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A novel score function based on the Poincaré metric is proposed and applied 
to a decision-making problem. Decision-making on Fuzzy Sets (FSs) has been 
considered due to the flexibility of the data, and it is applied to the decision-
making. However, decisions with FSs are sometimes nondecisive even for 
different membership degrees. Hence, Intuitionistic Fuzzy Sets (IFSs) data is 
applied to design a score function for the decision-making with the Poincaré 
metric. This function is supported by the profound information of IFSs; IFSs 
include hesitation degree together with membership and non-membership 
degree. Hence, IFS membership and non-membership degree are expressed 
as two-dimensional vectors satisfying the Poincaré metric for simplification. 
At the same time, the proposed approach addresses the hesitation 
information in the IFS data. Next, a score function is proposed, constructed 
and provided. The proposed score function has a strict monotonic property 
and addresses the preference without resorting to the accuracy function. The 
strict monotonic property guarantees the preference of all attributes. 
Additionally, the existing problem of score function design in IFSs is 
addressed: they return zero scores even with different meanings for the same 
membership and non-membership degree. The advantages of the proposed 
score function over existing ones are demonstrated through illustrative 
examples. From the calculation results, the proposed decision score function 
discriminates between all candidates. Hence, the proposed research provides 
a solid foundation for the hesitation analysis on the decision-making problem. 

 
Keywords:  
Intuitionistic fuzzy sets; Poincaré metric; 
Score function; Decision-making strategy.  

  
1. Introduction 

 Decision-making has been performed by fundamentally considering the data as fuzzy sets in 
many existing problems [1-6]. Specifically, problems in the decision-making of multiple criteria 
have been resolved using fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs) [7, 8]. Xuezhen et al. 
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performed decision-making with the help of the Choquet integral [9]. However, fuzzy data still 
seem challenging if they are considered with IFS structures. Even if it is challenging, IFSs 
effectively describe the decision circumstance through three degrees, support, descent, absence 
as the membership, non-membership, and hesitation degree, respectively; 𝜋(𝑥), 𝜇(𝑥) and 𝜈(𝑥) 
for 𝑥 over the universe of discourse. 

The score function is considered to decide the preference for specific attributes according to 
whether it is a single or multicriteria problem [1,7,8,10]. However, a lack of hesitation makes the 
decision problem rather strict due to dividing 𝜇(𝑥) and 𝜈(𝑥), even when the decision measure 
was proposed [1,7]. As a more general type of FS, Liu et al. and Wang et al. treated the data as 
IFSs [8, 10], but there was not much research illustrating the decision-making problem with IFS 
data because of unclear because of unsure definitions of 𝜋(𝑥)  and atypical 𝜇(𝑥)  and 𝜈(𝑥) 
degrees. The hesitation degree is derived from the combination of 𝜇(𝑥) and 𝜈(𝑥) as 𝜋(𝑥) in IFSs 
by Atanassov [11], and its distance measure was also proposed by Mahanta and Panda [12]. 
Previous research has summarized the distance and similarity measures of IFSs [13, 14]. These 
distance measurements mostly consider IFSs in one-dimensional space. It is believed that when 
the data are projected into a higher dimension, the differences between data with slight changes 
will be more discriminative [15]. Therefore, the scores obtained by the score function between 
𝜇(𝑥) and 𝜈(𝑥) will show more differences when projecting IFSs into higher dimensions [3]. 

 In the existing research, the absence of the 𝜈(𝑥) or 𝜋(𝑥) in the score function sometimes 
showed no effect on decision results in [1, 8]. In this regard, Ye insisted that the hesitation degree 
can positively or negatively affect the score function in research [16]. Wang et al. empirically 
proposed positive and negative influences on the score function with hesitation [10], which 
depended on the value of 𝜇(𝑥) − 𝜈(𝑥). Recently, Gao et al. proposed the score function to 
project the 𝜋(𝑥) , 𝜇(𝑥)  and 𝜈(𝑥)  degrees into a higher dimension similar to the form of the 
Gaussian kernel function [3]. Developing score functions for decision-making problems using IFSs 
shows the advantages of projecting the elements characterizing IFSs into higher dimensional 
space. However, a narrow range of scores may not be able to handle the slight changes in the 
membership and non-membership degrees well. In addition, decision-making strategies are 
applied to uncertain data in fuzzy environments, such as TOPSIS (Technique for Order Preference 
by Similarity to Ideal Solution) and TODIM (an acronym in Portuguese for Interactive and 
Multicriteria Decision-Making) [17-20]. 

By summarizing the existing research results, the following problems are addressed in this 
study: 

i. Existing studies have preference functions with only two 𝜇(𝑥), and 𝜈(𝑥) over the 
one-dimensional space [1,8,10,16] 

ii. Existing studies provide a very narrow score range that is not easily differentiated, 
e.g., [−1,1] or [𝑒−1, 𝑒] [3] 

Satisfactory decision results could be achieved if only small data are used, but this does not 
meet practical requirements. In the research, the preference result was not decisive, so an 
additional judgement function was needed: the accuracy function [7]. In this regard, we proposed 
a novel preference function based on the Poincaré metric. The Poincaré metric has shown 
advantages on uncertain data [20]. Previous score function designs for IFSs have considered the 
difference between two comparable 𝜇(𝑥)  and 𝜈(𝑥)  over one-dimensional space, and the 
decision results sometimes showed unclear results; the same preference value was even 
different 𝜇(𝑥) and 𝜈(𝑥) because of the preference measure structure. The Poincaré metric is the 
proper tool to address IFSs, which are expressed with two independent vectors: 𝜇(𝑥) and 𝜈(𝑥). 
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With respect to the preference, explicit value on ordering can be accomplished through a score 
function. For a clearer decision, a strict increase/decrease score function is necessary. The 
following procedure is the design of the score function. First, we investigate the design of the 
score function, which is designed to satisfy strict monotonic properties from the preference 
function. It includes the relation between the score function of IFSs and its strict monotonicity 
with respect to their 𝜇(𝑥) and 𝜈(𝑥). Next, it is proved by theorem; that is, the score function 
shows an exponentially increasing rate according to the characteristic of the Poincaré metric [21]. 
The obtained result is applied to the multicriteria decision-making problem, and 𝜇(𝑥) and 𝜈(𝑥) 
are considered independent variables. To obtain significant results from the proposed score 
function, Spearman’s rank correlation coefficient is applied to the scores when the ranking order 
is different from that in previous research [22]. Spearman’s rank correlation also shows 
advantages of fuzzy theory [23]. 

