primarily driven by the widespread use of single-use plastic packaging products, 
exacerbating environmental issues [2]. The production and disposal of plastic packaging also 
contribute to the release of harmful chemical pollutants and greenhouse gases (GHGs), which pose 
substantial threats to both human and animal well-being while further accelerating the impacts of 
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climate change [3,4]. Notably, these environmental impacts impose a significant, yet often 
unaccounted for, cost on society, which is not reflected in the market prices of plastic packaging 
products [5]. Addressing the worldwide predicament of plastic packaging waste requires localized 
solutions. A pivotal factor contributing to this predicament lies in inadequate waste management 
systems and the lack of effective reverse logistics (RL) management, particularly in developing 
nations [6,7]. Recycling, a fundamental component of the closed-loop RL chain, plays a crucial role 
in promoting sustainable plastic waste management by curbing the volume of waste directed to 
landfills [8]. Given the emergence of new environmental regulations, resource depletion, the 
pressing challenges of global warming, a heightened emphasis on extended producer responsibility, 
and evolving economic paradigms, research on RL has garnered increasing attention from both 
academic and practical perspectives [4]. Effective RL management has economic, environmental, 
and social benefits. However, mishandling the closed-loop RL process can jeopardize firm 
profitability while negatively impacting the environment and society [9,10]. This vulnerability is 
primarily attributed to the multifaceted risks inherent to the closed-loop RL process chain [11]. Thus, 
it is imperative to systematically identify and quantify the risks associated with RL. Despite numerous 
prior studies attempting to assess RL risks, there is a notable dearth of related research within the 
context of the plastic recycling industry. 

This study seeks to bridge this knowledge gap by developing a comprehensive quantitative risk 
assessment framework for reverse logistics specific to the plastic packaging recycling sector. The 
waste plastic recycling industry in Thailand is chosen as a representative case study to exemplify the 
applicability of the framework. Within this study, the quantitative risk assessment framework is 
envisioned as a Multicriteria Decision-Making (MCDM) process operating within a trapezoidal fuzzy 
environment. To achieve this goal, a hybrid approach is employed, seamlessly integrating the 
principles of Failure Mode and Effect Analysis (FMEA) with logarithmic percentage change-driven 
objective weighting (LOPCOW), Analytic Hierarchy Process (AHP), and Additive Ratio Assessment 
(ARAS). This comprehensive approach combines both subjective and objective weightings to 
calculate the weights of the FMEA risk criteria by incorporating AHP and LOPCOW, respectively. 
Furthermore, the ARAS approach is utilized to rank the failure modes of risks within the reverse 
logistics of the plastic recycling industry. 

This study makes several contributions to the field of risk assessment in the plastic recycling 
industry. These contributions are as follows: 

First, a novel risk assessment framework is introduced for the reverse logistics of the plastic 
recycling industry, incorporating the FMEA decision model. Unlike traditional FMEA risk criteria, 
which typically focus on severity (S), occurrence (O), and detection (D), the scope is extended in this 
study by introducing three additional criteria: cost of failure (C), complexity of failure resolution (H), 
and impact on business operations (I). This enhanced set of criteria enables a more accurate 
evaluation of the risks related to plastic packaging waste in reverse logistics. 

Second, subjective and objective weighting methods are combined to derive combined weights 
for the FMEA risk criteria, enhancing the accuracy of the weighting process. 

Third, AHP-LOPCOW-ARAS is incorporated under trapezoidal fuzzy sets, marking the first 
application of this approach to addressing MCDM problems in the context of risk assessment. 

Finally, by using the waste plastic recycling industry in Thailand as a case study, insights are 
provided that may be applicable to other developing countries facing similar challenges in reverse 
logistics. 
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2. Materials 
This section provides an overview of the relevant literature covering the following topics: reverse 

logistics in plastic packaging waste and the application of fuzzy MCDM in FMEA. 
 

2.1 Reverse Logistics of Plastic Packaging Waste 
There are several options for managing the disposal of plastic packaging, including landfill 

disposal, incineration, and recycling [6]. However, it is important to note that both incineration and 
landfill disposal methods have adverse effects on the environment and society [12]. Incineration, for 
instance, produces harmful pollutants such as dioxins and furans, which can severely impact human 
health [13]. Furthermore, landfill disposal of plastic packaging leads to the release of methane gas, 
contributing to global warming [14]. Furthermore, nonbiodegradable particles from plastic 
packaging waste can release toxic substances, contaminating soil and groundwater near landfill sites 
[12]. For these reasons, recycling plastic packaging waste is a more environmentally friendly and 
health-conscious option than using landfills or incineration [13]. Recycling involves the conversion of 
plastic packaging waste into new plastic raw materials [14,15]. Reverse logistics (RL) plays a crucial 
role in making the recycling process efficient. RL for plastic packaging waste encompasses a range of 
logistics activities aimed at managing the reverse flow of discarded plastic packaging, from end-users 
to recycling producers [16]. It is a complex waste management process that includes collection, 
transportation, sorting, warehousing, and recycling [17]. To effectively manage RL for plastic 
packaging waste, a proper logistical structure is necessary to facilitate reverse flow. Effective RL 
management of plastic packaging waste can yield economic, environmental, and social benefits       
[6,7]. Additionally, RL has evolved from merely an operational task to a strategic business approach 
[16]. However, improper RL management can exacerbate environmental and social issues such as 
air pollution, soil and ocean contamination, global warming, and community protests [11]. The 
process of using RL for plastic packaging waste and recycling is not without its challenges and risks. 
These include environmental risks [18,20], demand risks [21,22], technology risks [20,22], risks 
associated with reverse logistics information [20,21], collaboration risks among stakeholders [23] 
transportation risks [21, 24], inventory risks [21, 25], hygiene and safety risks [26,27], insufficient 
knowledge and skill risks [22,23], and demand risks [28,29], as well as risks associated with recycling 
production processes [21,22]. 

2.2 Risks Associated with the Reverse Logistics of Plastic Packaging Waste 
A comprehensive literature synthesis reveals the following risks associated with the reverse 

logistics of plastic packaging waste. 
Hazardous material mishandling risk: (Code: FM1) 
Hazardous material mishandling in the reverse logistics of the plastic recycling industry is a 

significant concern with far-reaching consequences for both the environment and human health 
[19]. One key risk is the potential release of toxic chemicals into the environment. When plastics 
containing hazardous materials are mishandled, they can break, crack, or corrode, allowing these 
harmful substances to leach into the soil and groundwater [18]. This contamination can persist for 
many years, affecting ecosystems and wildlife and potentially entering the food chain, ultimately 
posing health risks to humans [20]. 

Contamination of recyclables risk: (Code: FM2) 
The contamination of recyclables is a critical challenge in the reverse logistics of the plastic 

recycling industry. It occurs when non-recyclable materials or contaminants, such as food residue, 
chemicals, or non-plastic items, mix with collected plastic waste [30]. This contamination can occur 
at various points in the reverse logistics chain, from initial collection to sorting and processing, and 
poses several significant issues [11]. Furthermore, contamination affects the quality of recycled 
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plastic. Plastics with high levels of contamination are often deemed unsuitable for recycling or have 
reduced market value, as they require more extensive cleaning and processing [13]. This results in 
higher costs for recycling facilities and lower revenues from the sale of recycled materials. 

Energy-intensive recycling risk: (Code: FM3) 
The plastic recycling industry is characterized by a significant challenge known as energy-

intensive recycling within its reverse logistics system [12]. This issue revolves around the 
considerable energy demands necessary to convert collected plastic waste into viable recycled 
materials [16]. This energy consumption is distributed across several pivotal stages of recycling, 
encompassing the cleaning and sorting of plastic materials, as well as energy-intensive melting and 
reformation processes [31]. Numerous factors converge to amplify the energy intensity associated 
with plastic recycling. Energy-intensive recycling raises concerns about the environmental footprint 
of plastic recycling efforts. While recycling plastics reduces the demand for virgin materials and 
contributes to waste reduction, the environmental benefits may be diminished if the energy used in 
recycling exceeds that saved by avoiding the production of new plastics [1]. 

Worker health and safety risk (Code: FM4) 
The collection, transportation, and processing of plastic waste can expose workers to various 

hazards that can lead to injuries, illnesses, or long-term health effects [2]. Chemical exposure is 
another critical concern. Plastic waste often contains hazardous substances, including toxic 
chemicals and heavy metals. In the absence of adequate personal protective equipment and precise 
handling protocols, workers become vulnerable to these substances, which can cause immediate 
health repercussions such as skin irritation and respiratory ailments [32]. Prolonged or extensive 
exposure may escalate these effects to more severe health conditions. Furthermore, the machinery 
and equipment used in plastic recycling facilities pose additional safety risks [33]. Workers operating 
shredders, balers, and conveyor belts may be at risk of accidents, such as entanglement, crushing, 
or falls, if safety measures and training are insufficient [1]. Noise pollution is a prevalent but often 
underestimated health risk in recycling facilities. The constant noise generated by machinery can 
lead to hearing impairment and other stress-related health problems if proper hearing protection 
and noise control measures are not implemented [34]. 

Recycled material transportation risk (Code: FM5) 
Transportation risks in the reverse logistics of the plastic recycling industry are the challenges 

and vulnerabilities associated with the movement of plastic waste and recycled materials from 
collection points to processing facilities or recycling centers [11]. These risks can have significant 
impacts on the efficiency, cost-effectiveness, and environmental sustainability of reverse logistics 
operations [24]. First, there is the risk of inadequate transportation infrastructure. Recycling facilities 
and collection points may be located in regions with subpar road networks or limited access to 
transportation resources [19]. This can lead to delays, increased transportation costs, and 
disruptions in the recycling supply chain. Furthermore, poor infrastructure can result in increased 
wear and tear on vehicles, potentially leading to breakdowns and maintenance expenses. Second, 
the environmental impact of transportation is a crucial concern [33]. The transportation of plastic 
waste over long distances can result in increased fuel consumption and greenhouse gas emissions, 
contributing to environmental degradation. Excessive emissions can undermine an industry's 
commitment to sustainability and exacerbate climate change concerns [20]. To mitigate this risk, 
recycling facilities should strive to minimize transportation distances, optimize routes, and consider 
environmentally friendly transportation alternatives [7]. 

Recycled material inventory risk (Code: FM6) 
Inventory risks in the reverse logistics industry of plastic recycling relate to the management of 

stockpiled or stored plastic waste and recycled materials, and they can have substantial implications 
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for operational efficiency and profitability [35]. First, excess inventory poses a significant risk. 
Accumulating large volumes of plastic waste waiting to be processed or recycled can tie up valuable 
space and resources [11]. This can lead to increased storage costs and the potential for deterioration 
or contamination of stored materials. Excess inventory can also disrupt workflows, making it 
challenging to manage incoming waste effectively [35,36]. In contrast, inadequate inventory levels 
can lead to bottlenecks and delays in the recycling process. If recycling facilities run out of processed 
materials or fail to maintain a sufficient inventory of recycled plastics, they may be unable to meet 
customer demands or contractual obligations [1]. This can result in missed revenue opportunities, 
contractual penalties, and damage to the company's reputation. 

Inadequate collection practice risk (Code: FM7) 
Inadequate collection practices represent a significant risk within the reverse logistics landscape 

of the plastic recycling industry [37]. These practices involve non-optimal methods employed to 
gather plastic materials from a variety of sources, including households, businesses, and public 
spaces [2]. This inefficiency can manifest in various forms and has substantial implications for the 
industry's long-term sustainability [38]. Primarily, inefficient collection processes can lead to 
heightened fuel consumption and elevated emissions. In cases where collection routes lack 
meticulous planning and optimization, recycling vehicles might cover needlessly extensive distances, 
resulting in increased fuel expenditures and a more substantial carbon footprint [37]. This has 
implications not only for the industry's environmental footprint but also for its financial viability, as 
it adds supplementary operational costs that can potentially jeopardize the economic feasibility of 
recycling endeavors [1]. 

Reverse logistics information risk (Code: FM8) 
Reverse logistics information risks in the plastic recycling industry encompass the challenges and 

vulnerabilities associated with managing the flow of data, documentation, and information 
throughout the process of collecting, transporting, and recycling plastic waste [39]. These risks have 
significant implications for the efficiency, transparency, and security of reverse logistics operations 
[40]. One prominent information risk is the impact on data accuracy and integrity. Inaccurate or 
incomplete information about the type, quantity, and origin of plastic waste can lead to operational 
inefficiencies and errors in sorting and processing [36]. This can result in the improper allocation of 
resources, reduced recycling rates, and increased contamination of recyclable materials [40]. 

Waste-to-Energy controversy risks (Code: FM9) 
The controversy surrounding "Waste-to-Energy" (WtE) introduces a complex array of risks within 

the reverse logistics domain of the plastic recycling industry [11]. WtE entails the incineration of 
plastic waste to produce energy. Although this approach provides a feasible method for decreasing 
the accumulation of plastic waste in landfills, it also yields many environmental and health-related 
concerns, creating substantial risks [40]. Another significant concern is the impact of climate change. 
Burning plastic releases carbon dioxide, a potent greenhouse gas that contributes to global warming 
[36]. While some argue that WtE can offset the greenhouse gas emissions associated with the 
production of new plastics, the net environmental benefit of WtE remains contentious [40]. Critics 
contend that the energy-intensive nature of plastic production and recycling, combined with the 
emissions from incineration, may outweigh the benefits [11]. 

Machinery and equipment malfunction risk (Code: FM10) 
Machinery and equipment malfunctions are critical risks inherent to reverse logistics operations 

within the plastic recycling industry [20]. Recycling facilities heavily depend on a diverse array of 
specialized machinery and equipment to effectively process the gathered plastic waste [27]. Failures 
in these pivotal components can trigger many challenges. First, machinery malfunctions can cause 
costly downtime [28]. When a key piece of equipment breaks down or requires repairs, the entire 
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recycling process can be brought to a standstill [21]. This downtime not only impacts productivity 
but also incurs financial losses due to repair expenses and the revenue forfeited from delayed 
recycling operations [23]. Second, equipment malfunctions can compromise the quality of recycled 
materials [26]. If a machine designated for shredding or sorting plastic waste malfunctions, it may 
inadequately separate materials or inadvertently damage recyclables [20]. This can elevate the 
contamination levels within recycled materials, diminishing their worth and market appeal. 

 
2.3 Application of Fuzzy MCDM in FMEA 

Among the plethora of risk analysis techniques, FMEA is a systematic tool widely embraced by 
both academia and industry for conducting comprehensive risk assessments. Traditional FMEA relies 
on three core risk criteria, severity (S), occurrence (O), and detection (D), each assessed using a 10-
point scale to evaluate the risk associated with each Failure Mode (FM) [41]. These three scores are 
multiplied to yield the risk priority number (RPN), which is used to quantify the level of risk for each 
FM [42,43], with a higher RPN indicating a higher level of risk. However, traditional FMEA has several 
limitations and logical inconsistencies, including (i) the use of a 10-point scale, which introduces 
ambiguity and inaccuracy; (ii) the absence of a rigorous mathematical foundation for the 
multiplication of S, O, and D to calculate the RPN for FM prioritization; and (iii) disregard for the 
relative importance weights of the risk criteria (S, O, and D) during the RPN computation [44]. To 
rectify these shortcomings, the adoption of a multicriteria decision-making (MCDM) approach has 
emerged as a promising solution [45]. Decision-making within the context of FMEA often involves 
uncertainties and ambiguities inherent in human judgment. Fuzzy Set Theory (FST) has emerged as 
a strong tool for addressing these challenges [46,47]. In recent years, numerous studies have 
leveraged various forms of FST to mitigate uncertainty and enhance decision-making within the 
realm of FMEA as shown in Table 1, including the following. 

 
Table 1  
Recent research applies fuzzy FMEA approach 

No. Topic Reference 

1 Assessing risks in effluent treatment plants using fuzzy FMEA [48] 
2 Risk assessment for lean projects using fuzzy FMEA [49] 
3 Risk analysis based on FMEA in the oil and gas industry applying picture fuzzy sets [50] 
4 Analysis of FMEA failures in a CNC Machine using Interval type-2 fuzzy sets [51] 
5 Risk assessment for investments in renewable energy utilizing fuzzy FMEA [52] 
6 Health and safety risk assessment based on fuzzy FMEA [53] 

7 
A fuzzy FMEA approach for quantitative dynamic risk assessment in ship 
operations 

[54] 

8 
Utilizing rule-based Fuzzy FMEA for shipboard compressor system risk analysis to 
prevent major marine accidents 

[55] 

9 
Automated prioritization of construction project requirements through Fuzzy 
FMEA and machine learning approaches 

[56] 

10 
Evaluating a maintenance strategy in the paper industry integrating fuzzy  
FMEA-ANP-GP 

[57] 

11 
FMEA for electric vehicles DC charging piles using canonical triangular interval 
type-2 fuzzy set linguistic 

[58] 

12 Assessment of hydroelectric earth dam failure modes using a fuzzy FMEA [59] 
13 Risk evaluation approach for LHD machine based on fuzzy-FMEA [60] 

 
3. Methods 

This section presents the foundational mathematical concepts for the Trapezoidal Fuzzy Set 
(TrFS), AHP, and LOPCOW algorithms, as outlined below. 
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3.1 Mathematical Preliminaries of the Trapezoidal Fuzzy Set (TrFS) 
A trapezoidal fuzzy set (TrFS) is a mathematical concept that plays a vital role in the domain of 

fuzzy logic, a branch of mathematics designed to handle imprecision and uncertainty. TrFS provides 
a versatile way to represent and work with fuzzy or vague information that may not be easily 
described by traditional binary sets [61]. Unlike crisp sets, which classify elements as either fully in 
or out of a set, a TrFS allows for a gradual transition between membership and non-membership, 
accommodating varying degrees of uncertainty. A TrFS is characterized by four parameters 
representing trapezoidal fuzzy numbers (TrFNs): the lower and upper bounds of the set and two 
intermediate points that define the transitions between full membership, partial membership, and 
non-membership [62]. The higher the membership degree at a particular point is, the more likely 
that the value belongs to the fuzzy set. By using TrFNs, researchers and engineers can capture the 
complexity of uncertain data and make informed decisions when precise information is scarce or 
inappropriate. Whether in finance, engineering, or expert systems, TrFNs are valuable tools for 
managing and processing uncertainty, contributing to more robust and adaptive solutions in an 
uncertain world. In this research, TrFNs are employed as a robust approach to address uncertain and 
imprecise data in reverse logistics risk assessment. For clarity, a visual representation of TrFNs is 
presented in Figure 1. Additionally, the mathematical expression describing the membership 
function of these numbers is provided as follows [63]: 

𝜇𝑁(𝑥) =  {

(𝑥 − 𝑥1)/𝑥2 − 𝑥1), 𝑥 ∈ [𝑥1, 𝑥2]

1                               , 𝑥 ∈ [𝑥2, 𝑥3]

(𝑥4 − 𝑥)/ (𝑥4 − 𝑥3) , 𝑥 ∈ [𝑥3, 𝑥4]

0                               ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                        (1) 

where {(𝑥1, 𝑥2, 𝑥3, 𝑥4)|𝑥1, 𝑥2, 𝑥3, 𝑥4  ∈ 𝑅; 𝑥1 ≤  𝑥2 ≤ 𝑥3 ≤ 𝑥4} 
 
 
 
 
 
 

 

 

  

 

 

Fig. 1. Trapezoidal fuzzy number 

Definition 1. Let 𝛼 and 𝛽 represent two positive trapezoidal fuzzy numbers, characterized by the 
parameter sets (𝛼1, 𝛼2, 𝛼3, 𝛼4) and (𝛽1, 𝛽2, 𝛽3, 𝛽4), respectively. The operational rules governing 
these two trapezoidal fuzzy numbers are detailed as suggested by Shemshadi et al., [64]. 