The existing studies are compared with the proposed score function calculation, which are 
illustrated in examples. The obtained calculation results overcome the existing problem; when 
the score is not discriminative, an additional accuracy function is needed [7]. From the 
comparisons with the existing research, the proposed score function shows it approaches from 
∞ to −∞; rather narrow and small score in previous research [1,3,8,10]. The results provide a 
higher discrimination score when they are applied to comparable IFSs. Hesitations are illustrated 
via Figure 1, which is perturbed in 𝜇(𝑥) and 𝜈(𝑥); the score function with respect to 𝜇(𝑥) − 𝜈(𝑥) 
and 𝜋(𝑥) is also illustrated in Figure 4. The proposed score function’s strict monocity is proven 
and illustrated in Figures 3-4 as well. 

This paper is organized as follows. In Section 2, the Poincaré metric and score function 
including the existing results are briefly introduced. In Section 3, considering 𝜇(𝑥) and 𝜈(𝑥) as 
the vector form, a score function for single and multicriteria structures is proposed, and its strictly 
monotonic property is provided. The score function is designed based on the Poincaré metric, as 
analysed in Section 2. The relation with 𝜋(𝑥) and the difference between 𝜇(𝑥) and 𝜈(𝑥) is also 
illustrated graphically. In Section 4, three illustrative examples are presented: multicriteria 
decision-making problems. Examples show that the proposed score function overcomes the no 
decision cases in previous research. Other examples illustrate multicriteria decision-making 
problems, which show more significant results. The results are discussed in Section 5. Finally, 
conclusions are included in Section 6. 

 
2. Preliminary  

In this section, the concept of the Poincaré metric is discussed to formulate measure 
realization. In addition, the properties of score functions and their relation to decision-making 
strategies are also illustrated with IFSs. 

 
2.1 Poincaré Metric  

The Poincaré metric and the distance in the Poincaré ball have been emphasized in machine 
learning [21, 24-27]. The Poincaré metric definition is provided in Definition 1. 
Definition 1 [26]. The Poincaré metric of the distance for a point in {𝑃 = (𝑥, 𝑦)| 𝑦 > 0} in the 

hyperbolic plane is defined as: 

𝑑𝑠2 =
𝑑𝑥2+𝑑𝑦2

𝑦2                                                                                                                                             (1) 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 2 (2024) 15-34 

18 
 

 

where 𝑑𝑥  and 𝑑𝑦  denote the difference in the distance in the 𝑥  and 𝑦  axes of the two-
dimensional space, respectively. 

By Definition 1, the distance between two arbitrary points 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2) 
over the hyperbolic plane can be defined as noted in [12]: 

𝑑(𝑃1, 𝑃2) = acosh (1 +
(𝑥2−𝑥1)2+(𝑦2−𝑦1)2

2𝑦1𝑦2
)                                                                                           (2) 

where 𝑎𝑐𝑜𝑠ℎ denotes the arc hyperbolic cosine function. 
Definition 2 [21]. The Poincaré distance between two n-dimensional points 𝑀𝑃1 =

(𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑀𝑃2 = (𝑦1, 𝑦2, … , 𝑦𝑛), whose 𝑙2 norm is less than 1, in a unit Poincaré ball 
can be derived as: 
𝑑𝑚(𝑀𝑃1, 𝑀𝑃2) = 𝑎𝑟𝑐𝑜𝑠ℎ(1 + 𝛿(𝑀𝑃1, 𝑀𝑃2))                                                                                     (3) 

where 𝛿(𝑀𝑃1, 𝑀𝑃2) is an isometric invariant and expressed as: 

𝛿(𝑎, 𝑏) =
‖𝑀𝑃1−𝑀𝑃2‖2

2(1−‖𝑀𝑃1‖2)(1−‖𝑀𝑃2‖2)
                                                                                                               (4) 

where ‖ ⋅ ‖ denotes the 𝑙2 norm. 
The Poincaré metric and distance are measures of points in a hyperbolic space, and ensure 

the value of the distance between two points is within the domain [0, ∞) [21]. There is an 
exponentially increasing rate for the Poincaré distance, according to Eq. (1) and Eq. (3). This 
means that there is a larger difference when the variables have a slight change. The conventional 
score functions of IFSs can be considered a one-dimensional distance, and their increasing rate is 
primarily constant or linear. 

 

2.2. Intuitionistic Fuzzy Sets 
With the information of intuitionistic fuzzy sets (IFSs), an IFS 𝐴 has the structure with 

𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)⟩|𝑥 ∈ 𝑋}                                                                                                                 (5) 

where 𝑋 is the universe of the discourse, 𝜇𝐴: 𝑋 → [0,1], 𝜈𝐴: 𝑋 → [0,1], with the constraint 
0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 . 𝜇𝐴(𝑥)  and 𝜈𝐴(𝑥)  denote the membership and non-membership 
degrees of 𝑥 to 𝐴, respectively. IFS research applications have been carried out in control, data 
analysis, and other human-centric problems [12, 28-32]. 

Then the hesitation degree 𝜋𝐴(𝑥) of 𝑥 to 𝐴 is defined as: 
𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥)                                                                                                                    (6) 

where 0 ≤ 𝜋𝐴(𝑥) ≤ 1, ∀𝑥 ∈ 𝑋. 

IFSs 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) are also characterized as follows. 
Definition 3 [7]. Let 𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)⟩|𝑥 ∈ 𝑋} be an IFS over 𝑋; then, there is always a 

framework of intervals for membership and non-membership degrees satisfying [𝜇𝐴(𝑥),1 −
𝜈𝐴(𝑥)] and [𝜈𝐴(𝑥),1 − 𝜇𝐴(𝑥)], respectively. 
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Fig. 1. (a) IFSs in the Cartesian Plane, (b) the intervals of IFSs in the Cartesian plane 

 
According to the hesitation degree, 1 − 𝜈𝐴(𝑥) ≥ 𝜇𝐴(𝑥) and 1 − 𝜇𝐴(𝑥) ≥ 𝜈𝐴(𝑥) are always 

satisfied. Meanwhile, due to Eq. (6), 1 − 𝜈𝐴(𝑥) and 1 − 𝜇𝐴(𝑥) can be derived as 𝜇𝐴(𝑥) + 𝜋𝐴(𝑥) 
and 𝜈𝐴(𝑥) + 𝜋𝐴(𝑥), respectively. When describing the IFSs in a Cartesian plane, 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) 
are considered to describe the IFS, and the IFS can be illustrated as the points in Figure 1 (a). 
Considering Definition 3, Figure 1 (b) displays the intervals of different IFSs. However, the 
Cartesian plane shown in Figure 1 is the metric space for different IFSs. The score function is not 
the metric between different IFSs but the metric between 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) in the same IFS. 

 

2.3. Score Functions 
For 𝐴 and 𝐵 in IFSs, existing score functions and decision-making strategies are recalled, and 

the operator '≺' indicates the preference of different IFSs. 𝐴 ≺ 𝐵 indicates that the score of 𝐴 is 
less than that of 𝐵, which means we prefer 𝐵 over 𝐴. 

The score function 𝑆𝐶(𝐴) was proposed by Chen and Tan [1], and it was expressed as 

follows: 

𝑆𝐶(𝐴) = 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥)                                                                                                                            (7) 

where 𝑆𝐶(𝐴)  exists over [−1,1] . When S (𝐴) < 𝑆(𝐵)  is satisfied, it is indicated by the 
preference 𝐴 ≺ 𝐵. 

However, Eq. (7) faces difficulty in decision-making when 𝑆(𝐴) = 𝑆(𝐵). To overcome this 
difficulty, an accuracy function 𝐻(𝐴) was proposed by [7]: 
𝐻(𝐴) = 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥)                                                                                                                             (8) 

where 𝐻(𝐴) ∈ [0,1]. 
A large 𝐻(𝐴)  implies that more information is clarified, which can then be used to 

supplement decision-making. However, it is still insufficient to consider the hesitation property 
[3]. 

A score function 𝑆𝐿(𝐴) by Liu and Wang was also proposed by the consideration of hesitation 
[8]: 
𝑆𝐿(𝐴) = 𝜇𝐴(𝑥) + 𝜇𝐴(𝑥)𝜋𝐴(𝑥).                                                                                                                (9) 
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The same relation with preference and score function is satisfied in Eq. (9). However, 
abstaining from a non-membership degree in Eq. (9) leads to conflict in zero membership degree. 

Wang et al. categorized a score function 𝑆𝑊(𝐴) by considering the cross entropy of IFSs and 
intuitionistic fuzzy numbers (IFNs) [10]: 

𝑆𝑊(𝐴) = {

𝜇𝐴(𝑥) − 𝜈𝑎(𝑥) + 𝐸(𝑥)𝜋𝐴(𝑥), 𝜇𝐴(𝑥) > 𝜈𝐴(𝑥)

𝜇𝐴(𝑥) − 𝜈𝐴(𝑥) − 𝐸(𝑥)𝜋𝐴(𝑥),   𝜇𝐴(𝑥) < 𝜈𝐴(𝑥)

0,                                             𝜇𝐴(𝑥) = 𝜈

                                                              (10) 

where 𝐸(𝑥) denotes the cross-entropy. However, it has the problem in dealing with IFSs in 
particular cases, which has been illustrated in the conclusions of [3]. 

Gao et al. proposed a score function with three degrees, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) and 𝜋𝐴(𝑥) [3]: 

𝑆𝐺(𝐴) =
𝑒

𝜇𝐴(𝑥)−𝜈𝐴(𝑥)+𝜋𝐴(𝑥)(𝜇𝐴(𝑥)−𝜈𝐴(𝑥))
3

1+𝜋𝐴(𝑥)
                                                                                                  (11) 

However, it is not effective when 𝜇𝐴(𝑥)  and 𝜈𝐴(𝑥)  are similar: 𝑆𝐺  sometimes requires a 
precision up to more than 10−6. 
 
3. Score Function with Poincaré Metric 

Most of the existing score functions of IFSs consider the difference between 𝜇(𝑥)  of 
comparable attributes and 𝜈𝐴(𝑥) over the one-dimensional space. Since the Poincaré metric is a 
metric for the elements in hyperbolic space, we introduce the framework of IFSs expressed in a 
vector form satisfying the Poincaré metric. 
 