𝛼(+)𝛽 = (𝛼1, 𝛼2, 𝛼3, 𝛼4)(+)(𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝛼1 + 𝛽1, 𝛼2 + 𝛽2, 𝛼3 + 𝛽3, 𝛼4 + 𝛽4)             (2) 

𝛼(−)𝛽 = (𝛼1, 𝛼2, 𝛼3, 𝛼4)(−)(𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝛼1 − 𝛽1, 𝛼2 − 𝛽2, 𝛼3 − 𝛽3, 𝛼4 − 𝛽4)           (3) 

𝛼(⊗)𝛽 = (𝛼1, 𝛼2, 𝛼3, 𝛼4)(⊗)(𝛽1, 𝛽2, 𝛽3, 𝛽4) = (𝛼1𝛽1, 𝛼2𝛽2, 𝛼3𝛽3, 𝛼4𝛽4)                     (4) 

𝜇𝑁(𝑥) 

𝑥1 

  𝑥 

𝑥2 𝑥3 𝑥4 
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𝛼(∅)𝛽 = (𝛼1, 𝛼2, 𝛼3, 𝛼4)(∅)(𝛽1, 𝛽2, 𝛽3, 𝛽4) = (
𝛼1

𝛽1
,
𝛼2

𝛽2
,
𝛼3

𝛽3
,
𝛼4

𝛽4
  )                                                 (5) 

𝑘𝛼 =  (𝑘𝛼1, 𝑘𝛼2, 𝑘𝛼3, 𝑘𝛼4)                                                                                                           (6) 

𝛼−1 = (
1

𝛼4
,
1

𝛼3
, 
1

𝛼2
, 
1

𝛼1
)                                                                                                            (7) 

 

Definition 2. Let 𝑋1, 𝑋2, … , 𝑋𝑘  and 𝑘 = 1,2, … , 𝑝,  denote trapezoidal fuzzy matrices gathered 

from 𝑝 experts for 𝑖 alternatives considering 𝑗 criteria, represented by 𝑋𝑘 = [𝑥𝑖𝑗1
𝑘 , 𝑥𝑖𝑗2

𝑘 , 𝑥𝑖𝑗3
𝑘 , 𝑥𝑖𝑗4

𝑘 ]. 

Subsequently, the aggregation of the fuzzy rating score matrix from all the experts, denoted as �̃�𝑖𝑗
𝑘   =

  (�̃�𝑖𝑗1
𝑘 , �̃�𝑖𝑗2

𝑘 , �̃�𝑖𝑗3
𝑘 , �̃�𝑖𝑗4

𝑘  ), can be expressed by Eq. (8), as described by Shemshadi et al., [64]. 

�̃�𝑖𝑗 = 

{
  
 

  
 
�̃�𝑖𝑗1
𝑘 = min

𝑘
{𝑥𝑖𝑗1
𝑘 }

�̃�𝑖𝑗2
𝑘 = 

1

𝑝
∑ 𝑥𝑖𝑗2

𝑘𝑝
𝑘=1  

�̃�𝑖𝑗3
𝑘 = 

1

𝑝
∑ 𝑥𝑖𝑗𝑘3
𝑝
𝑘=1

�̃�𝑖𝑗4
𝑘 = max

𝑘
{𝑥𝑖𝑗𝑘4}

                                                                       (8) 

Definition 3. Let 𝑋 = [𝑥𝑖𝑗]𝑚×𝑛 represent a trapezoidal fuzzy matrix; the normalized aggregated 

fuzzy rating matrix, denoted as 𝑈 = [𝑢𝑖𝑗]𝑚×𝑛, can be expressed by Eq. (9) and Eq. (10).  

𝑢𝑖𝑗   =    {(
𝑥𝑖𝑗1
−

𝑥𝑖𝑗1
,
𝑥𝑖𝑗2
−

𝑥𝑖𝑗2
,
𝑥𝑖𝑗3
−

𝑥𝑖𝑗3
,
𝑥𝑖𝑗4
−

𝑥𝑖𝑗4
, )}  𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                                        (9) 

𝑢𝑖𝑗   =    {(
𝑥𝑖𝑗1

𝑥𝑖𝑗4
+ ,

𝑥𝑖𝑗2

𝑥𝑖𝑗4
+ ,

𝑥𝑖𝑗3

𝑥𝑖𝑗4
+ ,

𝑥𝑖𝑗4

𝑥𝑖𝑗4
+ , )}   𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛                                       (10) 

where xij4
+   =    max

i
{xij4} is the benefit criterion, while xij1

−   = min
i
{xij1} is the cost criterion, and 

uij= (uij1, uij2 , uij3, uij4). 

Definition 4. Let 𝑥 represents a trapezoidal fuzzy number, denoted as  𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4). To 
derive a precise value from a trapezoidal fuzzy number, a defuzzification process is necessary. The 
conversion of 𝑋 into a corresponding crisp value can be expressed by Eq. (11), as proposed by 
Shemshadi et al., [64]. 

Defuzz(𝑥𝑖𝑗)   =    
∫𝜇(𝑥).𝑥𝑑𝑥

∫𝜇(𝑥)𝑑𝑥
                                                (11) 

=   
∫ (

𝑥−𝑥𝑖𝑗1

𝑥𝑖𝑗2−𝑥𝑖𝑗1
)∙𝑥𝑑𝑥+

𝑥𝑖𝑗2
𝑥𝑖𝑗1

∫ 𝑥𝑑𝑥+∫ (
𝑥𝑖𝑗4−𝑥

𝑥𝑖𝑗4−𝑥𝑖𝑗3
)∙𝑥𝑑𝑥

𝑥𝑖𝑗4
𝑥𝑖𝑗3

𝑥𝑖𝑗3
𝑥𝑖𝑗2

∫ (
𝑥−𝑥𝑖𝑗1

𝑥𝑖𝑗2−𝑥𝑖𝑗1
)𝑑𝑥+

𝑥𝑖𝑗2
𝑥𝑖𝑗1

∫ 𝑑𝑥+∫ (
𝑥𝑖𝑗4−𝑥

𝑥𝑖𝑗4−𝑥𝑖𝑗3
)𝑑𝑥

𝑥𝑖𝑗4
𝑥𝑖𝑗3

𝑥𝑖𝑗3
𝑥𝑖𝑗2

    

= 
−𝑥𝑖𝑗1𝑥𝑖𝑗2 + 𝑥𝑖𝑗3𝑥𝑖𝑗4 +

1
3 (𝑥𝑖𝑗4 − 𝑥𝑖𝑗3)

2
−
1
3 (𝑥𝑖𝑗2 − 𝑥𝑖𝑗1)

2

−𝑥𝑖𝑗1−𝑥𝑖𝑗2 + 𝑥𝑖𝑗3+𝑥𝑖𝑗4
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Definition 5. Let 𝐹 represents a weighted normalization matrix of a trapezoidal fuzzy set, denoted 

as  𝐹 = [𝑓𝑖𝑗]𝑚×𝑛 = [𝑢𝑖𝑗⨂𝜔𝑗
𝑐]
𝑚×𝑛

. The defuzzification of elements within 𝐹, denoted  𝑑𝑖𝑗 =

 𝑑𝑒𝑓𝑢𝑧𝑧(𝑢𝑖𝑗⨂𝜔𝑗
𝑐) can be expressed using Eq. (12), as proposed by Shemshadi et al., [64]. 

𝑑𝑖𝑗 = 𝑑𝑒𝑓𝑢𝑧𝑧(𝑢𝑖𝑗⨂𝜔𝑗
𝑐) =  

∫𝜇(𝑥).𝑥𝑑𝑥

∫𝜇(𝑥)𝑑𝑥
                                                                      (12) 

 =

∫ (
𝑥 − 𝜔𝑗1

𝑐

𝑢𝑖𝑗2𝜔𝑗2
𝑐 − 𝑢𝑖𝑗1𝜔𝑗1

𝑐 ) ∙ 𝑥𝑑𝑥 + ∫ 𝑥𝑑𝑥 + ∫ (
𝑢𝑖𝑗4𝜔𝑗4

𝑐 − 𝑥

𝑢𝑖𝑗4𝜔𝑗4
𝑐 − 𝑢𝑖𝑗3𝜔𝑗3

𝑐 )
𝑢𝑖𝑗4𝜔𝑗4

𝑐

𝑢𝑖𝑗3𝜔𝑗3
𝑐 ∙ 𝑥𝑑𝑥 

𝑢𝑖𝑗3𝜔𝑗3
𝑐

𝑢𝑖𝑗2𝜔𝑗2
𝑐

𝑢𝑖𝑗2𝜔𝑗2
𝑐

𝑢𝑖𝑗1𝜔𝑗1
𝑐

∫ (
𝑥 − 𝑢𝑖𝑗1𝜔𝑗1

𝑐

𝑢𝑖𝑗2𝜔𝑗2
𝑐 − 𝑢𝑖𝑗1𝜔𝑗1

𝑐 )𝑑𝑥 + ∫ 𝑑𝑥 + ∫ (
𝑢𝑖𝑗4𝜔𝑗4

𝑐 − 𝑥

𝑢𝑖𝑗4𝜔𝑗4
𝑐 − 𝑢𝑖𝑗3𝜔𝑗3

𝑐 )
𝑢𝑖𝑗4𝜔𝑗4

𝑐

𝑢𝑖𝑗3𝜔𝑗3
𝑐 𝑑𝑥 

𝑢𝑖𝑗3𝜔𝑗3
𝑐

𝑢𝑖𝑗2𝜔𝑗2
𝑐

𝑢𝑖𝑗2𝜔𝑗2
𝑐

𝑢𝑖𝑗1𝜔𝑗1
𝑐

  

  𝑑𝑖𝑗    =
−(𝑢𝑖𝑗1𝑢𝑖𝑗2)(𝜔𝑗1

𝑐 𝜔𝑗2
𝑐 )+(𝑢𝑖𝑗3𝑢𝑖𝑗4)(𝜔𝑗3

𝑐 𝜔𝑗4
𝑐 )+

1

3
(𝑢𝑖𝑗4𝜔𝑗4

𝑐 −𝑢𝑖𝑗3𝜔𝑗3
𝑐 )

2
−
1

3
(𝑢𝑖𝑗2𝜔𝑗2

𝑐 −𝑢𝑖𝑗1𝜔𝑗1
𝑐 )2

−𝑢𝑖𝑗1𝜔𝑗1
𝑐 −𝑢𝑖𝑗2𝜔𝑗2

𝑐 +𝑢𝑖𝑗3𝜔𝑗3
𝑐 +𝑢𝑖𝑗4𝜔𝑗4

𝑐  

where 𝜔𝑗
𝑐 =  [𝜔𝑗1

𝑐 , 𝜔𝑗2
𝑐 , 𝜔𝑗3

𝑐 , 𝜔𝑗4
𝑐 ] is the consolidated weights of the FMEA risk criteria. 

Definition 6. Let 𝑋 = [𝑥𝑖𝑗]
𝑚×𝑛

 represents a trapezoidal fuzzy matrix; the geometric mean within 

each row of the matrix (𝑟�̂�) can be expressed using Eq. (13), as proposed by Samia and Fares [65]. 

𝑟�̂� = (�̃�𝑖1⊗ �̃�𝑖2⊗…⊗ �̃�𝑖𝑛)
1

𝑛                                 (13) 

where �̃�𝑖1, �̃�𝑖2, … �̃�𝑖𝑛 are TrFNs, 𝑟�̂� = (𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3, 𝑟𝑖4) 

The applications of TrFS have been widely utilized to address numerous real-world and academic 
MCDM problems, as illustrated by the examples provided in Table 2. 
 

Table 2  
The examples of TrFS applications in existing studies 

No. Topic Reference 

1 
Evaluation of wind power projects post-implementation 
using an enhanced ANP based on trapezoidal fuzzy set 

[66] 

2 
Selecting security guard service company using geometric 
approach for ranking generalized trapezoidal fuzzy numbers 

[67] 

3 
Selective disassembly sequence planning under uncertainty 
using trapezoidal fuzzy numbers 

[68] 

4 
Emergency decision-making technique based on trapezoidal 
fuzzy best-worst method and zero-sum game 

[69] 

5 
Efficiency analysis of water treatment plant using an 
integrated trapezoidal fuzzy 

[70] 

6 
Water cycle health assessment based on trapezoid fuzzy 
TOPSIS model 

[71] 

7 
Assessment of national innovation capabilities of OECD 
countries using trapezoidal interval type-2 fuzzy 

[72] 

8 
Blockchain technology in construction organizations: risk 
assessment using trapezoidal fuzzy 

[73] 

9 
Interval type-2 trapezoidal fuzzy multi-attribute decision-
making method and its application to the corporate 
investment selection 

[74] 
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3.2 AHP Algorithm  
The AHP is a potent decision-making framework that enables both individuals and organizations 

to adeptly navigate intricate decision landscapes [75]. This can be achieved by organizing complex 
challenges into a hierarchical structure, applying relative significance to criteria, and employing 
pairwise comparisons to establish these priorities. This methodology harmoniously incorporates 
expert opinions and preferences into the decision-making process, positioning the AHP as an 
indispensable instrument for resolving multifaceted issues with numerous criteria while ensuring 
that decisions align seamlessly with overarching objectives and priorities [76]. The pseudocode for 
the AHP under the TrFS is outlined in Algorithm 1. 
 
3.3 LOPCOW Algorithm 

LOPCOW, an innovative objective weighting method introduced in recent literature, is a valuable 
approach for prioritizing assessment criteria within a specific hierarchical decision-making 
framework. This innovative methodology, developed by Ecer and Pamucar [77], offers numerous 
significant advantages. Distinguishing itself from other objective weighting methods, LOPCOW 
effectively handles negative values within raw data and alleviates substantial disparities in priority 
assignment among relevant criteria [77]. Furthermore, it excels in delivering comprehensive 
solutions for criteria in both hierarchical structures, regardless of whether they are classified as 
benefits or costs. Additionally, LOPCOW aids in harmonizing dimensional variations emerging from 
differences in data structures [78]. The LOPCOW pseudocode under TrFS is outlined in Algorithm 2. 
 
3.4 ARAS Algorithm  

The Additive Ratio Assessment (ARAS) method, a variant of MCDM, was first conceptualized by 
Zavadskas and Turskis [79]. Within the ARAS framework, a utility function is employed to quantify 
the intricate relative efficiency of a potential alternative. This utility function directly contrasts the 
alternative's performance against the cumulative impact of values and weights assigned to the 
significant criteria within a project. The ARAS approach offers several noteworthy advantages. First, 
it maintains a direct and proportional relationship with criterion weights [80]. Second, it has the 
ability to address highly intricate problems [79]. Third, it encompasses straightforward and efficient 
processes that consistently yield satisfactory, realistic, and reasonably accurate results when 
assessing and prioritizing various alternatives [80]. The pseudocode for ARAS under TrFS is outlined 
in Algorithm 3. 
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Algorithm 1: Pseudo Representation of AHP under TrFS 

  Input: (1) Index of criteria (𝑗),  number of criteria (𝑛), 𝐶𝑗 is criterion 𝑗𝑡ℎ, 𝑗 = 1,2,3, . . , 𝑛. 

            (2) Index of decision-maker (𝑘), number of decision-makers (𝑝), 𝑘 = 1,2,3, . . , 𝑝. 

  Output: Subjective weights of criteria (𝜔𝑗
𝑠) 

Begin 

Step 1: Obtain linguistic pairwise comparison between 𝐶𝑗  for all experts, and transform it into 

corresponding trapezoidal TrFN as outlined in Table 1. 
Step 2: Conduct consistency check procedure by transforming to corresponding TrFN to 

consistency index numerators to obtain the consistency ratio 
               for 𝑘 = 1 to 𝑝 do 

                    𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
 , where 𝐶𝐼 =  

𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                                                                               (14) 

                      If 𝐶𝑅 > 0.1 then  

                             return to Step 1; 

                     else 

                            go to Step 3; 

                     end 

               end 

Step 3: Construct the TrFS pair-wise comparison matrix for each expert, using Eq. (15) 
                                                     𝐶1        𝐶2    ⋯   𝐶𝑛                            

𝑋𝑘 = [𝑥𝑖𝑗
𝑘 ]𝑚𝑥𝑛 = 

𝐶1
𝐶2
⋮
𝐶𝑚 [

 
 
 
𝑥11
𝑘 𝑥12

𝑘 ⋯ 𝑥1𝑛
𝑘

𝑥21
𝑘 𝑥22

𝑘 ⋯ 𝑥2𝑛
𝑘

⋮
𝑥𝑛1
𝑚

⋮
𝑥𝑛2
𝑚

⋱
⋯

⋮
𝑥𝑛𝑛
𝑚 ]
 
 
 

                                                         (15)  

where 𝑥𝑖𝑗
𝑘 = (𝑥𝑖𝑗1, 𝑥𝑖𝑗2, 𝑥𝑖𝑗3, 𝑥𝑖𝑗4), 𝑥𝑖=𝑗

𝑘 = (1,1,1,1), 𝑥𝑗𝑖
𝑘 = (

1

𝑥𝑖𝑗4
,
1

𝑥𝑖𝑗3
,
1

𝑥𝑖𝑗2
,
1

𝑥𝑖𝑗1
) 

Step 4: Aggregate the TrFS pair-wise comparison matrices into a group decision-making, 

denoted as �̃� = [�̃�𝑖𝑗]𝑛𝑥𝑛, where �̃�𝑖𝑗 = (�̃�𝑖𝑗1, �̃�𝑖𝑗2, �̃�𝑖𝑗3, �̃�𝑖𝑗4), using Eq. (8).   