3.1 Vector Structure on IFSs 

This subsection provides two ways to establish IFSs in a vector structure for multicriteria 
alternatives over the hyperbolic space. For all IFS, there always exist transformations: 𝜇𝐴(𝑥) →
 [𝜇𝐴(𝑥),1 − 𝜈𝐴(𝑥)]  and 𝜈𝐴(𝑥) →  [𝜈𝐴(𝑥),1 − 𝜇𝐴(𝑥)]  according to Definition 3 [7]. By this 
consideration and the first expression of the hesitation degree 𝜋𝐴(𝑥) in Eq. (6), we can express 
IFS A with a two-dimensional vector framework. 

Definition 4. Let 𝐴 = {⟨𝑥𝑖 , 𝜇𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)⟩|𝑥𝑖 ∈  𝑋} be IFS over the universe of the discourse 
𝑋. Then 𝐴 is expressed as a set of two-dimensional vectors: 
𝐴∗(𝑥𝑖) = {⟨𝑥𝑖, 𝜇𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)⟩|𝑥𝑖 ∈ 𝑋}                                                                                                 (12) 

where 𝜇𝐴(𝑥𝑖)  and 𝜈𝐴(𝑥𝑖)  are denoted by (𝜇𝐴(𝑥𝑖), 𝜇𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖))  and (𝜈𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖) +

𝜋𝐴(𝑥𝑖)), respectively, and 𝑥𝑖  denotes the 𝑖𝑡ℎ elements in 𝑋. 
In Eq. (12), 𝐴∗ includes the component with two independent elements 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) for 

𝑥 ∈ 𝑋 . Hence, the 𝜇𝐴(𝑥)  and 𝜈𝐴(𝑥)  bounds are denoted as (𝜇𝐴(𝑥𝑖), 𝜇𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖))  and 
(𝜈𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖)) . Figure 2 (a) shows the intervals of the IFSs, and (b) displays the 
projections of the IFSs from (a) to an orthogonal space. The points in the same colour are 𝜇𝐴(𝑥) 
and 𝜈𝐴(𝑥) in the same IFSs. Then, the Poincaré metric can be considered the metric for the score 
function. 

where 𝜇𝐴(𝑥𝑖)  and 𝜈𝐴(𝑥𝑖)  are denoted by (𝜇𝐴(𝑥𝑖), 𝜇𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖))  and (𝜈𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖) +
𝜋𝐴(𝑥𝑖)), respectively, and 𝑥𝑖  denotes the 𝑖𝑡ℎ elements in 𝑋. 

In Eq. (12), 𝐴∗ includes the component with two independent elements 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) for 
𝑥 ∈ 𝑋 . Hence, the 𝜇𝐴(𝑥)  and 𝜈𝐴(𝑥)  bounds are denoted as (𝜇𝐴(𝑥𝑖), 𝜇𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖))  and 
(𝜈𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖) + 𝜋𝐴(𝑥𝑖)) . Figure 2 (a) shows the intervals of the IFSs, and (b) displays the 
projections of the IFSs from (a) to an orthogonal space. The points in the same colour are 𝜇𝐴(𝑥) 
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and 𝜈𝐴(𝑥) in the same IFSs. Then, the Poincaré metric can be considered the metric for the score 
function. 

 

Fig. 2. (a) Intervals of the different IFSs, (b) projections of the IFSs in (a) to an orthogonal 
space 

To resolve the multicriteria decision problem, each element in the universe of discourse is 
considered as each criterion. This means that Definition 4 separates the multicriteria IFS into 
different vector form IFSs depending on different criteria, and it makes it possible to map the 
values of 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) to the two-dimensional space. Based on the knowledge of hesitation, 
𝜇𝐴(𝑥) + 𝜋𝐴(𝑥) ≥ 0  and 𝜈𝐴(𝑥) + 𝜋𝐴(𝑥) ≥ 0 is always satisfied. However, we should consider 
certain situations that satisfy 𝜇𝐴(𝑥) = 1 or 𝜈𝐴(𝑥) = 1. In these cases, the vector form IFSs are 
expressed as ⟨(1,0), (0,1)⟩ and ⟨(0,1), (1,0)⟩, which are not included in the Poincaré half plan. 
However, the score function based on the Poincaré distance can still satisfy these two situations, 
and further discussion will be elaborated after the definition of the score function. 

By Eq. (12), IFSs can be applied to the Poincaré metric and illustrated in the hyperbolic space. 
The function of the novel score function on the IFS is defined based on Eq. (1). The summation of 
scores obtained by different single-criterion IFSs can be applied to multicriteria decision-making 
problems. 

It should be noted that Definition 4 still considers the multicriteria problem with IFS in 
multidimensional vector form with IFSs, and the detailed vector form of IFS 𝐴 can be expressed 
as: 

𝐴 = {

⟨𝑥1, (𝜇𝐴(𝑥1), 𝜇𝐴(𝑥1) + 𝜋𝐴(𝑥1)), (𝜈𝐴(𝑥1), 𝜈𝐴(𝑥1) + 𝜋𝐴(𝑥1))⟩,

⟨𝑥2, (𝜇𝐴(𝑥2), 𝜇𝐴(𝑥2) + 𝜋𝐴(𝑥2)), (𝜈𝐴(𝑥2), 𝜈𝐴(𝑥2) + 𝜋𝐴(𝑥2))⟩,

 … , ⟨𝑥𝑛, (𝜇𝐴(𝑥𝑛), 𝜇𝐴(𝑥𝑛) + 𝜋𝐴(𝑥𝑛)), (𝜈𝐴(𝑥𝑛) + 𝜋𝐴(𝑥𝑛))⟩

|𝑥𝑖 ∈ 𝑋}                            (13) 

where 𝑛 is the number of criteria and 𝑋 is the offset of all criteria for consideration. The score 
is calculated independently for each element 𝑥𝑖  in this vector form. 

However, the multicriteria IFS can also be summarized as two vectors in a multidimensional 
space; 𝜇𝐴(𝑥)  and 𝜈𝐴(𝑥)  of different elements 𝑥𝑖  are defined holistically in vectors, as in 
Definition 5. 

Definition 5. Let 𝐴 = {⟨𝑥𝑖 , 𝜇𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)⟩|𝑥𝑖 ∈ 𝑋}  be IFSs over the universe of discourse 𝑋. 
Then 𝐴 can be expressed as a set of multi-dimensional vectors: 

𝐴𝑚
∗ = {⟨𝑥𝑖, (𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … , 𝜇𝐴(𝑥𝑛)), (𝜈𝐴(𝑥1), 𝜈𝐴(𝑥2), … , 𝜈𝐴(𝑥𝑛))⟩|𝑥𝑖 ∈ 𝑋}                         (14) 
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where 𝑛  is the number of criteria and 𝑛 ≥ 2 . For simplicity, we can denote 

(𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … , 𝜇𝐴(𝑥𝑛)) and (𝜈𝐴(𝑥1), 𝜈𝐴(𝑥2), … , 𝜈𝐴(𝑥𝑛)) as 𝑀𝐴(𝑥) and 𝑁𝐴(𝑥), respectively. 

Then, IFS 𝐴 can be rewritten as 𝐴𝑚
∗ (𝑥) = {⟨𝑥, 𝑀𝐴(𝑥), 𝑁𝐴(𝑥)⟩|𝑥𝑖 ∈ 𝑋}. 

Definition 5 considers the multicriteria IFSs in two parts: 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). In Eq. (14), the 
membership degrees of different criteria are considered holistic independent variables. Similarly, 
non-membership degrees are considered another holistic independent variable including 
different criteria. We can calculate the difference between the membership and non-
membership degrees of different criteria uniformly and holistically in the score function instead 
of calculating the difference for different criteria independently. Meanwhile, since we apply the 
Poincaré distance to the vector-form IFSs, it should avoid zero denominators in the score 
function. The IFSs in a multidimensional vector form make the constraint more flexible, and it 
only requires the 𝑙2 norm of 𝑀𝐴(𝑥) and 𝑁𝐴(𝑥) to not be equal to one. 

3.2. Preference Score Functions 
Based on the different vector forms of the IFSs, two novel score functions are proposed. Their 

properties are also illustrated in this subsection. 

3.2.1. Preference score function for single-criterion vector form and its property 

The novel score function is defined in single-criterion vector form based on Definition 4 and 
Eq. (4). 

Definition 6. For IFS 𝐴, the score function 𝑆𝑃(𝐴(𝑥)) on the single-criterion decision problem 

is expressed as: 

𝑆𝑃 = {
𝑎𝑐𝑜𝑠ℎ (1 + 𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥))) , for 𝜇𝐴(𝑥) ≥ 𝜈𝐴(𝑥)

𝑎𝑐𝑜𝑠ℎ (1 − 𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥))) , for 𝜇𝐴(𝑥) < 𝜈𝐴(𝑥)
                                                              (15) 

where 𝑎𝑐𝑜𝑠ℎ denotes the arc hyperbolic cosine function, and 𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) denotes: 

𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) =
‖𝜇𝐴(𝑥)−𝜈𝐴(𝑥)‖

2(𝜇𝐴(𝑥)+𝜋𝐴(𝑥))(𝜈𝐴(𝑥)+𝜋𝐴(𝑥))
                                                                                   (16) 

Here, we discuss the special conditions mentioned in Subsection 3.1. Under the condition 
𝜇𝐴(𝑥) = 1, we obtain the single-criterion vector from IFS 𝐴1 = {⟨(1,0), (0,1)⟩}. The score after 
the calculation is 𝑆𝑃(𝐴1) → ∞. For another condition 𝜈𝐴(𝑥) = 1, the single-criterion vector from 
IFS is 𝐴2 = {⟨(0,1), (1,0)⟩}, and the score 𝑆𝑃(𝐴2) → −∞. Under these two conditions, the score 
function approaches the two unique values ∞ and −∞, and they are the global maximum and 
minimum values of the score function. 

In the multicriteria problem, the score function is represented according to Eq. (15) as 
follows: 

 

𝑆𝑃(𝐴(𝑥)) = ∑ 𝜔𝑖𝑆𝑃(𝐴(𝑥𝑖))𝑛
𝑖=1                                                                                                              (17) 

where 𝑛 is the number of criteria, 𝜔𝑖 denotes the weight of the 𝑖𝑡ℎ alternative, 𝜔𝑖 ∈ [0,1], 
and ∑ 𝜔𝑖

𝑛
𝑖=1 = 1. 

From Definition 6, we conclude the preference relation 𝐴 ≺ 𝐵  when 𝑆𝑃(𝐴) < 𝑆𝑃(𝐵)  is 
satisfied. Since the score function depends on the terms 𝜇𝐴(𝑥)  and 𝜈𝐴(𝑥) , the term 

𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) inside the arc hyperbolic cosine function can be derived as: 
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𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) =
‖𝜇𝐴(𝑥) − 𝜈𝐴(𝑥)‖

2(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥))
 

=
√(𝜇𝐴(𝑥) − 𝜈𝐴(𝑥))

2
+ (𝜈𝐴(𝑥) − 𝜇𝐴(𝑥))

22

2(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥))
 

=
|𝜇𝐴(𝑥) − 𝜈𝐴(𝑥)|

√2(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥))
 

where | ⋅ | denotes the absolute value, since the arc hyperbolic cosine function is strictly 

monotonic in its domain, [1, ∞), and the strict monotonicity of 𝑆𝑃(𝐴(𝑥)) depends on the strict 

monotonicity of 𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) . For simplicity, we denote this as 𝜙(𝐴(𝑥))  instead of 

𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)). 