Step 5: Calculate the geometric mean in each row of aggregated TrFS pair-wise comparison 
matrix, using Eq. (16) 

𝑟�̂� = (�̃�𝑖1⊗ �̃�𝑖2⊗…⊗ �̃�𝑖𝑛)
1

𝑛                                                                                            (16) 

where �̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑛 are TrFNs, 𝑟�̂� = (𝑟𝑖1, 𝑟𝑖2, 𝑟𝑖3, 𝑟𝑖4) 

Step 6: Compute the TrFN subjective weighting for each row (𝜔𝑗
𝑠), using Eq. (17) 

𝜔𝑗
𝑠 = 𝑟�̂�  ⊗ (𝑟1̂⊗𝑟2̂⊗…⊗ 𝑟�̂�)

−1                                                                                  (17) 

where 𝜔𝑗
𝑠 = (𝜔𝑗1

𝑠 , 𝜔𝑗2
𝑠 , 𝜔𝑗3

𝑠 , 𝜔𝑗4
𝑠 ). 

End 
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Algorithm 2: Pseudo Representation of LOPCOW under a trapezoidal fuzzy set 

Input: (1) Index of alternative (𝑖), number of alternatives (𝑚), 𝐴𝑖  is alternative 𝑖𝑡ℎ, 𝑖 = 1,2,3, . . , 𝑚. 

            (2) Index of criteria (𝑗), 𝑛), 𝐶𝑗 is criterion 𝑗𝑡ℎ, 𝑗 = 1,2,3, . . , 𝑛. 

            (3) Index of decision-makers (𝑘), number of decision-makers (𝑝),𝑘 = 1,2,3, . . , 𝑝. 

Output: Objective weights of criteria (𝜔𝑗
𝑜) 

Begin 

Step 1: Obtain the linguistic evaluation of alternative 𝑖 with respect to criterion 𝑗 for all experts 
and transform them into corresponding trapezoidal fuzzy numbers, as outlined in Table 2-3. 

Step 2: Construct the evaluation decision matrix for each expert as follows 
 

     𝑋𝑘 = [𝑥𝑖𝑗
𝑘 ]𝑚𝑥𝑛  

                            𝐶1         𝐶2    ⋯   𝐶𝑛                            

𝑋𝑘 = [𝑥𝑖𝑗
𝑘 ]𝑚𝑥𝑛 = 

𝐴1
𝐴2
⋮
𝐴𝑚 [

 
 
 
𝑥11
𝑘 𝑥12

𝑘 ⋯ 𝑥1𝑛
𝑘

𝑥21
𝑘 𝑥22

𝑘 ⋯ 𝑥2𝑛
𝑘

⋮
𝑥𝑛1
𝑚

⋮
𝑥𝑛2
𝑚

⋱
⋯

⋮
𝑥𝑛𝑛
𝑚 ]
 
 
 

 , where 𝑥𝑖𝑗
𝑘 = (𝑥𝑖𝑗1

𝑘 , 𝑥𝑖𝑗2
𝑘 , 𝑥𝑖𝑗3,

𝑘  𝑥𝑖𝑗4
𝑘 )                 (18) 

Step 3: Compute the aggregated evaluation decision matrix represented as �̃� = [�̃�𝑖𝑗]𝑚𝑥𝑛 using 

Eq. (8), where �̃�𝑖𝑗 = (�̃�𝑖𝑗1, �̃�𝑖𝑗2, �̃�𝑖𝑗3 �̃�𝑖𝑗4). 

Step 4: Calculate the normalized aggregated matrix 𝑈 = [𝑈𝑖𝑗]𝑚𝑥𝑛, using Eq. (9) and Eq. (10): 

Step 5: Determine the percentage value (𝑃𝑗) for each criterion, using Eq. (19)-Eq. (20): 

𝑅𝑀𝑆𝑗 = √
∑ 𝑢𝑖𝑗

2𝑚
𝑖=1

𝑚
                                                                                                                      (19) 

𝜎𝑗 = √
1

𝑚−1
∑ (𝑢𝑖𝑗 −

1

𝑚
∑ 𝑢𝑡𝑗)2
𝑚
𝑡=1

𝑚
𝑖=1                                (20)                   

     𝑃𝑗 = |𝐼𝑛 (
𝑅𝑀𝑆𝑗

𝜎𝑗
) . 100|                                                                                                                                                           (21) 

     where 𝑅𝑀𝑆𝑗 and 𝜎𝑗  represent the root mean square value and the standard deviation of the       

joint normalized evaluations under the 𝑗𝑡ℎ criterion, respectively. 

Step 6: Calculation the objective weights of criteria (𝜔𝑗
𝑜), using Eq. (22) 

  𝜔𝑗
𝑜 = 

𝑃𝑗

∑ 𝑃𝑗
𝑛
𝑗=1

                                                                      (22)                                                                                                                                                                                   

where 𝜔𝑗
𝑜 = (𝜔𝑗1

𝑜 , 𝜔𝑗2
𝑜 , 𝜔𝑗3

𝑜  𝜔𝑗4
𝑜 ). 

End 
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Algorithm 3: Pseudo representation of ARAS under a trapezoidal fuzzy set 

Input: (1) Index of alternative (𝑖), number of alternatives (𝑚), 𝐴𝑖  is alternative 𝑖𝑡ℎ, 𝑖 = 1,2,3, . . , 𝑚. 

            (2) Index of criteria (𝑗), 𝑛), 𝐶𝑗 is criterion 𝑗𝑡ℎ, 𝑗 = 1,2,3, . . , 𝑛. 

            (3) index (𝑘), number of decision-makers (𝑝),𝑘 = 1,2,3, . . , 𝑝. 

Output: Ranking alternatives (𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑚) 

Begin 

Step 1: Obtain the linguistic evaluation of alternative 𝑖 with respect to criterion 𝑗 for all experts 

and transform them into corresponding trapezoidal fuzzy numbers, as outlined in Tables (2)-

(3). Subsequently, construct the decision matrix for each decision-maker, represented as 𝑋𝑘 =

[𝑥𝑖𝑗
𝑘 ]𝑚𝑥𝑛, as shown in Eq. (23). 

                                                      𝐶1        𝐶2    ⋯   𝐶𝑛                            

𝑋𝑘 = [𝑥𝑖𝑗
𝑘 ]𝑚𝑥𝑛 = 

𝐴1
𝐴2
⋮
𝐴𝑚 [

 
 
 
𝑥11
𝑘 𝑥12

𝑘 ⋯ 𝑥1𝑛
𝑘

𝑥21
𝑘 𝑥22

𝑘 ⋯ 𝑥2𝑛
𝑘

⋮
𝑥𝑛1
𝑚

⋮
𝑥𝑛2
𝑚

⋱
⋯

⋮
𝑥𝑛𝑛
𝑚 ]
 
 
 

 , where 𝑥𝑖𝑗
𝑘 = (𝑥𝑖𝑗1

𝑘 , 𝑥𝑖𝑗2
𝑘 , 𝑥𝑖𝑗3,

𝑘  𝑥𝑖𝑗4
𝑘 )                (23)  

Step 2: Compute the aggregated decision matrix �̃� = [�̃�𝑖𝑗]𝑚𝑥𝑛  using Eq. (8), where �̃�𝑖𝑗 =

 (�̃�𝑖𝑗1, �̃�𝑖𝑗2, �̃�𝑖𝑗3 �̃�𝑖𝑗4). 
 

Step 3: Identify the optimal value of criterion 𝑗, denoted as 𝑂𝑉, using Eq. (24) for benefit 

criterion 𝐵 and Eq. (25) for cost criterion 𝐶. 

𝑂𝑉 = ma𝑥 �̃�𝑖𝑗
𝑖

, 𝑗 ∈ 𝐵                                                                                               (24)                             

𝑂𝑉 = min �̃�𝑖𝑗
𝑖

, 𝑗 ∈ 𝐶                                                                                                (25) 

 Step 4: Calculate the normalized aggregated matrix, �̅�, using Eq. (26) and Eq. (27) 

�̅�𝑖𝑗 = 
�̃�𝑖𝑗

∑ �̃�𝑖𝑗
𝑚
𝑖=0

, 𝑗 ∈ 𝐵                                                                                                            (26)    

�̅�𝑖𝑗 = 
𝒙𝒊𝒋
∗

∑ 𝒙𝒊𝒋
∗𝒎

𝒊=𝟎
, 𝑗 ∈ 𝐶 , where  𝑥𝑖𝑗

∗ =
1

�̃�𝑖𝑗
                                                                          (27) 

Step 5: Conduct defuzzification on the weighted normalized decision matrix, defined as 

�̂�𝑖𝑗
𝑑𝑒𝑓

=  𝑑𝑒𝑓𝑢𝑧𝑧(�̅�𝑖𝑗⨂𝜔𝑗
𝑐)  using Eq. (12); 𝜔𝑗

𝑐 can be obtained by Eq. (28). 
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𝜔𝑗
𝑐 = 𝜑𝜔𝑗

𝑠 + (1 − 𝜑)𝜔𝑗
𝑜                                                                                                                   (28)                                                                                           

Here, 𝜔𝑗
𝑐 denotes the consolidated weight of each criterion derived from the TrFS AHP 

(Algorithm I) and the TrFS LOPCOW (Algorithm II). The coefficient 𝛾 represents the combined 
decision mechanism, which falls within the range of 𝛾 ∈ [0, 1]. For the sake of simplicity, without 
loss of generality, this study assumes a value of 0.5. 

 Step 6: Obtain the optimality function values (𝛾𝑖) by using Eq. (29)  

𝛾𝑖 = ∑ �̂�𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 0,1, … ,𝑚                                                                                        (29)                                                                     

where 𝛾𝑖 represents the optimality function value of the 𝑖𝑡ℎ alternative. 

Step 7: Calculate the degree of utility for alternative (𝐾𝑖) via Eq. (30) 

                     𝐾𝑖 = 
𝛾𝑖

𝛾𝑜𝑝
 , 𝑖 = 1,2,3, … ,𝑚                                                                                            (30) 

where 𝛾𝑜𝑝 represents the optimal value of the alternative, 𝐾𝑖 ∈ [0,1] 

Step 8: Rank the alternatives in descending order based on 𝐾𝑖 values. 

    End 
   

 
3.5 Review the application of AHP, LOPCOW, and ARAS 

The comprehensive review of AHP, Level LOPCOW, and ARAS provided valuable insights into 
their respective strengths and weaknesses in decision-making contexts. 

AHP, a widely utilized method, emerged as a robust framework for structuring complex decision 
problems and prioritizing criteria. Its hierarchical structure facilitated the decomposition of decisions 
into manageable components, enabling decision-makers to systematically evaluate alternatives [75]. 
However, the review revealed that AHP may encounter challenges when dealing with subjective 
judgments and inconsistent pairwise comparisons, necessitating careful consideration of input data 
quality [76]. The applications of AHP under TrFN extensively utilized to address MCDM challenges in 
real-world scenarios, as illustrated by various examples provided in Table 3. 

 
Table 3  

The examples of AHP under TrFN applications in prior studies 
No. Topic Reference 

1 
Work safety evaluation and early warning rating of hot and 
humid environments using a trapezoidal fuzzy AHP 

[81] 

2 
Risk assessment of mega-city infrastructures related to land 
subsidence using improved trapezoidal FAHP 

[82] 

3 
Identification of monkeypox risk factors using a hybrid 
trapezoidal fuzzy FUCOM-AHP approach 

[83] 

4 
Development of a new trapezoidal fuzzy AHP-TOPSIS hybrid 
approach for manufacturing firm performance measurement 

[84] 

5 
A framework to prioritize the public Expectations from water 
treatment plants based on Trapezoidal Type-2 Fuzzy AHP 
method 

[85] 

6 
A hybrid decision support model using a Trapezoidal fuzzy-
based multi-attribute preference model with AHP-Entropy for 
groundwater remediation selection 

[86] 

7 
Cost-risk contingency framework for managing cost overrun 
in metropolitan projects using a trapezoidal fuzzy AHP and 
simulation 

[87] 
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LOPCOW, focusing on the determination of overall weights for criteria, demonstrated 
effectiveness in integrating diverse perspectives and preferences into decision-making processes. Its 
emphasis on the holistic assessment of criteria allowed decision-makers to capture the overarching 
importance of each factor within the decision context. Despite its strengths, LOPCOW was found to 
be sensitive to variations in input data and may require additional calibration to mitigate potential 
biases. Nonetheless, its ability to provide a comprehensive overview of decision factors makes it a 
valuable tool for addressing complex decision problems [77]. To the best of the authors' knowledge, 
no prior studies have applied the LOPCOW methodology within the framework of TrFN. 
Nevertheless, LOPCOW has been employed in different fuzzy versions to address MCDM problems, 
as exemplified in Table 4. 

 
Table 4  

The examples of LOPCOW under various fuzzy versions applications in prior studies 
No. Topic Reference 

1 
A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment 
methodology: An application in developing country banking sector 

[77] 

2 
Prioritizing industry 4.0-based material handling technologies in smart and 
sustainable warehouse management systems using neutrosophic LOPCOW-
ARAS 

[88] 

3 
Evaluation of third-party logistics service providers for car manufacturing firms 
using a novel integrated grey LOPCOW-PSI-MACONT model 

[89] 

4 
Sustainability performance analysis of micro-mobility solutions in urban 
transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework 

[90] 

5 
A new hybrid MCDM framework for third-party logistics provider selection 
under sustainability perspectives 

[91] 

6 
A multi-criterion based analytic framework for exploring the impact of Covid-
19 on firm performance in emerging market 

[92] 

 
ARAS method, known for its simplicity and efficiency, excels in prioritizing alternatives through 

ratio assessments. Its straightforward calculation and easy interpretation make it widely applicable 
[93]. However, it struggles with complex decision structures and conflicting preferences. While 
practical, its use demands careful consideration of context and trade-offs between simplicity and 
accuracy [94]. ARAS has been utilized in various fuzzy versions to tackle MCDM problems, as 
illustrated in Table 5. 

 
Table 5  
The examples of ARAS under various fuzzy versions applications in prior studies 

No. Topic Reference 

1 
Geometric approach for ranking generalized trapezoidal fuzzy numbers 
and its application in selecting security guard service company 

[93] 

2 Interval type-2 Fuzzy ARAS method for recycling facility location problems [94] 

3 
Smart watch evaluation with integrated hesitant fuzzy linguistic SAW-ARAS 
technique 

[95] 

4 
Development of a firm export performance measurement model using a 
hybrid multi-attribute decision-making method 

[96] 

5 
Resilient supplier selection to mitigate uncertainty: soft-computing 
approach 

[97] 

6 
A decision-support approach under uncertainty for evaluating reverse 
logistics capabilities of healthcare providers in Iran 

[98] 
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3.6 Proposed Research Framework  
The proposed framework for risk assessment in the reverse logistics industry of plastic recycling 

can be divided into six phases as follows: Phase I: Identify and validate the failure modes; Phase II: 
Develop a decision model for risk assessment based on FMEA; Phase III: Calculate the subjective 
weights of FMEA risk criteria; Phase IV: Calculate the objective weights of FMEA risk criteria; Phase 
V: Compute the consolidated weights of the FMEA risk criteria; and Phase VI: Prioritize failure modes 
(FMs). This proposed framework is visually presented in Figure 2. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Fig. 2. Proposed research framework 

3.7 Measurement Scales of TrFNs 
The scale of relative importance used for pairwise comparisons of the AHP measurements, along 

with the corresponding TrFNs, is provided in Table 6. Additionally, the measurement scales for risk 
criteria under TrFNs are provided as follows: severity (S), occurrence (O), and detection (D) are 
detailed in Table 7, while cost of failure (C), complexity of failure resolution (H), and impact on 
business (I) are detailed in Table 8.  
 

 Table 6  
 Scale of relative importance employed for pairwise comparisons in AHP 

Relative importance scale Linguistic terms TrFNs 

1 Equally important (1,1,1,1) 

3 Weakly important (2,5/2,7/2,4) 

5 Essentially important (4,9/2,11/2,6) 

7 Very strongly important (6,13/2,15/2,8) 

9 Absolutely important (8,17/2,9,9) 

x =2,4,6,8 are intermediate scales (x-1, x-1/2, x+1/2, x+1) 

 

  

Experts 
opinion 

Phase V: Compute consolidated weights of FMEA risks criteria 

Phase VI: Prioritize failure modes (FMs) using Algorithm 3 

Phase I: Identify and validate the 

failure modes 

Phase II: Develop decision model 

for risk assessment based on FMEA 

Literature 

review 

Phase III: Calculate 

subjective weights of 

FMEA risk criteria using 

Algorithm 1 

Phase IV: Calculate 

objective weights of 

FMEA risk criteria 

using Algorithm 2 
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Table 7 
Scale of risk criteria S, O, and D under TrFNs 
Severity (S) Occurrence (O) Detection (D) TrFNs 

No(N) Almost never (AN) Almost detection (AD) (0,0,1,2) 

Very slight (VS) Remote (R) Very high (VH) (0,1,2,3) 

Slight (S) Very slight (VS) High (H) (1,2,3,4) 

Minor (Mi) Slight (S) Moderate high (MH) (2,3,4,5) 

Moderate (Mo) Low (L) Medium (M) (3,4,5,6) 

Significant (Si) Medium (M) Low (L) (4,5,6,7) 

Major (Ma) Moderately high (MH) Slight (S) (5,6,7,8) 

Extreme (E) High (H) Very slight (VS) (6,7,8,9) 

Serious (Se) Very high (VH) Remote (R) (7,8,9,10) 

Hazardous (H) Almost certain (AC) Almost impossible (AI) (8,9,10,10) 

 
Table 8  
Scale of risk criteria C, H, and I under TrFNs 

Cost of failure (C) Complexity of failure resolution (H) Impact on business (I) TrFNs 

No cost (N) No difficulty (N) No effect (N) (0,0,1,2) 
Almost no cost Almost less difficulty (AD) Almost less effect (AE) (0,1,2,3) 
Very low (VL) Very low difficulty (VL) Very low effect (VL) (1,2,3,4) 
Low (L) Low difficulty (L) Low effect (L) (2,3,4,5) 
Moderate low (ML) Moderate low difficulty (ML) Moderate low effect (ML) (3,4,5,6) 
Moderate (M) Moderate difficulty (M) Moderate effect (M) (4,5,6,7) 
Moderate high (MH) Moderate high difficulty (MH) Moderate high effect (MH) (5,6,7,8) 
High (H) High difficulty (H) High effect (H) (6,7,8,9) 
Very high (VH) Very high difficulty (VH) Very high effect (VH) (7,8,9,10) 
Extremely high cost (EH) Extremely high difficulty (EH) Extremely high effect (EH) (8,9,10,10) 

 
4. Results 
4.1 Case Study 

In this study, a real-world case study involving one of Thailand's prominent plastic recycling 
companies is employed to exemplify the application of the proposed framework. The selected 
company has more than 25 years of experience in plastic recycling and operates an innovative 
manufacturing facility situated in an economic zone along the southeastern coast of Rayong 
Province. This facility is equipped with state-of-the-art recycling technology and production lines 
specializing in the production of high-quality recycled plastic. With an annual production capacity of 
35,000 tons of recycled polyethylene terephthalate (PET) resin, the company plays a pivotal role in 
the plastic packaging logistics closed-loop system. Given the inherent uncertainties, vulnerabilities, 
and recent disruptions encountered in the closed-loop system of plastic packaging logistics, the 
company has faced mounting logistics challenges and associated costs over the past two years, 
negatively affecting its reputation. To address these issues, the company's logistics director has 
devised a comprehensive risk assessment program tailored to the closed-loop logistics system. A 
dedicated FMEA working group comprising six experts is established within the case study company. 
Each expert has a wealth of knowledge and experience in reverse logistics within the context of 
plastic recycling. Details regarding these six individuals can be found in Table 9. The framework 
proposed in this study serves as a guiding tool for the systematic assessment of risks within the 
company's reverse logistics system. 
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Table 9  
Details of the six experts 

Code of 
experts 

Current 
position 

Experience 
(Years) 

Responsibility relate reverse logistics in plastic waste 

E1 
Factory 

manager 
12 

His role involves coordinating with multiple departments, including 
logistics and quality control, to optimize operations, achieve 
production targets, and ensure alignment with sustainability goals. 