Now, we show the relation between the score function and 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). The result is 

intuitive for decision-making. Theorem 1 shows the score function 𝑆𝑃(𝐴(𝑥)) dependence on 

𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). 

Theorem 1. For an IFS 𝐴, the proposed score function 𝑆𝑃(𝐴(𝑥)) strictly increases with respect 

to the 𝜇𝐴(𝑥) and strictly decreases with respect to the 𝜈𝐴(𝑥). 
Proof. Since 𝑎𝑐𝑜𝑠ℎ(⋅) strictly increases over [1, ∞), so the strict monotonicity of 𝜙(𝐴) in 

𝑆𝑃(𝐴(𝑥)) need to be verified. The proof of Theorem 1 is derived directly for the two cases. 

 

1. For 𝜇𝐴(𝑥) ≥ 𝜈𝐴(𝑥), the partial derivative of 𝜙(𝐴(𝑥)) is obtained as: 

𝜕𝜙(𝐴(𝑥))

𝜕𝜇𝐴(𝑥)
=

(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥) + 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥))

√2 ((𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥)))
2 =

1

√2(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥))
2 > 0 

𝜕𝜙(𝐴(𝑥))

𝜕𝜈𝐴(𝑥)
=

(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜇𝐴(𝑥) − 𝜈𝐴(𝑥) − 1 + 𝜈𝐴(𝑥))

√2 ((𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥)))
2 = −

1

√2(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))
2 < 0 

The score function 𝑆𝑃(𝐴(𝑥))  strictly increases and decreases with respect to 𝜇𝐴(𝑥)  and 

𝜈𝐴(𝑥) since 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) are in [0,1]. 
2. For 𝜇𝐴(𝑥) < 𝜈𝐴(𝑥), the partial derivative of 𝜙(𝐴) is derived as follows: 

𝜕𝜙(𝐴(𝑥))

𝜕𝜇𝐴(𝑥)
=

(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(−1 + 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) − 𝜇𝐴(𝑥))

√2 ((𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥)))
2 =

−1

√2(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥))
2 < 0 

𝜕𝜙(𝐴(𝑥))

𝜕𝜈𝐴(𝑥)
=

(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥) + 𝜈𝐴(𝑥) − 𝜇𝐴(𝑥))

√2 ((𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))(𝜈𝐴(𝑥) + 𝜋𝐴(𝑥)))
2 =

1

√2(𝜇𝐴(𝑥) + 𝜋𝐴(𝑥))
2 > 0 

In this case, 𝑆𝑃(𝐴(𝑥)) shows opposite relation with respect to 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). Hence, the 

Theorem 1 is proved. 
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Fig.3. Preference Score with Membership Degree and Non-membership Degree 
 

where | ⋅ | denotes the absolute value, since the arc hyperbolic cosine function is strictly 

monotonic in its domain, [1, ∞), and the strict monotonicity of 𝑆𝑃(𝐴(𝑥)) depends on the strict 

monotonicity of 𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) . For simplicity, we denote this as 𝜙(𝐴(𝑥))  instead of 

𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)). 

Now, we show the relation between the score function and 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). The result is 

intuitive for decision-making. Theorem 1 shows the score function 𝑆𝑃(𝐴(𝑥)) dependence on 

𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). 
where | ⋅ | denotes the absolute value, since the arc hyperbolic cosine function is strictly 

monotonic in its domain, [1, ∞), and the strict monotonicity of 𝑆𝑃(𝐴(𝑥)) depends on the strict 

monotonicity of 𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) . For simplicity, we denote this as 𝜙(𝐴(𝑥))  instead of 

𝜙(𝜇𝐴(𝑥), 𝜈𝐴(𝑥)). 

Now, we show the relation between the score function and 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). The result is 

intuitive for decision-making. Theorem 1 shows the score function 𝑆𝑃(𝐴(𝑥)) dependence on 

𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). 
Definition 7. For an IFS 𝐴, 𝐴 is a positive alternative for 𝑑𝐴(𝑥) = 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥) ≥ 0 and is a 

negative alternative for 𝑑𝐴(𝑥) = 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥) < 0. 
From Theorem 1, the property of the relation between preference and certain information 

differences is followed with respect to the alternative 𝑑𝐴(𝑥). 

Corollary 1. For an IFS 𝐴 , the preference score function 𝑆𝑃(𝐴(𝑥))  strictly increases with 

respect to 𝑑𝐴(𝑥). By the chain rule and the partial derivative of 
 

𝜕𝜇𝐴(𝑥)

𝜕𝑑𝐴(𝑥)
= 1 and 

𝜕𝜈𝐴(𝑥)

𝜕𝑑𝐴(𝑥)
= −1, then it is clear 

𝜕𝜙(𝐴(𝑥))

𝜕𝑑𝐴(𝑥)
> 0. 

With Definition 7, we obtain the relation of the hesitation degree 𝜋𝐴(𝑥) and preference score 
𝑆𝑃(𝐴) as follows. 
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Fig. 4. Preference Score with Hesitation Degree and the Value of 𝜇(𝑥) − 𝜈(𝑥) 
 

Corollary 2. If an IFS 𝐴 is positive or negative alternative, then the preference score 𝑆𝑃(𝐴(𝑥)) 

strictly decreases or increase with respect to 𝜋𝐴(𝑥), respectively. 
The Corollary 2 is clearly verified by applying partial derivative of 𝜙(𝐴) to 𝜋𝐴 (𝑥) with the 

monotonicity of 𝑎𝑐𝑜𝑠ℎ. Visualization of Corollary 2 is illustrated in Fig.4. It indicates that the 
preference score 𝑆𝑃(𝐴) strictly decreases when the membership degree is bigger than the non-
membership degree, and vice versa. Decreasing hesitation degree 𝜋𝐴(𝑥)  makes the positive 
alternative better and the negative alternative worse. It implies that the hesitation degree 𝜋𝐴(𝑥) 
affects the significance of the preference score. 

3.2.2. Preference score function for multi-criteria vector form and its property 

Now, we define an operator for vectors to define the function for the scores based on the 
multicriteria vector form of IFSs. 

Definition 8. For two arbitrary vectors 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) with the 
same number of elements, a new operator ⊙ is defined as: 
𝐴 ⊙ 𝐵 = (𝑎1𝑏1, 𝑎2𝑏2, … , 𝑎𝑛𝑏𝑛)                                                                                                            (17) 

The operator provides the calculation of scores for the multicriteria vector form of IFSs 
containing weights for different criteria. Based on Definitions 2 and 5, the function of the novel 
preference score function for the multicriteria vector is defined in the following definition. 

Definition 9. For IFS 𝐴(𝑥𝑖) = {⟨𝑥𝑖, 𝜇𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)⟩|𝑥𝑖 ∈ 𝑋}  with multi-criteria decision 

problem, the preference score 𝑀𝑆𝑃(𝐴(𝑥𝑖)) is defined as: 

𝑀𝑆𝑃(𝐴(𝑥𝑖)) = {
𝑎𝑐𝑜𝑠ℎ (1 + 𝛿(𝑀𝐴(𝑥), 𝑁𝐴(𝑥))) , for ‖𝑀𝐴(𝑥)‖ − ‖𝑁𝐴(𝑥)‖ ≥ 0

−𝑎𝑐𝑜𝑠ℎ (1 + 𝛿(𝑀𝐴(𝑥), 𝑁𝐴(𝑥))) , for ‖𝑀𝐴(𝑥)‖ − ‖𝑁𝐴(𝑥)‖ < 0
                   (18) 

where 𝑎𝑐𝑜𝑠ℎ  denotes the arc hyperbolic cosine function, 𝛿(𝑀𝐴(𝑥𝑖), 𝑁𝐴(𝑥𝑖))  denotes an 

isometric invariant and expressed as: 
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𝛿(𝑀𝐴(𝑥), 𝑁𝐴(𝑥)) =
‖𝑀𝐴(𝑥)−𝑁𝐴(𝑥)‖

2(1−
‖𝑀𝐴(𝑥)‖

𝑛
)

2

(1−
‖𝑁𝐴(𝑥)‖

𝑛
)

2                                                                                       (19) 

where ‖ ⋅ ‖ denotes the 𝑙2 norm, and 𝑛 > 2 is the number of criteria. 
For the case of multicriteria decision-making problems with weights, we can change the 

isometric invariant as the following equation: 
 

𝛿(𝑀𝐴(𝑥), 𝑁𝐴(𝑥)) =
‖𝜔⊙(𝑀𝐴(𝑥)−𝑁𝐴(𝑥)) ‖

2(1−‖𝜔⊙𝑀𝐴(𝑥)‖)2(1−‖𝜔⊙𝑁𝐴(𝑥)‖) 2
                                                                        (20) 

where 𝜔 denotes the vector of weights for different criteria, and it is expressed as: 
𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛) 

where 𝑛 > 2 is the number of criteria, 𝜔𝑖  ∈  [1,
1

𝑛
], and ∑ 𝜔𝑖

𝑛
𝑖=1 =

1

𝑛
. 

The properties of Definition 9 are similar to those of Definition 6. The independent elements 
can be changed from 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) in (14) to ‖ 𝑀𝐴(𝑥)‖ and ‖𝑁𝐴(𝑥)‖ in (18), respectively. 
Then, the conclusions in Theorem 1 and Corollaries 1 and 2 can also be drawn for the preference 
score function based on the multicriteria vector form of IFSs. 

4. Illustrative Examples 
In this section, four illustrative examples are presented to demonstrate the utilization of the 

novel score function in decision-making problems. The examples also illustrate the comparative 
analysis with the existing score functions. Example 1 shows that the proposed score function 𝑆𝑃 
overcomes the situation that cannot be addressed in the previous preference functions 
[1,3,8,10]. Examples 2 and 3 illustrate a multicriteria decision-making problem. The proposed 
score function 𝑆𝑃 provides a more significant result. In Example 4, actual data are applied, and 
the decision results are compared with the existing result [3]. 

Example 1. Table 1 shows two alternatives and four criteria decision-making problems in the 
existing research in [3]. There are two alternatives for each criterion, and we must choose one 
for the consideration of four criteria. The comparison with the existing score functions [1, 3, 8, 
10] and the proposed 𝑆𝑃 are illustrated. The scores of each score function are illustrated in Table 

2. In Table 2, we denote 𝐴𝑖𝑗  as the 𝑖𝑡ℎ  alternative in the 𝑗𝑡ℎ  criteria, where 𝑖 = 1,2  and 𝑗 =

1,2,3,4. 
 
Table 1  
Two alternatives and four criteria 

Alternative 
Criteria 

1 2 3 4 
𝐴1 ⟨0.8,0.2⟩ ⟨0,0.1⟩ ⟨0.7,0.3⟩ ⟨0.67,0.18⟩ 
𝐴2 ⟨0.7,0.1⟩ ⟨0,0.8⟩ ⟨0.85, 0.15⟩ ⟨0.68,0.25⟩ 
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Table 2  
Preference Scores 

 
Preference Scores of Example 1 

𝐴11 𝐴21 𝐴12 𝐴22 𝐴13 𝐴23 𝐴14 𝐴24 
[1] 0.6 0.6 - 0.1 - 0.8 0.4 0.7 0.49 0.43 
[8] 0.8 0.84 0 0 0.4 0.85 0.77 0.73 

[10] N/A 0.97 - 1.1 - 1.2 N/A N/A 0.77 0.59 
[3] 1.8 1.6 0.48 0.34 1.5 2.0 1.44 1.44 
𝑆𝑃 1.8 1.5 - 0.15 - 2.1 1.2 2.3 1.24 1.17 

where N/A denotes the preference score cannot be obtained due to the calculation of cross 
entropy of IFSs. 