E2 
Logistics 
senior 

manager 
6 

His primary responsibility is to optimize the collection and 
transportation of plastic waste from diverse sources to recycling 
facilities, with a focus on minimizing costs and mitigating the 
environmental impact. 

E3 
Procurement 

senior 
manager 

11 

His role involves sourcing and procuring plastic waste feedstock 
from suppliers, skillfully negotiating favorable terms to enhance 
cost-efficiency. Furthermore, he works closely with suppliers to 
establish sustainable procurement practices and explores innovative 
sources of plastic waste, thus contributing significantly to the 
broader environmental objectives within the recycling industry. 

E4 
Production 
manager 

5 

His primary role involves the oversight of daily recycling facility 
operations, where he manages machinery and production processes 
to optimize output while upholding product quality standards. 
Furthermore, the production manager collaborates with various 
departments, including logistics and quality control, to enhance 
operational efficiency and align with the plastic recycling industry's 
sustainability and production objectives. 

E5 
Warehouse 

manager 
6 

His task involves the overseeing inventory control, ensuring precise 
tracking and reporting of stock levels to minimize waste and 
maintain a steady supply for production. He also plays a key role in 
enforcing recycling best practices, including proper material storage 
techniques to reduce contamination and promote the 
environmentally friendly reuse of plastic resources. 

E6 
Senior 

logistics 
engineer 

5 

Her role involves the data analysis and the implementation of 
cutting-edge logistics technologies aimed at enhancing efficiency, 
reducing transportation costs, and optimizing the overall 
performance of the reverse supply chain. This contribution aligns 
with the industry's sustainability objectives, fostering more eco-
friendly practices in the plastic recycling sector. 

 
4.2 Application of the Proposed Framework  

The application of the proposed framework comprises six phases, as depicted in Figure 2. Further 
elaboration is provided below. 

Phase I: Identify and Validate the Failure Modes 
Through the comprehensive literature review outlined in Section 2.2, ten significant failure 

modes (FMs) that affect the operational efficiency of the reverse logistics of the plastic recycling 
industry are identified. To validate these ten FMs, a panel of experts from the plastic recycling 
industry is formed to review and confirm their relevance. The specifics of these experts are 
presented in Table 9. Following several rounds of discussion with these experts, the final selections 
of these ten FMs were confirmed as follows: hazardous material mishandling risk (FM1),  
contamination of recyclables risk (FM2), energy-intensive recycling risk (FM3), worker health and 
safety risk (FM4), recycle material transportation risk (FM5), recycle material inventory risk (FM6), 
inadequate collection practice risk (FM7), reverse logistics information risk (FM8), waste-to-energy 
controversy risk (FM9), and machinery and equipment malfunction risk (FM10). 
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Phase II: Develop a Decision Model for Risk Assessment Based on FMEA 
In this phase, a risk assessment decision model for reverse logistics in the plastic recycling 

industry is developed, as depicted in Figure 3. This comprehensive decision model is composed of 
six essential FMEA risk criteria, along with ten distinct failure modes (FMs), as outlined in Phase I. 
The six FMEA criteria include the severity (S), occurrence (O), detection (D), cost of failure (C), 
complexity of failure resolution (H), and impact on business (I). These six criteria can be categorized 
into two groups: benefit criteria (where larger values are preferable), which includes D; and cost 
criteria (where smaller values are preferable), which include S, O, C, H, and I. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Decision model for risk assessment based on FMEA 

Phase III: Calculate the Subjective Weights of the FMEA Risk Criterion 
The subjective weighting of each FMEA risk criterion (𝜔𝑗

𝑠) is determined through the AHP using 

a trapezoidal fuzzy set procedure, as described in Algorithm 1. The process for calculating 𝜔𝑗
𝑠 is 

described as follows: 
Step 1: Obtain linguistic pairwise comparisons 
Each industrial expert is tasked with assessing the relative importance of FMEA risk criteria 

through pairwise comparisons using the trapezoidal fuzzy linguistic terms provided in Table 1. All 
linguistic terms are converted into their respective TrFNs. 
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Step 2: Conduct consistency check 
The pairwise comparisons of the TrFNs provided by all the experts are transformed into crisp 

values. Following this transformation, consistency checks are conducted to ensure the reliability and 
validity of the pairwise comparisons within the decision-making process. When the consistency ratio 
(CR) exceeds 0.1, experts are asked to re-evaluate their pairwise comparisons for refinement. 
 

Step 3: Construct trapezoidal fuzzy pairwise comparison matrices 
The trapezoidal fuzzy pairwise comparison matrices are constructed based on the input from six 

experts. Considering the space constraints in the manuscript, an illustrative example of the 
trapezoidal fuzzy pairwise comparison matrix for the first expert (E1) is shown in Table 10 and Table 
11. 

Table 10  
The pairwise comparison matrix in linguistics terms for the first expert (E1) 

 S O D C H I 

S E VI WI WI EI EI 

O - E WI WI WI WI 

D - - E VI AI VI 

C - - - E VI AI 

H - - - - E EI 

I - - - - - E 
 

Table 11  
The pairwise comparison matrix in TrFNs for the first expert (E1) 

 S O D C H I 

S (1,1,1,1) (6,13/2,15/2,8) (2,5/2,7/2,4) (2,5/2,7/2,4) (4,9/2,11/2,6) (2,5/2,7/2,4) 

O (1/8,2/15,2/13,1/6) (1,1,1,1) (2,5/2,7/2,4) (2,5/2,7/2,4) (2,5/2,7/2,4) (2,5/2,7/2,4) 

D (1/4,2/7,2/5,1/2) (1/4,2/7,2/5,1/2) (1,1,1,1) (6,13/2,15/2,8) (8,17/2,9,9) (6,13/2,15/2,8) 

C (1/4,2/7,2/5,1/2) (1/4,2/7,2/5,1/2) (1/8,2/15,2/13,1/6) (1,1,1,1) (6,13/2,15/2,8) (8,17/2,9,9) 

H (1/6,2/11,2/9,1/4) (1/4,2/7,2/5,1/2) (1/9,1/9,2/17,1/8) (1/8,2/15,2/13,1/6) (1,1,1,1) (4,9/2,11/2,6) 

I (1/4,2/7,2/5,1/2) (1/4,2/7,2/5,1/2) (1/8,2/15,2/13,1/6) (1/9,1/9,2/17,1/8) (1/6,2/11,2/9,1/4) (1,1,1,1) 

Remark: Consistency ratio of expert E1, CR = 0.06 

 
Step 4: Aggregate the TrFS pairwise comparison matrices 
All the TrFS pairwise comparison matrices collected from the six experts are aggregated into a 

group decision matrix using Eq. (8), and the results are shown in Table 12. 
 

 Table 12  
 The aggregate the TrFS pair-wise comparison matrix 

 S O D C H I 

S (1,1,1,1) (6,6.5,7.5,8) (2,2.5,3.5,4) (2,2.5,3.5,4) (4,5.5,6.5,8) (4,5.5,6.5,8) 
O (0.125,0.133, 

0.153,0.166) 
(1,1,1,1) (2,2.5,3.5,4) (2,2.5,3.5,4) (2,2.5,3.5,4) (2,2.5,3.5,4) 

D (0.25,0.285, 
0.4,0.5) 

(0.25,0.285, 
0.4,0.5) 

(1,1,1,1) (6,7.5,8.25,9) (8,8.5,9,9) (6,7.5,8.25,9) 

C (0.25,0.285, 
0.4,0.5) 

(0.25,0.285, 
0.4,0.5) 

(0.111,0.122, 
0.135,0.25) 

(1,1,1,1) (6,6.5,7.5,8) (6,7.5,8.25,9) 

H (0.125,0.157, 
0.4,0.5) 

(0.25,0.285, 
0.4,0.5) 

(0.111,0.122, 
0.135,0.25) 

(0.125,0.133, 
1.666,3.237) 

(1,1,1,1) (1,3.75,4.25,8) 

I (0.125,0.157, 
0.188,0.25) 

(0.25,0.285, 
0.4,0.5) 

(0.111,0.122, 
0.15,0.25) 

(0.111,0.122, 
0.125,0.135) 

(0.125,0.566, 
0.579,1) 

(1,1,1,1) 
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Step 5: Calculate the geometric mean in each row of the aggregated TrFS pairwise comparison 
matrix 

Utilizing Eq. (16), the geometric mean in each row of the aggregated TrFS pairwise comparison 
matrix (𝑟�̂�) is calculated, and the results are shown in Table 8. An example calculation of the 
geometric mean for the severity risk criterion (S), defined as 𝑟�̂�, is illustrated in Box I. 

Calculating geometric mean in each row using Eq. (16) 

𝑟�̂� = [(1 ∗ 6 ∗ 2 ∗ 2 ∗ 4 ∗ 4)
1

6, (1 ∗ 6.5 ∗ 2.5 ∗ 2.5 ∗ 5.5 ∗ 5.5)
1

6, (1 ∗ 7.5 ∗ 3.5 ∗ 3.5 ∗ 6.5 ∗ 6.5)
1

6 , 

(1 ∗ 8 ∗ 4 ∗ 4 ∗ 8 ∗ 8)
1

6 ] 
 𝑟�̂� = (2.696,3.273,3.964,4.489) 

Box I 

Step 6: Computes the TrFN subjective weighting of each criterion (𝜔𝑗
𝑠) 

Using Eq. (17), the TrFN subjective weighting of each risk criterion (𝜔𝑗
𝑠) is calculated, and the 

results are shown in Table 13. An example calculation of the subjective weighting for the severity 
risk criterion (S), defined as ω𝑆

s = (𝜔𝑆1
𝑠 , 𝜔𝑆2

𝑠 , 𝜔𝑆3
𝑠 , 𝜔𝑆4

𝑠 ), is illustrated in Box II. 

Calculating the TrFN subjective weighting of each criterion (𝜔𝑗
𝑠), using Eq. (17) 

𝜔𝑆1
𝑠 = 2.696 ∗ (2.696 + 1.122 + 1.619 + 0.794 + 0.275 + 0.191)−1 = 0.403 

𝜔𝑆2
𝑠 = 3.273 ∗ (3.273 + 1.317 + 1.842 + 0.887 + 0.368 + 0.269)−1 = 0.411 

𝜔𝑆3
𝑠 = 3.964 ∗ (3.964 + 1.687 + 1.147 + 1.050 + 0.707 + 0.519)−1 = 0.438 

𝜔𝑆4
𝑠 = 4.489 ∗ (4.489 + 1.669 + 2.081 + 0.884 + 0.524 + 0.270)−1 = 0.452 

                            ω𝑆
s = (𝜔𝑆1

𝑠 , 𝜔𝑆2
𝑠 , 𝜔𝑆3

𝑠 , 𝜔𝑆4
𝑠 ) = (0.403,0.411,0.438,0.452) 

Box II 
 
Table 13  
TrFN geometric mean (𝑟�̂�) and subjective weighting for each criterion (𝜔𝑗

𝑠) 

Risk criteria Geometric mean in each row (𝑟�̂�) 
TrFN subjective weighting for 

each criterion (𝜔𝑗
𝑠) 

S (2.696,3.273,3.964,4.489) (0.403,0.411,0.438,0.452) 

O (1.122,1.317,1.687,1.869) (0.165,0.167,0.168,0.171) 

D (1.619,1.842,2.147,2.381) (0.213,0.218,0.232,0.242) 

C (0.794,0.887,1.050,1.284) (0.104,0.111,0.118,0.119) 

H (0.275,0.368,0.524,0.707) (0.041,0.046,0.048,0.070) 

I (0.191,0.269,0.370,0.519) (0.028,0.034,0.045,0.051) 

 
Phase IV: Calculate the Objective Weights of the FMEA Risk Criteria 
The objective weighting for each FMEA risk criterion (𝜔𝑗

𝑜) is determined using the LOPCOW 

method under the trapezoidal fuzzy set approach, as described in Algorithm 2. The process for 
calculating 𝜔𝑗

𝑜 is delineated in the following steps: 

Step 1: Obtain the FM risk evaluation 
Each industrial expert is tasked with assessing the risks associated with failure modes (FMs) using 

FMEA risk criteria and employing trapezoidal fuzzy linguistic terms, as presented in Table 7 and Table 
8. Following this assessment, all linguistic terms are transformed into their respective TrFNs. 

Step 2: Construct the evaluation decision matrix for each expert 
The evaluation decision matrices with TrFNs are formulated based on input from six experts. Due 

to space limitations in the manuscript, an illustrative example of the trapezoidal fuzzy evaluation 
decision matrix for the first expert (E1) is presented in Table 14 and Table 15. 
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Table 14 
An example of evaluation decision matrix for the first expert (E1)  

S O D C H I 

FM1 Si MH M EH H H 

FM2 Ma H MH H M M 

FM3 Ma H H M ML M 

FM4 E MH MH H M H 

FM5 S H M ML H MH 

FM6 Ma MH S MH M M 

FM7 Mo MH VS L H ML 

FM8 S MH MH ML L M 

FM9 S MH H L ML M 

FM10 Ma MH M MH M MH 

 

Table 15  
An example of TrFS evaluation decision matrix for the first expert (E1) 

Failure 
mode 

Risk criteria 

S O D C H I 
FM1 (1,2,3,4) (5,6,7,8) (3,4,5,6) (8,9,9,10) (6,7,8,9) (6,7,8,9) 
FM2 (5,6,7,8) (6,7,8,9) (2,3,4,5) (6,7,8,9) (4,5,6,7) (4,5,6,7) 
FM3 (5,6,7,8) (6,7,8,9) (1,2,3,4) (4,5,6,7) (3,4,5,6) (4,5,6,7) 
FM4 (6,7,8,9) (5,6,7,8) (2,3,4,5) (6,7,8,9) (4,5,6,7) (7,8,9,10) 
FM5 (7,8,9,10) (6,7,8,9) (3,4,5,6) (3,4,5,6) (6,7,8,9) (5,6,7,8) 
FM6 (5,6,7,8) (5,6,7,8) (5,6,7,8) (5,6,7,8) (4,5,6,7) (4,5,6,7) 
FM7 (3,4,5,6) (5,6,7,8) (6,7,8,9) (2,3,4,5) (6,7,8,9) (3,4,5,6) 
FM8 (1,2,3,4) (5,6,7,8) (2,3,4,5) (3,4,5,6) (2,3,4,5) (4,5,6,7) 
FM9 (1,2,3,4) (5,6,7,8) (1,2,3,4) (2,3,4,5) (3,4,5,6) (3,4,5,6) 

FM10 (5,6,7,8) (5,6,7,8) (3,4,5,6) (5,6,7,8) (4,5,6,7) (5,6,7,8) 

 
Step 3: Compute the aggregated evaluation decision matrix 
The evaluation decision matrices obtained from the six experts are aggregated into a group 

decision matrix with TrFNs by using Eq. (8), and the resulting data are presented in Table 16. 
 

Table 16  
Aggregated evaluation decision matrix 

Failure 
mode 

Risk criteria 
S O D C H I 

FM1 (1,4.66,5.66,8) (5,7,8,10) (0,2.33,3.33,6) (6,8,9,10) (6,7.33,8.33,10) (6,7.66,8.66,10) 

FM2 (5,6,7,8) (6,7.33,8.33,10) (1,3,4,6) (5,6.33,7,33,9) (4,5.33,6.33,8) (4,5.66,6.66,8) 

FM3 (5,6,7,8) (6,7.66,8.66,10) (1,3,4,6) (3,4.66,5.66,7) (3,4.33,5.33,7) (3,5,6,8) 

FM4 (1,5.66,6.66,10) (5,7,8,10) (1,3,4,6) (6,7.33,8.33,10) (3,4.66,5.66,7) (6,7.66,8.66,10) 
FM5 (6,7.66,8.66,10) (5,6.66,7.66,9) (2,3.66,4.66,6) (3,4.33,5.55,7) (5,6.66,7.66,9) (5,6.33,7.33,9) 
FM6 (2,4.66,5.66,8) (5,6.33,7.33,9) (3,5,6,8) (4,6,7,9) (3,4.66,5.66,7) (3,4.66,5.66,7) 
FM7 (3,4,5,6) (5,6.66,7.66,9) (4,6,7,9) (2,3.66,4.66,6) (4,6,7,9) (3,4.66,5.66,7) 
FM8 (1,2.66,3.66,6) (5,6.33,7.33,9) (1,3.66,4.66,8) (2,3.33,4.66,6) (2,3.33,4.33,6) (3,56,8) 
FM9 (1,3.33,4.33,6) (4,5.66,6.66,8) (1,2.33,3.33,5) (2,3,4,5) (3,4.44,5.33,7) (3,56,8) 
FM10 (1,5.33,6.33,10) (4,5.33,6.33,8) (2,3.33,4.33,5) (3,4,5,6) (4,6,7,9) (5,6.66,7.66,9) 

 
Step 4: Calculate the normalized aggregated evaluation decision matrix 
The aggregated evaluation decision matrix is normalized with respect to the TrFNs through       Eq. 

(9) and Eq. (10), and the results are displayed in Table 17. 
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 Table 17  
 Normalized aggregated evaluation decision matrix 

FM RISK CRITRIA 
S O D C H I 

FM1 (0.647,0.750, 
0.762,1.000) 

(0.761,0.792, 
0.800,0.800) 

(0.000,0.389, 
0.476,0.667) 

(0.375,0.444, 
0.500,1.000) 

(0.333,0.455, 
0.520,0.600) 

(0.500,0.609, 
0.654,0.700) 

FM2 (0.200,0.500, 
0.667,0.727) 

(0.666,0.727, 
0.760,0.800) 

(0.250,0.500, 
0.571,0.667) 

(0.200,0.474, 
0.545,0.556) 

(0.500,0.625, 
0.684,0.750) 

(0.750,0.824, 
0.850,0.875) 

FM3 (0.200,0.524, 
0.696,0.750) 

(0.666,0.696, 
0.783,0.800) 

(0.250,0.500, 
0.571,0.667) 

(0.200,0.643, 
0.706,0.714) 

(0.666,0.769, 
0.813,0.857) 

(0.875,0.933, 
0.944,1.000) 

FM4 (0.550,0.600, 
0.762,1.000) 

(0.761,0.792, 
0.800,0.825) 

(0.250,0.500, 
0.571,0.667) 

(0.409,0.480, 
0.500,1.000) 

(0.667,0.714, 
0.765,0.857) 

(0.500,0.609, 
0.654,0.700) 

FM5 (0.166,0.423, 
0.600,0.800) 

(0.700,0.800, 
0.826,0.889) 

(0.500,0.611, 
0.667,0.766) 

(0.166,0.692, 
0.714,0.750) 

(0.400,0.500, 
0.565,0.667) 

(0.600,0.737, 
0.758,0.778) 

FM6 (0.500,0.647, 
0.750,0.842) 

(0.800,0.842, 
0.864,0.889) 

(0.750,0.833, 
0.857,0.889) 

(0.500,0.543, 
0.556,0.571) 

(0.666,0.714, 
0.765,0.857) 

(1.000,1.000, 
1.000,1.000) 

FM7 (0.333,0.733, 
0.800,1.000) 

(0.800,0.833, 
0.845,0.857) 

(1.000,1.000, 
1.000,1.000) 

(0.333,0.818, 
0.833,0.857) 

(0.500,0.556, 
0.619,0.667) 

(1.000,1.000, 
1.000,1.000) 

FM8 (0.842,1.000, 
1.000,1.000) 

(0.800,0.842, 
0.864,0.889) 

(0.250,0.611, 
0.667,0.889) 

(0.833,0.900, 
0.923,1.000) 

(1.000,1.000, 
1.000,1.000) 

(0.875,0.933, 
0.944,1.000) 

FM9 (0.846,0.941, 
0.955,1.000) 

(0.941,0.950, 
0.965,1.000) 

(0.250,0.389, 
0.476,0.556) 

(1.000,1.000, 
1.000,1.000) 

(0.666,0.769, 
0.813,0.857) 

(0.875,0.933, 
0.944,1.000) 

FM10 (0.578,0.600, 
0.733,1.000) 

(1.000,1.000, 
1.000,1.000) 

(0.500,0.556, 
0.619,0.667) 

(0.450,0.556, 
0.619,0.667) 

(0.500,0.556, 
0.619,0.667) 

(0.600,0.700, 
0.739,0.778) 

 
Step 5: Determine the percentage value (𝑃𝑗) for each criterion 

The percentage values (𝑃𝑗) for each criterion are determined with the TrFNs through Eqs.        
(19)-(21), as shown in Table 18. Example calculations of the parameter values 𝑅𝑀𝑆𝑗, 𝜎𝑗 , and 𝑃𝑗 for 

the severity risk criterion (S), defined as 𝑅𝑀𝑆𝑠 and 𝑃𝑠, are provided in Box III, Box IV, and Box V, 
respectively. 

Calculating TrFNs of  𝑅𝑀𝑆𝑠, where  𝑅𝑀𝑆𝑆 = (𝑅𝑀𝑆𝑆1, 𝑅𝑀𝑆𝑆2, 𝑅𝑀𝑆𝑆3, 𝑅𝑀𝑆𝑆4), using Eq. (20) 
 
𝑅𝑀𝑆𝑆1

= √
(0.647)2 + (0.020)2 + (0.020) + (0.550)2 + (0.166)2 + (0.500)2 + (0.333)2 + (0.842)2 + (0.846)2 + (0.578)2

10
 

       
𝑅𝑀𝑆𝑆2

= √
(0.750)2 + (0.500)2 + (0.524)2 + (0.600)2 + (0.423)2 + (0.647)2 + (0.733)2 + (1.000)2 + (0.941)2 + (0.600)2

10
 

      

𝑅𝑀𝑆𝑆3

= √
(0.762)2 + (0.667)2 + (0.696)2 + (0.762)2 + (0.600)2 + (0.762)2 + (0.800)2 + (1.000)2 + (1.000)2 + (1.000)2

10
 

 

𝑅𝑀𝑆𝑆4

= √
(1.000)2 + (0.727)2 + (0.750)2 + (1.000)2 + (0.800)2 + (0.842)2 + (1.000)2 + (1.000)2 + (1.000)2 + (1.000)2

10
 

 

  𝑅𝑀𝑆𝑆 = (𝑅𝑀𝑆𝑆1, 𝑅𝑀𝑆𝑆2, 𝑅𝑀𝑆𝑆3, 𝑅𝑀𝑆𝑆4) = (0.543,0.694, 0.815, 0.918) 

Box III 
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Calculating TrFNs of  𝜎𝑆 = (𝜎𝑆1,𝜎𝑆2,𝜎𝑆3,𝜎𝑆4), using Eq. (20) 

 
For 𝜎𝑆1; 𝑢𝑖𝑗

𝑆1 = (0.647, 0.200,0.200, 0.550,0.166,0.500, 0.333,0.842,0.846,0.578) 

1

𝑚
∑𝑢𝑡𝑗

𝑚

𝑡=1

=
0.647 + 0.200 + 0.200 + 0.550 + 0.166 + 0.500 + 0.333 + 0.842 + 0.846 + 0.578

10
= 0.486 

 

𝜎𝑆1 = √
(0.647 − 0.486)2 + (0.200 − 0.486)2 + (0.200 − 0.486)2 +⋯+ (0.578 − 0.166)2

10 − 1
= 0.254 

 
For 𝜎𝑆2; 𝑢𝑖𝑗

𝑆2 = (0.750, 0.500,0.524, 0.600,0.423,0.647, 0.733,1.000,0.941,0.600) 
 

1

𝑚
∑𝑢𝑡𝑗

𝑚

𝑡=1

=
0.750 + 0.500 + 0.524 + 0.600 + 0.423 + 0.647 + 0.733 + 1.000 + 0.941 + 0.600

10
= 0.671 

 

𝜎𝑆2 = √
(0.750 − 0.671)2 + (0.500 − 0.671)2 + (0.524 − 0.671)2 +⋯+ (0.600 − 0.671)2

10 − 1
= 0.187 

 
For 𝜎𝑆3; 𝑢𝑖𝑗

𝑆3 = (0.762, 0.667,0.696, 0.762,0.600,0.750, 0.800,1.000,1.000,1.000) 
 

1

𝑚
∑𝑢𝑡𝑗

𝑚

𝑡=1

=
0.762 + 0.667 + 0.696 + 0.762 + 0.600 + 0.750 + 0.800 + 1.000 + 1.000 + 1.000

10
= 0.804 

𝜎𝑆3 = √
(0.762 − 0.804)2 + (0.667 − 0.804)2 + (0.696 − 0.804)2 +⋯+ (1.000 − 0.804)2

10 − 1
= 0.147 

 
For 𝜎𝑆4; 𝑢𝑖𝑗

𝑆4 = (1.000, 0.727,0.750, 1.000,0.800,0.824, 1.000,1.000,1.000,1.000) 
 

1

𝑚
∑𝑢𝑡𝑗

𝑚

𝑡=1

=
1.000 + 0.727 + 0.750 + 1.000 + 0.800 + 0.824 + 1.000 + 1.000 + 1.000 + 1.000

10
= 0.912 

 

𝜎𝑆4 = √
(1.000 − 0.912)2 + (0.727 − 0.912)2 + (0.750 − 0.912)2 +⋯+ (1.000 − 0.912)2

10 − 1
= 0.118 

 
Box IV 

Calculating TrFNs of  𝑃𝑆, where  𝑃𝑆 = (𝑃𝑆1, 𝑃𝑆2, 𝑃𝑆3, 𝑃𝑆4), using Eq. (19) 
 

𝑃𝑆1 = |𝑙𝑛 (
0.543

0.254
) ∗ 100| = 75.977,𝑤ℎ𝑒𝑟𝑒 𝑅𝑀𝑆𝑠1 = 0.543 , 𝜎𝑆1 = 0.254 

 

𝑃𝑆2 = |𝑙𝑛 (
0.694

0.187
) ∗ 100| = 131.136, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑀𝑆𝑆2 = 0.694 , 𝜎𝑆2 = 0.187 

 

𝑃𝑆3 = |𝑙𝑛 (
0.815

0.147
) ∗ 100| = 171.275, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑀𝑆𝑆3 = 0.815 , 𝜎𝑆3 = 0.147 

 

𝑃𝑆4 = |𝑙𝑛 (
0.918

0.118
) ∗ 100| = 205.151, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑀𝑆𝑆4 = 0.918 , 𝜎𝑆4 = 0.118 

 
Box V 
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Step 6: Calculate the objective weights of criteria (𝜔𝑗
𝑜) 

The objective weights of criteria (𝜔𝑗
𝑜) for each criterion are calculated with the TrFNs through 

Eq. (21), and the results are displayed in Table 18. An illustrative computation of the objective 
weights for the severity risk criterion (S), represented as 𝜔𝑆

𝑜, is presented in Box VI. 
 

Calculating TrFNs of  𝜔𝑆
𝑜, where  𝜔𝑆

𝑜 = (𝜔𝑆1
𝑜 , 𝜔𝑆2

𝑜 , 𝜔𝑆3
𝑜 , 𝜔𝑆4

𝑜 ), using Eq. (22) 

𝜔𝑆1
𝑜 = 

(75.977)

(75.977+164.553+15.603+70.950+114.739+117.722)
= 0.135  

𝜔𝑆2
𝑜 = 

(131.136)

(131.136+178.001+78.332+115.105+132.160+153.553)
= 0.167  

𝜔𝑆3
𝑜 = 

(171.275)

(171.275+196.678+108.073+126.417+146.914+173.867)
 = 0.186 

𝜔𝑆4
𝑜 = 

(205.151)

(205.151+218.360+140.185+129.185+169.219+188.654)
 = 0.195 

Box VI 

 Table 18  
 The percentage value (𝑃𝑗)  for each criterion 

Criteria 

𝐑𝐌𝐒𝐣 = 
√
∑ 𝐮𝐢𝐣

𝟐𝐦
𝐢=𝟏

𝐦
 

𝐏𝐣 = |𝐈𝐧 (
𝐑𝐌𝐒𝐣

𝛔𝐣
) ∗ 𝟏𝟎𝟎| Objective weights 

(𝛚𝐣
𝐨 = 

𝐏𝐣
∑ 𝐏𝐣
𝐧
𝐣=𝟏

) 

S (0.543, 0.694,0.815,0.918) (75.977,131.136,171.275,205.151) (0.135,0.167,0.186,0.195) 

O (0.542,0.547,0.647,0.691) (164.553,178.001,196.678,218.360) (0.186,0.190,0.197,0.233) 

D (0.343,0.422,0.487,0.572) (15.603,78.332,108.073,140.185) (0.120,0.159,0.175,0.188) 

C (0.558,0.629,0.647,0.670) (70.950,115.105,126.417,129.185) (0.123,0.127,0.137,0.146) 

H (0.592,0.607,0.623,0.687) (114.739,132.160,146.914,169.219) (0.159,0.160,0.168,0.205) 

I (0.632,0.715,0.775,0.873) (117.722,153.553,173.867,188.654) (0.159,0.179,0.195,0.210) 
 

Phase V: Compute Consolidated Weights of FMEA Risks Criteria  
By utilizing Eq. (27) with 𝜑 = 0.5, the consolidated weights (𝜔𝑗

𝑐) for the FMEA risk criteria within 

the TrFN framework are derived through a synergistic integration of subjective weights (𝜔𝑗
𝑠) obtained 

from the TrFN AHP, as outlined in Table 13, and objective weights (𝜔𝑗
𝑜) extracted from the TrFN 

LOPCOW, as detailed in Table 18. The corresponding outcomes are presented in Table 19. 
Subsequently, these consolidated TrFN weights are transformed into precise numerical values using 
Eq. (11), with the results summarized in both Table 19 and Figure 4. 

A comprehensive computation of the consolidated TrFN weight parameters for the severity risk 
criterion (S), designated 𝜔𝑆

𝑐, is provided in Box VIII. The conversion of 𝜔𝑆
𝑐  to a crisp number is further 

illustrated in Box VII. The weighted ranking of risk criteria, as displayed in Table 19, is as follows: S 
(0.273) > O = I (0.186) > D (0.146) > C (0.133) > H (0.096). 

 

Calculating TrFNs of  𝜔𝑆
𝑐 , where  𝜔𝑆

𝑐 = (𝜔𝑆1
𝑐
,𝜔𝑆2

𝑐
,𝜔𝑆3

𝑐
,𝜔𝑆4

𝑐 ), using Eq. (28) 

𝜔𝑆1
𝑐 = (0.5 ∗ 0.403) + (1 − 0.5) ∗ (0.135) = 0.270 

𝜔𝑆2
𝑐 = (0.5 ∗ 0.411) + (1 − 0.5) ∗ (0.167) = 0.289 

𝜔𝑆3
𝑐 = (0.5 ∗ 0.438) + (1 − 0.5) ∗ (0.186) = 0.312 

𝜔𝑆4
𝑐 = (0.5 ∗ 0.452) + (1 − 0.5) ∗ (0.195) = 0.324 

Box VII 
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Calculating crisp numbers of consolidated weights of risk criteria, employing Eq. (12)   
 
Defuzz(𝜔𝑆

𝑐)

=  
−(0.270 ∗ 0.289) + (0.312 ∗ 0.324) +

(0.324 − 0.312)2

3 −
(0.289 − 0.270)2

3
−(0.270) − (0.289) + (0.312) + (0.324)

 

 
                    Defuzz(𝜔𝑆

𝑐) =  0.273  
 

Box VIII 
 

 Table 19 
 Consolidated weights of FMEA risks criteria 

Risk 
criteria 

TrFN Subjective 
weights 

(𝛚𝐣
𝐬) 

TrFN Objective weights 
(𝛚𝐣

𝐨) 

TrFN Consolidated 
weights 

(𝛚𝐣
𝐜) 

Consolidated 
weights 

(𝐰𝐣
𝐜) in crisp 

numbers 

 
 

Rank 

S (0.403,0.411,0.438,0.452) (0.135,0.167,0.186,0.195) (0.270,0.289,0.312,0.324) 0.273 1 

O (0.165,0.167,0.168,0.171) (0.186,0.190,0.197,0.233) (0.186,0.190,0.197,0.233) 0.186 2 

D (0.213,0.218,0.232,0.242) (0.120,0.159,0.175,0.188) (0.120,0.159,0.175,0.188) 0.146 3 

C (0.104,0.111,0.118,0.119) (0.123,0.127,0.137,0.146) (0.113,0.119,0.127,0.132) 0.113 4 

H (0.041,0.046,0.048,0.070) (0.159,0.160,0.168,0.205) (0.100,0.103,0.106,0.108) 0.096 5 

I (0.028,0.034,0.045,0.051) (0.159,0.179,0.195,0.210) (0.094,0.107,0.120,0.131) 0.186 2 

Fig. 4. The combined weights of risk criteria 

Phase VI Prioritize failure modes (FMs) 
ARAS, outlined in Algorithm 3, is employed for the prioritization of reverse logistics in plastic 

recycling. This process is presented as follows: 
 
Step 1: Obtain the FM risk evaluation (see the results in Phase IV, Step 1) 
 
Step 2: Construct the evaluation decision matrix for each expert (see the results in Phase IV, Step 

2) 
 
Step 3: Compute the aggregated evaluation decision matrix (see the results in Phase IV, Step 3) 
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Step 4: Identify the optimal value of each risk criterion 
The optimal value of each criterion (OV) is determined based on its nature. Accordingly, the risk 

criteria S, O, C, H, and I are categorized as cost criteria, whereas D is categorized as a benefit criterion. 
Eq. (23) and Eq. (24) are applied to ascertain the optimal value for each criterion, and the results are 
presented in Table 20. 

 
Table 20  
The optimal value of each criterion (OV) 

 
Step 5: Calculate the normalized aggregated matrix 
The normalized aggregated matrix is calculated utilizing Eq. (25) for the benefit criterion and Eq. 

(26) for the cost criterion, with the results presented in Table 21. 
 

Table 21 
Normalized aggregated matrix 

Failure 
mode 

Risk criteria 

S O D C H I 

OV 
(0.114,0.134, 
0.135,0.147) 

(0.102,0.106, 
0.109,0.109) 

(0.664,0.133, 
0.145,0.200) 

(0.128,0.243, 
0.333,0.416) 

(0.113,0.169, 
0.207,0.289) 

(0.105,0.246, 
0.281,0.388) 

FM1 
(0.084,0.086, 
0.088,0.135) 

(0.082,0.083, 
0.084,0.088) 

(0.000,0.056, 
0.063,0.099) 

(0.046,0.051, 
0.056,0.064) 

(0.048,0.059, 
0.063,0.068) 

(0.056,0.065, 
0.068,0.074) 

FM2 
(0.027,0.061, 
0.076,0.086) 

(0.073,0.079, 
0.080,0.082) 

(0.050,0.072, 
0.076,0.099) 

(0.055,0.065, 
0.069,0.071) 

(0.072,0.081, 
0.083,0.085) 

(0.084,0.088, 
0.089,0.092) 

FM3 
(0.027,0.065, 
0.070,0.086) 

(0.073,0.075, 
0.077,0.082) 

(0.050,0.072, 
0.076,0.099) 

(0.088,0.090, 
0.091,0.092) 

(0.090,0.976, 
0.099,0.100) 

(0.092,0.099, 
0.100,0.112) 

FM4 
(0.068,0.069, 
0.073,0.135) 

(0.082,0.083, 
0.084,0.088) 

(0.050,0.072, 
0.076,0.099) 

(0.046,0.056, 
0.061,0.064) 

(0.093,0.095, 
0.097,0.099) 

(0.056,0.065, 
0.068,0.074) 

FM5 
(0.023,0.051, 
0.056,0.068) 

(0.086,0.087, 
0.088,0.09) 

(0.088,0.089, 
0.096,0.100) 

(0.091,0.092, 
0.095,0.096) 

(0.058,0.065, 
0.069,0.075) 

(0.067,0.079, 
0.081,0.082) 

FM6 
(0.068,0.084, 
0.086,0.089) 

(0.088,0.091, 
0.092,0.095) 

(0.074,0.224, 
0.121,0.150) 

(0.068,0.070, 
0.071,0.073) 

(0.090,0.092, 
0.095,0.097) 

(0.105,0.108, 
0.110,0.112) 

FM7 
(0.045,0.088, 
0.098,0.114) 

(0.086,0.087, 
0.088,0.911) 

(0.066,0.133, 
0.145,0.200) 

(0.107,0.109, 
0.113,0.137) 

(0.072,0.073, 
0.075,0.078) 

(0.102,0.105, 
0.107,110) 

FM8 
(0.114,0.130, 
0.135,0.147) 

(0.078,0.088, 
0.910,0.930) 

(0.050,0.074, 
0.086,0.089) 

(0.107,0.118, 
0.123,0.137) 

(0.112,0.113, 
0.115,0.117) 

(0.090,0.092, 
0.100,0.112) 

FM9 
(0.104,0.114, 
0.118,0.135) 

(0.091,0.102, 
0.105,0.109) 

(0.050,0.056, 
0.063,0.119) 

(0.116,0.128, 
0.135,0.138) 

(0.090,0.097, 
0.099,0.110) 

(0.092,0.099, 
0.101,0.112) 

FM10 
(0.068,0.073, 
0.077,0.135) 

(0.102,0.106, 
0.109,0.112) 

(0.080,0.083, 
0.900,0.112) 

(0.055,0.061, 
0.066,0.071) 

(0.070,0.072, 
0.075,0.078) 

(0.067,0.075, 
0.077,0.082) 

 
Step 6: Compute the weighted normalized decision matrix 
Utilizing the normalized aggregated matrix outlined in Table 17, the weighted normalized 

decision matrix is calculated using Eq. (12), and the results are illustrated in Table 22. An illustrative 
value of the weighted normalization for FM1 concerning the severity criterion (S), denoted as  𝑑𝐹𝑀1

𝑠 , 
is illustrated in Box VIII. 

 

 Risk criteria 

  S O D C H I 

Type of 
criteria 

Cost Cost Benefit Cost Cost Cost 

Optimal 
value (OV) 

(1,2.66,3.66,6) (4,5.33,6.33,8) (4,6,7,9) (2,3,4,5) (2,3.33,4.33,6) (3,4.66,5.66,7) 
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Box VIII 
 

Table 22  
Weighted normalized decision matrix 

  S O D C H I 

OV 0.001 0.023 0.062 0.018 0.016 0.000 

FM1 0.001 0.017 0.017 0.007 0.005 0.000 

FM2 -0.001 0.016 0.017 0.008 0.005 0.000 

FM3 -0.001 0.016 0.017 0.011 0.005 0.000 

FM4 0.002 0.017 0.017 0.007 0.002 0.000 

FM5 -0.001 0.018 0.013 0.012 -0.143 0.000 

FM6 0.000 0.018 -0.046 0.009 0.003 0.000 

FM7 -0.002 0.018 0.062 0.015 -0.004 0.000 

FM8 -0.200 0.018 0.027 0.015 0.018 0.000 

FM9 0.000 0.021 0.014 0.016 -0.004 0.000 

FM10 0.001 0.022 0.011 0.008 0.004 0.000 

 
Step 7: Obtain the optimality function values (𝛾𝑖) 
The optimality function values (𝛾𝑖) of ten failure modes (FMs) is obtained using Eq. (28), and the 

results are presented in Table 23. 
Step 8: Calculate the degree of utility for failure modes 
The degree of utility for each failure mode (𝐾𝑖) is calculated using Eq. (29), and the results are 

presented in Table 23. 
Step 9: Rank the failure modes (FMs) in descending order 
The ten FMs are ranked in descending order based on their degree of utility (𝐾𝑖), and the results 

are presented in Table 23. 
 

  Table 23 
  The ranking results of failure modes (FMs) 

 OV FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 

𝛄𝐢 -0.090 0.047 0.044 0.047 0.045 -0.102 -0.016 0.089 -0.121 0.048 0.046 
𝐊𝐢 1 -0.527 -0.495 -0.526 -0.501 1.141 0.181 -0.990 1.357 -0.531 -0.518 

RANK - 8 4 7 5 2 3 10 1 9 6 

 
4.3 Sensitivity Analysis  

The sensitivity of the proposed framework is systematically assessed through a comprehensive 
three-stage experimentation process. In the first stage, a comparative ranking is conducted among 
AHP-LOPCOW-ARAS, AHP-ARAS, and LOPCOW-ARAS under the TrFS, as outlined in Section 4.3.1. In 
the second stage, the combined weight of each risk criterion (𝝎𝒋

𝒄) is adjusted by altering the value of 

𝜸, as detailed in Section 4.3.2. Finally, the comparative analysis of other novel MCDM ranking 
methods is carried out as, presented in Section 4.3.3. 

Compute 𝑑𝐹𝑀1
𝑠  employing Eq. (12) 

 

=
−(0.084 ∗ 0.086) ∗ (0.270 ∗ 0.289) + (0.088 ∗ 0.135) ∗ (0.312 ∗ 0.324) +

(0.135 ∗ 0.324 − 0.088 ∗ 0.312)2

3
−
(0.086 ∗ 0.289 − 0.084 ∗ 0.270)2

3
−(0.084 ∗ 0.270) − (0.086 ∗ 0.289) + (0.088 ∗ 0.312) + (0.135 ∗ 0.324)

 

 

𝑑𝐹𝑀1
𝑠 = 0.001 
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4.3.1 Comparative Ranking among AHP-LOPCOW-ARAS, AHP-ARAS, and LOPCOW-ARAS 
In the first stage of the sensitivity analysis, a comparative evaluation of the ranking results for 

ten FMs associated with the reverse logistics of the waste plastic recycling industry is conducted. 
The rankings are generated through the proposed framework (AHP-LOPCOW-ARAS under TrFS) and 
are compared with rankings obtained by considering solely the subjective weights of criteria (AHP-
ARAS under TrFS) and solely the objective weights of criteria (LOPCOW-ARAS under TrFS). The 
comparative rankings among FMs using these three MCDM approaches are presented in Table 24 
and Figure 5. Notably, "Reverse logistics information risks" (FM8) consistently maintains its top-
ranking position across all methods, as presented in Table 24. 

To assess the correlation among the ranking results of FMs derived from three MCDM 
approaches, the Spearman correlation coefficient (𝜌) is computed as outlined in Eq. (31). The results 
reveal that the correlation coefficients between the proposed framework and the other two 
employed methods are as follows: AHP-ARAS and AHP-LOPCOW-ARAS (𝜌 = 0.879), LOPCOW-ARAS 
and AHP-LOPCOW-ARAS (ρ = 0.867) and AHP-ARAS and LOPCOW-ARAS (𝜌 = 0.903), with an average 
of ρ = 0.883, as presented in Table 25. A correlation coefficient (𝜌) ≥ 0.8 signifies a very strong 
correlation among the MCDM methods used, as highlighted in Table 26. These results reveal that 
while there are slight variations in the ranking results among all methods, these differences have a 
minimal impact on the overall outcomes. This indicates that the proposed framework demonstrates 
a high level of consistency and stability in decision-making. 

                             𝝆 = 𝟏 −
𝟔∑𝑫𝟐

𝑵(𝑵𝟐−𝟏)
                                                                                                                               (31)                                                                                                                                                 

 
Here, 𝜌 represents the Spearman correlation coefficient, 𝐷2 denotes the square of the difference 

in ranks for each data pair between the two Multi-Criteria Decision Making (MCDM) methods, and 
𝑁 is the total number of data pairs. 

 
Table 24 

The comparative rankings among FMs using three MCDM approaches 
Comparative 
MCDM 
methods 

Ki 
FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 

AHP-
LOPCOW-
ARAS 
(Proposed 
framework) 

-0.527 -0.495 -0.526 -0.501 1.141 0.181 -0.990 1.357 -0.531 -0.518 

Rank 8 4 7 5 2 3 10 1 9 6 
AHP-ARAS 0.537 0.816 0.401 0.562 0.632 0.876 0.498 4.128 0.387 0.526 
Rank 6 3 9 5 4 2 8 1 10 7 
LOPCOW-
ARAS 

0.435 0.478 -0.546 0.429 0.483 0.498 0.382 0.712 0.424 0.454 

Rank 6 4 10 7 3 2 9 1 8 5 
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Fig. 5. The comparative rankings among FMs using three MCDM approaches 
 

  Table 25 
  The Spearman's correlation coefficients among employed MCDM approaches 

  AHP-ARAS LOPCOW-ARAS AHP-LOPCOW-ARAS 

AHP-ARAS 1.000 0.903 0.879 

LOPCOW-ARAS - 1.000 0.867 

AHP-LOPCOW-ARAS - - 1.000 

 
Table 26  
Criteria of correlation strength utilizing Spearman’s correlation 
coefficient 

 
 
 
 
 
 
 
 
4.3.2 Adjusting the Value of Parameter 𝝋 in the Combined Weights  

The parameter  𝜑, a component of the combination weights in Eq. (27) and varies within the 
range of {0,0.1,0.2,0.3,… ,1.0}. Consequently, even distinct scenarios are created to evaluate and 
rank ten FMs using the proposed framework (AHP-LOPCOW-ARAS under a TrFs). The ranking results 
of the eleven scenarios are presented in Table 27 and Figure 6. As indicated in Table 27, "reverse 
logistics information risks" (FM8) and "recycle material transportation risks" (FM5) maintain the first 
and second ranks among FMs, respectively. Additionally, the correlations of the test scenarios with 
the baseline scenario (𝜌), with values of 0.685, 0.685, 0.685, 0.745, 0.745, 1.00, 0.855, 0.855, 0.758, 
0.758, and 0.875, are presented in Table 28. According to Table 26, it indicates that the strength of 

Spearman’s correlation coefficients Degree of conformity 

𝜌 < 0.2 Very weak 

0.2 ≤ 𝜌 < 0.4 Weak 

0.4 ≤ 𝜌 < 0.6 Moderate 

0.6 ≤ 𝜌 < 0.8 Strong 

𝜌 ≥ 0.8 Very strong 
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the correlations ranges from strong to very strong, suggesting that the proposed decision-making 
framework is robust and stable. 

 
 Table 27  
 Criteria of correlation strength utilizing Spearman’s correlation coefficient 

  
Φ 

RANKING 

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 
SCENARIO 1 0 8 7 5 10 2 3 9 1 6 4 
SCENARIO 2 0.1 7 8 4 6 2 5 9 1 10 3 
SCENARIO 3 0.2 8 7 5 9 2 10 3 1 4 6 
SCENARIO 4 0.3 8 7 5 9 2 10 3 1 4 6 
SCENARIO 5 0.4 8 7 5 9 2 10 3 1 4 6 
SCENARIO 6  
(BASED LINE) 

0.5 8 4 7 5 2 3 10 1 9 6 

SCENARIO 7 0.6 7 5 9 3 2 6 10 1 8 4 
SCENARIO 8 0.7 5 4 6 7 2 3 10 1 8 9 
SCENARIO 9 0.8 5 6 4 7 2 3 8 1 10 9 
SCENARIO 10 0.9 5 6 4 7 2 3 8 1 10 9 
SCENARIO 11 1 6 8 7 5 2 3 10 1 4 9 

 
 Table 28  
 The correlation of test scenarios with the baseline scenario 

 Scenario 

 1 2 3 4 5 6 7 8 9 10 11 

Based line 
(Scenario 6) 

0.685 0.685 0.079 0.079 0.079 1.000 0.855 0.855 0.758 0.758 0.673 

Correlation 
strength 
(𝜌) 

 
Strong 

 
Based 

line 

 
Very strong  

 
Strong 

 

 
Fig.6. The ranking outcomes for eleven scenarios under varying 𝝋 parameters 
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4.3.3 Comparative analysis of other novel MCDM ranking methods 
In the third phase of the sensitivity analysis, this study a comparative evaluation of FMs' ranking 

outcomes. The rankings are derived through the implementation of the proposed framework and 
are compared against rankings obtained from other established MCDM methodologies. To attain 
this objective, a collection of innovative MCDM methods under TrFS including TOPSIS, EDAS, CODAS, 
and WASPAS is utilized. The reason to select these particular methods is based on their proven 
effectiveness in addressing a variety of real-world MCDM challenges, consistently producing reliable 
and equitable results. 

Upon completion of the ranking process, as depicted in Table 29 and Figure 7, it is evident that 
"Reverse logistics information risk" (FM8) consistently holds its top-ranking position across all 
applied methods. While there are minor variations in the ranking outcomes among the different 
methods, these discrepancies have minimal influence on the overall results. Spearman's correlation 
coefficients (𝜌), outlined in Table 30, have been calculated to evaluate the deviation between the 
ranking results generated by all utilized MCDM methods. The findings reveal an average correlation 
coefficient of 0.778 across the employed MCDM methods. 

Furthermore, the correlation coefficients between ARAS (the proposed method) and the other 
employed methods are as follows: 0.867, 0.890, 0.821, 0.878, and 0.769, with an average of 0.821. 
A correlation coefficient 𝜌 of ≥ 0.8 indicates a remarkably strong correlation with the other MCDM 
methods, as elucidated in Table 26. This underscores that the proposed framework demonstrates a 
high degree of consistency and stability in decision-making, achieving a satisfactory level of 
reliability. 

Table 29  
The FMs ranking outcomes from established MCDM approaches 

Failure Mode 
(FM) 

ARAS 
(Proposed 
method) 

TOPSIS EDAS CODAS WASPAS 

FM1 8 7 6 6 7 

FM2 4 5 5 5 6 

FM3 7 9 8 8 10 

FM4 5 6 7 4 4 

FM5 2 2 3 2 3 

FM6 3 4 2 3 2 

FM7 10 8 9 10 9 

FM8 1 1 1 1 1 

FM9 9 10 10 7 5 

FM10 6 3 4 9 8 

 
Table 30  
The Spearman's correlation coefficients among employed MCDM methods 

  ARAS TOPSIS EDAS CODAS WASPAS Average 

ARAS 1.000 0.867 0.890 0.878 0.769 0.851 

TOPSIS - 1.000 0.939 0.660 0.624 - 

EDAS - - 1.000 0.721 0.660 - 

CODAS - - - 1.000 0.915 - 

WASPAS - - - - 1.000 - 

 
Average correlation coefficient among employed MCDM methods = 0.778 
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Fig.7. The comparison of FMs ranking from established MCDM approaches 

 
5. Discussions and Conclusion 
5.1 Discussions 

Drawing from the findings of this case study, the analysis is centered on evaluating the efficacy 
of the proposed approach for prioritizing failure modes (FMs) within the context of reverse logistics 
in the plastic recycling industry. This discussion focuses on the three specific failure modes deemed 
the most significant. 

The results indicate that "reverse logistics information risks" (FM8) is the highest risk failure 
mode. These risks have a substantial influence on the efficiency, transparency, and security of 
reverse logistics operations [9]. Particularly noteworthy is the risk associated with data accuracy and 
integrity. When information concerning the type, quantity, and origin of plastic waste is inaccurate 
or incomplete, operational inefficiencies and errors can occur during the sorting and processing 
stages [39]. This can result in misallocated resources, reduced recycling rates, and heightened 
contamination levels within recyclable materials. 

The second-highest risk failure mode is "Recycle material transportation risks" (FM5). Efficient 
and secure transportation is essential for maintaining the sustainability and environmental benefits 
of recycling. Recycled materials often traverse considerable distances to reach processing facilities 
or manufacturers. Risks associated with transportation, such as accidents, spills, or mishandling, 
have the potential to cause environmental harm, contaminating recyclables and increasing carbon 
emissions due to rerouting or cleanup activities [19]. Ensuring the safe and responsible 
transportation of recycled materials is imperative for preserving the environmental gains achieved 
through recycling [11]. 

Finally, the third highest risk failure mode is "Recycle material inventory risk" (FM6). These risks 
hold significant importance due to their potential to profoundly impact the efficiency and 
effectiveness of recycling operations. First, precise inventory management is pivotal for ensuring an 
uninterrupted and dependable supply of recycled materials to manufacturers and end-users. When 
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inventory is not managed effectively, the risk of material shortages or overstocking arises, both of 
which can disrupt production processes and result in financial losses [40]. For instance, a shortage 
of recycled materials can lead to production delays and missed delivery deadlines, while 
overstocking can utilize valuable warehouse space and capital that could be allocated elsewhere 
[11]. Adequate inventory management maintains a well-balanced supply chain and ensures the 
smooth operation of recycling operations. Moreover, the quality of recycled materials is intrinsically 
linked to inventory management. The quality of recycled materials can vary based on factors such as 
their source, processing methods, and storage conditions. If inventory risks are not adequately 
mitigated, there is a heightened risk of contamination, deterioration, or damage to recycled 
materials, which subsequently diminishes their usability and market value [1]. For example, 
improper storage practices may expose materials to moisture or contaminants, rendering them 
unsuitable for recycling or resale. 
 
5.2 Conclusion and future research 

Both academics and practitioners have underscored the vital role played by the recycling supply 
chain in addressing issues related to plastic packaging waste. Manufacturers involved in recycling 
plastic confront many risks intertwined with supply chain operations, requiring adept management 
and proactive strategies to minimize adverse effects on their business performance. Nevertheless, 
there is a lack of quantitative research focusing on risk factors and the corresponding proactive 
measures for risk mitigation within the recycling supply chain. In this study, a novel risk assessment 
framework designed for evaluating the challenges in managing plastic packaging waste within the 
context of reverse logistics is introduced. The framework leverages failure mode effect analysis 
(FMEA) as its foundation and is tailored to address decision-making in a fuzzy and uncertain 
environment. To address the inherent imprecision and uncertainty associated with human decision-
making, a trapezoidal fuzzy set (TrFS) is adopted throughout all stages of the decision-making 
process. To illustrate the applicability of the proposed framework, the plastic packaging recycling 
industry in Thailand is employed as a case study. Through an extensive literature review and expert 
validation, ten failure modes related to the reverse logistics of plastic packaging waste are identified. 

Additionally, by engaging in consultations with industry experts, a set of six FMEA risk criteria is 
constructed, encompassing severity (S), occurrence (O), detection (D), cost of failure (C), complexity 
of failure resolution (H), and impact on business (I). Both subjective and objective weighting for these 
FMEA risk criteria are utilized using the AHP and LOPCOW methods, respectively, under the TrFS 
approach. The resulting combined weightings, integrating both subjective and objective 
assessments, illuminate the relative significance of the FMEA risk criteria. Subsequently, the ARAS 
under the TrFS is employed to rank all eleven identified failure modes. This analysis revealed that 
the three most significant risk factors are "reverse logistics information risk" (FM8), "recycle material 
transportation risk" (FM5), and "recycle material inventory risk" (FM6). To ensure the robustness 
and reliability of our proposed framework, a sensitivity analysis is performed by varying the 
proportion of subjective and objective weightings. The results of these analyses affirm the 
dependability and stability of the proposed framework when applied to risk assessment within the 
context of the reverse logistics of the plastic recycling industry. Moving forward, we recommend 
further research in several directions. First, applying our framework to assess reverse logistics risks 
in other contexts, such as solid waste, electronic waste, and health care waste, would be valuable. 
Additionally, conducting comparative studies between the Intuitionistic Fuzzy Set approach and 
other fuzzy set approaches, such as neutrosophic, hesitant, Pythagorean, and q-rung orthopairs, 
could shed light on the most suitable method for addressing imprecise and uncertain information in 
specific contexts. 
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Nomenclature list 
AHP Analytic hierarchy process 
ARAS Additive Ratio Analysis 
CR Consistency ratio 
FMs Failure modes 
FMEA Failure Mode Effect Analysis 
FST Fuzzy set theory 
GHG Greenhouse gases 
LOPCOW Logarithmic Percentage Change-driven Objective Weighting 
MCDM Multi-criteria decision-making 
RL Reverse logistics 
RPN Risk priority number 
Trapezoidal fuzzy numbers TrFNs 
Trapezoidal fuzzy set TrFS 

 
Author Contributions  

Conceptualization, D.S.; methodology, D.S. validation, D.S.; formal analysis, D.S.; investigation, D.S.; 

resources D.S. and J.K.; writing—original draft preparation, D.S.; writing—review and editing, D.S.; 

visualization, D.S. and J.K.; supervision, D.S.; The authors have read and agreed to the published 

version of the manuscript.  
 
Funding 
This research received no external funding. 
 
Data Availability Statement  
The data used to support the findings of this study are included within the article . 

 
Conflicts of Interest  

The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 
Acknowledgement 
This research was not funded by any grant. 

 

References 
[1]  Ren, Y., Shi, L., Bardow, A., Geyer, R., & Suh, S. (2020). Life-cycle environmental implications of China’s ban on 

post-consumer plastics import. Resources, Conservation and Recycling, 156, 104699. 
https://doi.org/10.1016/j.resconrec.2020.104699   

[2]  Matthews, C., Moran, F., & Jaiswal, A. K. (2021). A review on European Union’s strategy for plastics in a circular 
economy and its impact on food safety. Journal of cleaner production, 283, 125263. 
https://doi.org/10.1016/j.jclepro.2020.125263  

[3]  Ghayebzadeh, M., Taghipour, H., & Aslani, H. (2020). Estimation of plastic waste inputs from land into the Persian 
Gulf and the Gulf of Oman: An environmental disaster, scientific and social concerns. Science of the Total 
Environment, 733, 138942. https://doi.org/10.1016/j.scitotenv.2020.138942  

[4]  Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H. S., Lokuge, W., Aravinithan, T., & Schubel, P. 
(2021). Recycling of landfill wastes (tyres, plastics and glass) in construction–A review on global waste generation, 
performance, application and future opportunities. Resources, Conservation and Recycling, 173, 105745. 
https://doi.org/10.1016/j.resconrec.2021.105745  

https://doi.org/10.1016/j.resconrec.2020.104699
https://doi.org/10.1016/j.jclepro.2020.125263
https://doi.org/10.1016/j.scitotenv.2020.138942
https://doi.org/10.1016/j.resconrec.2021.105745


Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 42-81 

 

77 
 

[5]  Commeh, M., Dodoo-Arhin, D., Acquaye, E., Baah, I. N., Amoatey, N. K., Ephraim, J. H., Obada, D. O., Minh, D. P., 
& Nzihou, A. (2020). Plastic fuel conversion and characterisation: a waste valorization potential for Ghana. MRS 
Advances, 5, 1349-1356. https://doi.org/10.1557/adv.2020.127     

[6]  Ghosh, S. K. (2020). Introduction to circular economy and summary analysis of chapters. Circular economy: Global 
perspective, 1-23. https://doi.org/10.1007/978-981-15-1052-6_1  

[7]  Lange, J. P. (2021). Managing Plastic Waste-Sorting, Recycling, Disposal, and Product Redesign. ACS Sustainable 
Chemistry and Engineering, 9(47), 15722–15738. https://doi.org/10.1021/acssuschemeng.1c05013  

[8]  Debrah, J. K., Vidal, D. G., & Dinis, M. A. P. (2021). Innovative use of plastic for a clean and sustainable 
environmental management: Learning cases from Ghana, Africa. Urban Science, 5(1), 
12.  https://doi.org/10.3390/urbansci5010012  

[9]  Santos, R. B., de Oliveira, U. R., & Rocha, H. M. (2018). Failure mapping for occupational safety management in the 
film and television industry. International Journal of Production Economics, 203, 1-12. 
https://doi.org/10.1016/j.ijpe.2018.05.024  

[10]  Swanson, D., Goel, L., Francisco, K., & Stock, J. (2018). An analysis of supply chain management research by topic. 
Supply Chain Management: An International Journal, 12(3), 100-116. https://doi.org/10.1108/SCM-05-2017-0166   

[11]  Guarnieri, P., e Silva, L. C., & Levino, N. A. (2016). Analysis of electronic waste reverse logistics decisions using 
Strategic Options Development Analysis methodology: A Brazilian case. Journal of cleaner production, 133, 1105-
1117. https://doi.org/10.1016/j.jclepro.2016.06.025  

[12]  De Marchi, E., Pigliafreddo, S., Banterle, A., Parolini, M., & Cavaliere, A. (2020). Plastic packaging goes sustainable: 
An analysis of consumer preferences for plastic water bottles. Environmental Science & Policy, 114, 305-311. 
https://doi.org/10.1016/j.envsci.2020.08.014  

[13]  Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 
3(7), e1700782. https://doi.org/10.1126/sciadv.1700782  

[14]  Wang, Y., Gu, Y., Wu, Y., Zhou, G., Wang, H., Han, H., & Chang, T. (2020). Performance simulation and policy 
optimization of waste polyethylene terephthalate bottle recycling system in China. Resources, Conservation and 
Recycling, 162, 105014. https://doi.org/10.1016/j.resconrec.2020.105014  

[15]  Lendvai, L., Ronkay, F., Wang, G., Zhang, S., Guo, S., Ahlawat, V., & Singh, T. (2022). Development and 
characterization of composites produced from recycled polyethylene terephthalate and waste marble dust. 
Polymer Composites, 43(6), 3951-3959.  https://doi.org/10.1002/pc.26669    

[16]  Zhang, J. H., Yang, B., & Chen, M. (2017). Challenges of the development for automotive parts remanufacturing in 
China. Journal of Cleaner Production, 140, 1087-1094. https://doi.org/10.1016/j.jclepro.2016.10.061  

[17] Tibben‐Lembke, R. S., & Rogers, D. S. (2002). Differences between forward and reverse logistics in a retail 
environment. Supply Chain Management: An International Journal, 7(5), 271-282. 
https://doi.org/10.1108/13598540210447719  

[18] Srivastava, S. K. (2008). Network design for reverse logistics. Omega, 36(4), 535-548. 
https://doi.org/10.1016/j.omega.2006.11.012  

[19]  Roussat, N., Méhu, J., Abdelghafour, M., & Brula, P. (2008). Leaching behaviour of hazardous demolition waste. 
Waste Management, 28(11), 2032-2040. https://doi.org/10.1016/j.wasman.2007.10.019  

[20]  Zhao, X., Hwang, B. G., & Gao, Y. (2016). A fuzzy synthetic evaluation approach for risk assessment: a case of 
Singapore's green projects. Journal of Cleaner Production, 115, 203-213. 
https://doi.org/10.1016/j.jclepro.2015.11.042  

[21]  Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 
103(2), 451–488. https://doi.org/10.1016/j.ijpe.2005.12.006  

[22]  Noguchi, T., Park, W. J., & Kitagaki, R. (2015). Risk evaluation for recycled aggregate according to deleterious 
impurity content considering deconstruction scenarios and production methods. Resources, conservation and 
recycling, 104, 405-416. https://doi.org/10.1016/j.resconrec.2015.08.002  

[23]  Rajesh, R., & Ravi, V. (2015). Supplier selection in resilient supply chains: a grey relational analysis approach. 
Journal of cleaner production, 86, 343-359. https://doi.org/10.1016/j.jclepro.2014.08.054  

[24]  Lintukangas, K., Kähkönen, A. K., & Ritala, P. (2016). Supply risks as drivers of green supply management adoption. 
Journal of Cleaner Production, 112, 1901-1909. https://doi.org/10.1016/j.jclepro.2014.10.089  

[25]  Oke, A., & Gopalakrishnan, M. (2009). Managing disruptions in supply chains: A case study of a retail supply chain. 
International journal of production economics, 118(1), 168-174. https://doi.org/10.1016/j.ijpe.2008.08.045  

[26]  Hsu, C. W., & Hu, A. H. (2009). Applying hazardous substance management to supplier selection using analytic 
network process. Journal of cleaner production, 17(2), 255-264. https://doi.org/10.1016/j.jclepro.2008.05.004    

https://doi.org/10.1557/adv.2020.127
https://doi.org/10.1007/978-981-15-1052-6_1
https://doi.org/10.1021/acssuschemeng.1c05013
https://doi.org/10.3390/urbansci5010012
https://doi.org/10.1016/j.ijpe.2018.05.024
https://doi.org/10.1108/SCM-05-2017-0166
https://doi.org/10.1016/j.jclepro.2016.06.025
https://doi.org/10.1016/j.envsci.2020.08.014
https://doi.org/10.1126/sciadv.1700782
https://doi.org/10.1016/j.resconrec.2020.105014
https://doi.org/10.1002/pc.26669
https://doi.org/10.1016/j.jclepro.2016.10.061
https://doi.org/10.1108/13598540210447719
https://doi.org/10.1016/j.omega.2006.11.012
https://doi.org/10.1016/j.wasman.2007.10.019
https://doi.org/10.1016/j.jclepro.2015.11.042
https://doi.org/10.1016/j.ijpe.2005.12.006
https://doi.org/10.1016/j.resconrec.2015.08.002
https://doi.org/10.1016/j.jclepro.2014.08.054
https://doi.org/10.1016/j.jclepro.2014.10.089
https://doi.org/10.1016/j.ijpe.2008.08.045
https://doi.org/10.1016/j.jclepro.2008.05.004


Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 42-81 

 

78 
 

[27]  Rameezdeen, R., Chileshe, N., Hosseini, M. R., & Lehmann, S. (2016). A qualitative examination of major barriers 
in implementation of reverse logistics within the South Australian construction sector. International Journal of 
Construction Management, 16(3), 185-196. https://doi.org/10.1080/15623599.2015.1110275     

[28]  Cucchiella, F., & Gastaldi, M. (2006). Risk management in supply chain: a real option approach. Journal of 
Manufacturing Technology Management, 17(6), 700-720. https://doi.org/10.1108/17410380610678756  

[29]  Tennakoon, G. A., Rameezdeen, R., & Chileshe, N. (2022). Diverting demolition waste toward secondary markets 
through integrated reverse logistics supply chains: A systematic literature review. Waste Management & Research, 
40(3), 274-293. https://doi.org/10.1177/0734242X211021478  

[30]  Ruairuen, W., Chanhun, K., Chainate, W., Ruangpanupan, N., Thipbanpot, P., & Khammanee, N. (2022). 
Microplastic contamination in blood cockles and mussels in Bandon Bay, Suratthani Province, Thailand. Trends in 
Sciences, 19(7), 3073-3073. https://doi.org/10.48048/tis.2022.3073  

[31]  Leslie, H. A., Van Velzen, M. J., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). 
Discovery and quantification of plastic particle pollution in human blood. Environment international, 163, 107199. 
Environment International, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199  

[32]  Qu, S., Guo, Y., Ma, Z., Chen, W. Q., Liu, J., Liu, G., Wang, Y.,& Xu, M. (2019). Implications of China’s foreign waste 
ban on the global circular economy. Resources, Conservation and Recycling, 144, 252-255. 
https://doi.org/10.1016/j.resconrec.2019.01.004    

[33]  Yu, Q., & Li, H. (2020). Moderate separation of household kitchen waste towards global optimization of municipal 
solid waste management. Journal of cleaner production, 277, 123330. 
https://doi.org/10.1016/j.jclepro.2020.123330    

[34]  Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Ishigaki, T., & Gheewala, S. H. (2023). Life cycle greenhouse gas 
emissions of emerging municipal solid waste management options: a case study in Thailand. Journal of Material 
Cycles and Waste Management, 25(2), 662-673. https://doi.org/10.1007/s10163-022-01584-6   

[35]  Sudarto, S., Takahashi, K., Morikawa, K., & Nagasawa, K. (2016). The impact of capacity planning on product 
lifecycle for performance on sustainability dimensions in Reverse Logistics Social Responsibility. Journal of Cleaner 
Production, 133, 28-42. https://doi.org/10.1016/j.jclepro.2016.05.095    

[36]    De Oliveira, U. R., Marins, F. A. S., Rocha, H. M., & Salomon, V. A. P. (2017). The ISO 31000 standard in supply chain 
risk management. Journal of Cleaner Production, 151, 616-633. https://doi.org/10.1016/j.jclepro.2017.03.054     

[37]   Khan, M. A., Khan, R., Al-Zghoul, T. M., Khan, A., Hussain, A., Baarimah, A. O., & Arshad, M. A. (2024). Optimizing 
municipal solid waste management in urban Peshawar: A linear mathematical modeling and GIS approach for 
efficiency and sustainability. Case Studies in Chemical and Environmental Engineering, 9, 100704. 
https://doi.org/10.1016/j.cscee.2024.100704     

[38]    Bing, X., Bloemhof, J. M., Ramos, T. R. P., Barbosa-Povoa, A. P., Wong, C. Y., & van der Vorst, J. G. (2016). Research 
challenges in municipal solid waste logistics management. Waste management, 48, 584-592. 
https://doi.org/10.1016/j.wasman.2015.11.025    

[39]  Can Saglam, Y., Yildiz Çankaya, S., & Sezen, B. (2021). Proactive risk mitigation strategies and supply chain risk 
management performance: an empirical analysis for manufacturing firms in Turkey. Journal of Manufacturing 
Technology Management, 32(6), 1224-1244. https://doi.org/10.1108/JMTM-08-2019-0299    

[40] Santos, R. B., & de Oliveira, U. R. (2019). Analysis of occupational risk management tools for the film and television 
industry. International Journal of Industrial Ergonomics, 72, 199-211. https://doi.org/10.1016/j.ergon.2019.05.002    

[41]  Chang, K. H., Chang, Y. C., & Lai, P. T. (2014). Applying the concept of exponential approach to enhance the 
assessment capability of FMEA. Journal of Intelligent Manufacturing, 25(6), 1413-1427. 
https://doi.org/10.1007/s10845-013-0747-9   

[42]  Kim, K. O., & Zuo, M. J. (2018). General model for the risk priority number in failure mode and effects analysis. 
Reliability Engineering & System Safety, 169, 321-329. https://doi.org/10.1016/j.ress.2017.09.010    

[43]  Liu, H. C., Wang, L. E., You, X. Y., & Wu, S. M. (2019). Failure mode and effect analysis with extended grey relational 
analysis method in cloud setting. Total Quality Management & Business Excellence, 30(7-8), 745-767. 
https://doi.org/10.1080/14783363.2017.1337506   

[44]  Chi, C. F., Sigmund, D., & Astardi, M. O. (2020). Classification scheme for root cause and failure modes and effects 
analysis (FMEA) of passenger vehicle recalls. Reliability Engineering & System Safety, 200, 106929. 
https://doi.org/10.1016/j.ress.2020.106929  

[45]  Lo, H. W., Liou, J. J., Huang, C. N., & Chuang, Y. C. (2019). A novel failure mode and effect analysis model for 
machine tool risk analysis. Reliability Engineering & System Safety, 183, 173-183. 
https://doi.org/10.1016/j.ress.2018.11.018    

[46]  Lo, H. W., & Liou, J. J. (2018). A novel multiple-criteria decision-making-based FMEA model for risk assessment. 
Applied soft computing, 73, 684-696. https://doi.org/10.1016/j.asoc.2018.09.020      

https://doi.org/10.1080/15623599.2015.1110275
https://doi.org/10.1108/17410380610678756
https://doi.org/10.1177/0734242X211021478
https://doi.org/10.48048/tis.2022.3073
https://doi.org/10.1016/j.envint.2022.107199
https://doi.org/10.1016/j.resconrec.2019.01.004
https://doi.org/10.1016/j.jclepro.2020.123330
https://doi.org/10.1007/s10163-022-01584-6
https://doi.org/10.1016/j.jclepro.2016.05.095
https://doi.org/10.1016/j.jclepro.2017.03.054
https://doi.org/10.1016/j.cscee.2024.100704
https://doi.org/10.1016/j.wasman.2015.11.025
https://doi.org/10.1108/JMTM-08-2019-0299
https://doi.org/10.1016/j.ergon.2019.05.002
https://doi.org/10.1007/s10845-013-0747-9
https://doi.org/10.1016/j.ress.2017.09.010
https://doi.org/10.1080/14783363.2017.1337506
https://doi.org/10.1016/j.ress.2020.106929
https://doi.org/10.1016/j.ress.2018.11.018
https://doi.org/10.1016/j.asoc.2018.09.020


Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 42-81 

 

79 
 

[47]  Ouyang, L., Zheng, W., Zhu, Y., & Zhou, X. (2020). An interval probability‐based FMEA model for risk assessment: 
A real‐world case. Quality and Reliability Engineering International, 36(1), 125-143. 
https://doi.org/10.1002/qre.2563     

[48]  Kumari, S., Ahmad, K., Khan, Z. A., & Ahmad, S. (2023). Failure mode and effects analysis of common effluent 
treatment plants of humid sub-tropical regions using fuzzy based MCDM methods. Engineering Failure Analysis, 
145, 107010. https://doi.org/10.1016/j.engfailanal.2022.107010      

[49]  Reda, H., & Dvivedi, A. (2022). Decision-making on the selection of lean tools using fuzzy QFD and FMEA approach 
in the manufacturing industry. Expert Systems with Applications, 192, 116416 
https://doi.org/10.1016/j.eswa.2021.116416    

[50]  Aydin, N., Seker, S., & Şen, C. (2022). A new risk assessment framework for safety in oil and gas industry: 
Application of FMEA and BWM based picture fuzzy MABAC. Journal of Petroleum Science and Engineering, 219, 
111059. https://doi.org/10.1016/j.petrol.2022.111059    

[51]  Boral, S., & Chakraborty, S. (2021). Failure analysis of CNC machines due to human errors: An integrated IT2F-
MCDM-based FMEA approach. Engineering Failure Analysis, 130, 105768 
https://doi.org/10.1016/j.engfailanal.2021.105768    

[52]  Karatop, B., Taşkan, B., Adar, E., & Kubat, C. (2021). Decision analysis related to the renewable energy investments 
in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach. Computers & Industrial Engineering, 151, 106958 
https://doi.org/10.1016/j.cie.2020.106958    

[53]  Khalilzadeh, M., Ghasemi, P., Afrasiabi, A., & Shakeri, H. (2021). Hybrid fuzzy MCDM and FMEA integrating with 
linear programming approach for the health and safety executive risks: a case study. Journal of modelling in 
management, 16(4), 1025-1053. https://doi.org/10.1108/JM2-12-2019-0285   

[54]  Goksu, S., & Arslan, O. (2023). A quantitative dynamic risk assessment for ship operation using the fuzzy FMEA: 
The case of ship berthing/unberthing operation. Ocean Engineering, 287, 115548. 
https://doi.org/10.1016/j.oceaneng.2023.115548     

[55]  Ceylan, B. O. (2023). Shipboard compressor system risk analysis by using rule-based fuzzy FMEA for preventing 
major marine accidents. Ocean Engineering, 272, 113888. https://doi.org/10.1016/j.oceaneng.2023.113888    

[56]  ul Hassan, F., Nguyen, T., Le, T., & Le, C. (2023). Automated prioritization of construction project requirements 
using machine learning and fuzzy Failure Mode and Effects Analysis (FMEA). Automation in Construction, 154, 
105013. https://doi.org/10.1016/j.autcon.2023.105013    

[57]  Behnia, F., Ahmadabadi, H. Z., Schuelke-Leech, B. A., & Mirhassani, M. (2023). Developing a fuzzy optimized model 
for selecting a maintenance strategy in the paper industry: An integrated FGP-ANP-FMEA approach. Expert 
Systems with Applications, 232, 120899.  https://doi.org/10.1016/j.eswa.2023.120899    

[58]  Tian, Y., Song, S., Zhou, D., Pang, S., & Wei, C. (2023). Canonical triangular interval type-2 fuzzy set linguistic 
distribution assessment TODIM approach: A case study of FMEA for electric vehicles DC charging piles. Expert 
Systems with Applications, 223,  119826. https://doi.org/10.1016/j.eswa.2023.119826    

[59]  Ribas, J. R., Severo, J. C. R., Guimaraes, L. F., & Perpetuo, K. P. C. (2021). A fuzzy FMEA assessment of hydroelectric 
earth dam failure modes: A case study in Central Brazil. Energy Reports, 7, 4412-4424. 
https://doi.org/10.1016/j.egyr.2021.07.01    

[60]  Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. 
Journal of Sustainable Mining, 18(4), 257-268. https://doi.org/10.1016/j.jsm.2019.08.002     

[61]  Safari, H., Faraji, Z., & Majidian, S. (2016). Identifying and evaluating enterprise architecture risks using FMEA and 
fuzzy VIKOR. Journal of Intelligent Manufacturing, 27, 475-486. https://doi.org/10.1007/s10845-014-0880-0    

[62]  Mohsen, O., & Fereshteh, N. (2017). An extended VIKOR method based on entropy measure for the failure modes 
risk assessment–A case study of the geothermal power plant (GPP). Safety science, 92, 160-172. 
https://doi.org/10.1016/j.ssci.2016.10.006    

[63]  Wang, W., Liu, X., Chen, X., & Qin, Y. (2019). Risk assessment based on hybrid FMEA framework by considering 
decision maker’s psychological behavior character. Computers & Industrial Engineering, 136, 516-527. 
https://doi.org/10.1016/j.cie.2019.07.051    

[64]  Shemshadi, A., Shirazi, H., Toreihi, M., & Tarokh, M. J. (2011). A fuzzy VIKOR method for supplier selection based 
on entropy measure for objective weighting. Expert systems with applications, 38(10), 12160-12167. 
https://doi.org/10.1016/j.eswa.2011.03.027  

[65]  Samia, D., & Fares, I. (2024). Optimization the reliability of emergency safety barriers based on the subjective safety 
analysis and evidential reasoning theory. Case study. International Journal of Quality & Reliability Management, 
41(1), 1-41. https://doi.org/10.1108/IJQRM-11-2022-0336            

https://doi.org/10.1002/qre.2563
https://doi.org/10.1016/j.engfailanal.2022.107010
https://doi.org/10.1016/j.eswa.2021.116416
https://doi.org/10.1016/j.petrol.2022.111059
https://doi.org/10.1016/j.engfailanal.2021.105768
https://doi.org/10.1016/j.cie.2020.106958
https://doi.org/10.1108/JM2-12-2019-0285
https://doi.org/10.1016/j.oceaneng.2023.115548
https://doi.org/10.1016/j.oceaneng.2023.113888
https://doi.org/10.1016/j.autcon.2023.105013
https://doi.org/10.1016/j.eswa.2023.120899
https://doi.org/10.1016/j.eswa.2023.119826
https://doi.org/10.1016/j.egyr.2021.07.01
https://doi.org/10.1016/j.jsm.2019.08.002
https://doi.org/10.1007/s10845-014-0880-0
https://doi.org/10.1016/j.ssci.2016.10.006
https://doi.org/10.1016/j.cie.2019.07.051
https://doi.org/10.1016/j.eswa.2011.03.027
https://doi.org/10.1108/IJQRM-11-2022-0336


Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 42-81 

 

80 
 

[66]  Wang, M., & Niu, D. (2019). Research on project post-evaluation of wind power based on improved ANP and fuzzy 
comprehensive evaluation model of trapezoid subordinate function improved by interval number. Renewable 
energy, 132, 255-265. https://doi.org/10.1016/j.renene.2018.08.009    

[67]  Bihari, R., Jeevaraj, S., & Kumar, A. (2023). Geometric approach for ranking generalized trapezoidal fuzzy numbers 
and its application in selecting security guard service company. Expert Systems with Applications, 234, 121052. 
https://doi.org/10.1016/j.eswa.2023.121052    

[68]  Zhang, X., Fu, A., Zhan, C., Pham, D. T., Zhao, Q., Qiang, T., Aljuaid,  M., & Fu, C. (2024). Selective disassembly 
sequence planning under uncertainty using trapezoidal fuzzy numbers: A novel hybrid metaheuristic algorithm. 
Engineering Applications of Artificial Intelligence, 128,  107459.  https://doi.org/10.1016/j.engappai.2023.107459    

[69]  Chen, Z. H., Wu, D. F., & Luo, W. (2023). A hybrid emergency decision-making technique based on trapezoidal fuzzy 
best-worst method and zero-sum game. Expert Systems with Applications, 234, 120990. 
https://doi.org/10.1016/j.eswa.2023.120990   

[70]  Majumder, P. (2023). An integrated trapezoidal fuzzy FUCOM with single-valued neutrosophic fuzzy MARCOS and 
GMDH method to determine the alternatives weight and its applications in efficiency analysis of water treatment 
plant. Expert Systems with Applications, 225, 120087. https://doi.org/10.1016/j.eswa.2023.120087    

[71]  Zhao, M., Li, J., Zhang, Y., Han, Y., & Wei, J. (2023). Water cycle health assessment based on combined weight and 
hook trapezoid fuzzy TOPSIS model: A case study of nine provinces in the Yellow River basin, China. Ecological 
Indicators, 147,  109977. https://doi.org/10.1016/j.ecolind.2023.109977    

[72]  Selvaraj, G., & Jeon, J. (2021). Assessment of national innovation capabilities of OECD countries using trapezoidal 
interval type-2 fuzzy ELECTRE III method. Data Technologies and Applications, 55(3), 400-429. 
https://doi.org/10.1108/DTA-07-2020-0154   

[73]  Sadeghi, M., Mahmoudi, A., & Deng, X. (2023). Blockchain technology in construction organizations: risk 
assessment using trapezoidal fuzzy ordinal priority approach. Engineering, construction and architectural 
management, 30(7), 2767-2793. https://doi.org/10.1108/ECAM-01-2022-0014   

[74]  Jin, F., Zhu, Y., Zhang, Y., Guo, S., Liu, J., & Zhou, L. (2023). Interval type-2 trapezoidal fuzzy multi-attribute decision-
making method and its application to the corporate investment selection. Journal of Intelligent & Fuzzy Systems, 
45(2),2319-2330. https://doi.org/10.3233/JIFS-230310    

[75]  Lyu, H. M., Sun, W. J., Shen, S. L., & Zhou, A. N. (2020). Risk assessment using a new consulting process in fuzzy 
AHP. Journal of Construction Engineering and Management, 146(3), 04019112. 
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001757     

[76]  Bakır, M., & Atalık, Ö. (2021). Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of e-service 
quality in the airline industry. Decision Making: Applications in Management and Engineering, 4(1), 127-152. 
https://doi.org/10.31181/dmame2104127b    

[77] Ecer, F., & Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment 
methodology: An application in developing country banking sector. Omega, 112, 102690 
https://doi.org/10.1016/j.omega.2022.102690    

[78]  Niu, W., Rong, Y., Yu, L., & Huang, L. (2022). A Novel Hybrid Group Decision Making Approach Based on EDAS and 
Regret Theory under a Fermatean Cubic Fuzzy Environment. Mathematics, 10(17), 3116. 
https://doi.org/10.3390/math10173116   

[79]  Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐
making. Technological and economic development of economy, 16(2), 159-172. 
https://doi.org/10.3846/tede.2010.10    

[80]  Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multi-
criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580-597. 
https://doi.org/10.1016/j.renene.2019.06.157      

[81]  Zheng, G., Zhu, N., Tian, Z., Chen, Y., & Sun, B. (2012). Application of a trapezoidal fuzzy AHP method for work 
safety evaluation and early warning rating of hot and humid environments. Safety science, 50(2), 228-239. 
https://doi.org/10.1016/j.ssci.2011.08.042    

[82]  Lyu, H. M., Shen, S. L., Zhou, A., & Yang, J. (2020). Risk assessment of mega-city infrastructures related to land 
subsidence using improved trapezoidal FAHP. Science of the Total Environment, 717, 135310. 
https://doi.org/10.1016/j.scitotenv.2019.135310    

[83] Garg, H., Majumder, P., & Nath, M. (2022). A hybrid trapezoidal fuzzy FUCOM-AHP approach and their application 
to identification of monkeypox risk factors. Computational and Applied Mathematics, 41(8), 379. 
https://doi.org/10.1007/s40314-022-02085-w    

https://doi.org/10.1016/j.renene.2018.08.009
https://doi.org/10.1016/j.eswa.2023.121052
https://doi.org/10.1016/j.engappai.2023.107459
https://doi.org/10.1016/j.eswa.2023.120990
https://doi.org/10.1016/j.eswa.2023.120087
https://doi.org/10.1016/j.ecolind.2023.109977
https://doi.org/10.1108/DTA-07-2020-0154
https://doi.org/10.1108/ECAM-01-2022-0014
https://doi.org/10.3233/JIFS-230310
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001757
https://doi.org/10.31181/dmame2104127b
https://doi.org/10.1016/j.omega.2022.102690
https://doi.org/10.3390/math10173116
https://doi.org/10.3846/tede.2010.10
https://doi.org/10.1016/j.renene.2019.06.157
https://doi.org/10.1016/j.ssci.2011.08.042
https://doi.org/10.1016/j.scitotenv.2019.135310
https://doi.org/10.1007/s40314-022-02085-w


Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 42-81 

 

81 
 

[84] İç, Y. T., & Yurdakul, M. (2021). Development of a new trapezoidal fuzzy AHP-TOPSIS hybrid approach for 
manufacturing firm performance measurement. Granular Computing, 6, 915-929. 
https://doi.org/10.1007/s41066-020-00238-y    

[85]  Yildiz, A., Ayyildiz, E., Taskin Gumus, A., & Ozkan, C. (2021). A framework to prioritize the public expectations from 
water treatment plants based on trapezoidal type-2 fuzzy ahp method. Environmental Management, 67(3), 439-
448. https://doi.org/10.1007/s00267-020-01367-5       

[86]  Ren, L., He, L., Yao, L., & Gong, G. (2022). A hybrid decision support model using a trapezoidal fuzzy-based multi-
attribute preference model with AHP-entropy for groundwater remediation selection. Water, Air, & Soil Pollution, 
233(11), 432. https://doi.org/10.1007/s11270-022-05893-2    

[87]  Afzal, F., Yunfei, S., Junaid, D., & Hanif, M. S. (2020). Cost-risk contingency framework for managing cost overrun 
in metropolitan projects: Using fuzzy-AHP and simulation. International Journal of Managing Projects in Business, 
13(5), 1121-1139. https://doi.org/10.1108/IJMPB-07-2019-0175  

[88]  Simic, V., Dabic-Miletic, S., Tirkolaee, E. B., Stević, Ž., Ala, A., & Amirteimoori, A. (2023). Neutrosophic LOPCOW-
ARAS model for prioritizing industry 4.0-based material handling technologies in smart and sustainable warehouse 
management systems. Applied Soft Computing, 143, 110400. https://doi.org/10.1016/j.asoc.2023.110400    

[89]  Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third-party logistics service providers for car 
manufacturing firms using a novel integrated grey LOPCOW-PSI-MACONT model. Expert Systems with 

Applications, 241, 122680. https://doi.org/10.1016/j.eswa.2023.122680    
[90]  Ecer, F., Küçükönder, H., Kaya, S. K., & Görçün, Ö. F. (2023). Sustainability performance analysis of micro-mobility 

solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation 
research part a: policy and practice, 172, 103667. https://doi.org/10.1016/j.tra.2023.103667    

[91]  Nila, B., & Roy, J. (2023). A new hybrid MCDM framework for third-party logistic provider selection under 
sustainability perspectives. Expert Systems with Applications, 234,  121009. 
https://doi.org/10.1016/j.eswa.2023.121009    

[92]  Biswas, S., Bandyopadhyay, G., & Mukhopadhyaya, J. N. (2022). A multi-criteria based analytic framework for 
exploring the impact of Covid-19 on firm performance in emerging market. Decision Analytics Journal, 5, 100143. 
https://doi.org/10.1016/j.dajour.2022.100143    

[93] Bihari, R., Jeevaraj, S., & Kumar, A. (2023). Geometric approach for ranking generalized trapezoidal fuzzy numbers 
and its application in selecting security guard service company. Expert Systems with Applications, 234, 121052. 
https://doi.org/10.1016/j.eswa.2023.121052   

[94] Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling facility 
location problems. Applied Soft Computing, 102, 107107. https://doi.org/10.1016/j.asoc.2021.107107        

[95] Büyüközkan, G., & Güler, M. (2020). Smart watch evaluation with integrated hesitant fuzzy linguistic SAW-ARAS 
technique. Measurement, 153, 107353. https://doi.org/10.1016/j.measurement.2019.107353   

[96] Dahooie, J. H., Meidute-Kavaliauskiene, I., Vanaki, A. S., Podviezko, A., & Beheshti Jazan Abadi, E. (2020). 
Development of a firm export performance measurement model using a hybrid multi-attribute decision-making 
method. Management Decision, 58(11), 2349-2385. https://doi.org/10.1108/MD-09-2019-1156   

[97] Pramanik, D., Mondal, S. C., & Haldar, A. (2020). Resilient supplier selection to mitigate uncertainty: Soft-
computing approach. Journal of Modelling in Management, 15(4), 1339-1361. https://doi.org/10.1108/JM2-01-
2019-0027        

[98] Karbassi Yazdi, A., Wanke, P. F., Hanne, T., & Bottani, E. (2020). A decision-support approach under uncertainty for 
evaluating reverse logistics capabilities of healthcare providers in Iran. Journal of Enterprise Information 
Management, 33(5), 991-1022. https://doi.org/10.1108/JEIM-09-2019-0299     

 

https://doi.org/10.1007/s41066-020-00238-y
https://doi.org/10.1007/s00267-020-01367-5
https://doi.org/10.1007/s11270-022-05893-2
https://doi.org/10.1108/IJMPB-07-2019-0175
https://doi.org/10.1016/j.asoc.2023.110400
https://doi.org/10.1016/j.eswa.2023.122680
https://doi.org/10.1016/j.tra.2023.103667
https://doi.org/10.1016/j.eswa.2023.121009
https://doi.org/10.1016/j.dajour.2022.100143
https://doi.org/10.1016/j.eswa.2023.121052
https://doi.org/10.1016/j.asoc.2021.107107
https://doi.org/10.1016/j.measurement.2019.107353
https://doi.org/10.1108/MD-09-2019-1156
https://doi.org/10.1108/JM2-01-2019-0027
https://doi.org/10.1108/JM2-01-2019-0027
https://doi.org/10.1108/JEIM-09-2019-0299