For a better understanding of the proposed method, we take the first criterion of alternative 
𝐴1 as an example. Since the IFS of 𝐴1 is ⟨0.8,0.2⟩ under criterion 1, the IFS in vector form of 𝐴1 is 
⟨(0.8,0.8), (0.2,0.2)⟩  according to Eq. (12). The preference score under criterion 1 is 𝑆𝑃 =

𝑎𝑟𝑐𝑜𝑠ℎ (1 +
‖0.8−0.2‖

2×0.8×0.2
) = 1.8 by Eq. (15) and (16). 

Table 2 shows the failures of previous approaches; the first criteria in [1]; the second criteria 
in [8]; the third in [10]; and the fourth in [3]. These were due to not analyzing the hesitation 
degree in the first criteria [1], ignorance of the non-membership degree in the second criteria [8], 
failure to address the case of 𝜋(𝑥) = 0 in the third criterion [10], and insufficient precision in the 
last criteria [3]. Finally, the proposed score function 𝑆𝑃  overcomes the shortcomings of the 
existing research. 

From the fourth criterion in Table 1, there is a slight change in the membership and non-
membership degrees in the IFSs, 0.01 in membership degree and 0.07 in non-membership 
degree. 𝑆𝑊  had the highest variation in the result of 0.18 [10]. 𝑆𝑃  had the second highest 
variation, with a result of 0.07. 𝑆𝐶  and 𝑆𝐿 obtained the third and fourth highest variation at 0.06 
and 0.04, respectively [1, 5]. However, 𝑆𝐺 cannot discriminate the preference due to insufficient 
precision [3]. 

Examining all of these score functions, we can see that score functions can solve various 
situations when mapping membership and non-membership to higher dimensional spaces, such 
as 𝑆𝐺  and 𝑆𝑃 . Since the rate of change of 𝑆𝑃  follows an exponential growth [26], 𝑆𝑃  can still 
perform well with some slight changes. 

Example 2. Example 1 shows the advantages of the proposed score function 𝑆𝑃 related to the 
vector form of IFSs defined by Definition 4. However, 𝑆𝑃 may not effectively handle the decision-
making problem because the denominator equals 0 in certain situations, e.g., the membership 
degree 𝜇(𝑥) = 1 in one of the criteria. The multicriteria vector form allows IFSs to be more 
flexible in all criteria. Therefore, this example generated two alternatives, 𝐴1 and 𝐴2, with four 
criteria 𝑐1 to 𝑐4. Table 3 displays the details of IFSs for each criterion of alternatives. 
 
Table 3  
Two alternatives with four criteria 

Alternatives 
Criteria 

𝑐1 𝑐2 𝑐3 𝑐4 
𝐴1 ⟨1,0⟩ ⟨0.76,0.23⟩ ⟨0.35,0.56⟩ ⟨0.86,0.1⟩ 
𝐴2 ⟨0.75,0.2⟩ ⟨1,0⟩ ⟨0.23,0.35⟩ ⟨0.83,0.12⟩ 

Here, the weights of each criterion are considered equally in the decision-making problem. 
We can calculate the summation of the scores for each alternative and show the preference 
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according to four criteria. The 𝑀𝑆𝑃 of each alternative is also calculated. Table 4 illustrates the 
results of the calculation. 
 
Table 4  
Preference Score of Example 2 

Method 
Score 

𝑐1 𝑐2 𝑐3 𝑐4 Total 
𝑆𝑃(𝐴1) N/A 1.078 -0.493 1.643 N/A 
𝑆𝑃(𝐴2) 1.114 N/A -0.374 1.483 N/A 
𝑀𝑆𝑃(𝐴1) - - - - 1.493 
𝑀𝑆𝑃(𝐴2) - - - - 1.433 

Where N/A denotes that the score cannot be obtained due to the 0 denominator. 
The preference score can be calculated by Eq. (18) even if the membership degree is one. The 

difference between 𝑀𝑆𝑃(𝐴1) and 𝑀𝑆𝑃(𝐴2) is 𝑀𝑆𝑃(𝐴1) − 𝑀𝑆𝑃(𝐴2) = 0.06 . It indicates 𝐴2 ≺
𝐴1. If we only consider the criteria that can be calculated by the score functions, the average 
scores of 𝑆𝑃 for alternatives 𝐴1 and 𝐴2 are 𝑆�̅�(𝐴1) = 0.803 and 𝑆�̅�(𝐴2) = 0.743. The difference 
in scores between 𝐴1 and 𝐴2 is 0.06. The conclusion of the decision-making problem is the same 
as that in 𝑀𝑆𝑃. Nonetheless, there is a lack of justification for simply ignoring the case where the 
denominator is zero. 

Example 3. To perform sensitivity analysis and comparative analysis of the proposed method, 
we used a numerical example in [6], Table 5. This example includes four alternatives denoted as 
𝐴1, 𝐴2, 𝐴3, and 𝐴4, and the IFSs are generated under five criteria as 𝐶1, 𝐶2, 𝐶3, 𝐶4, and 𝐶5. The 
details of each IFS are shown below. The weight of the criteria is 𝑤 = (0.23,0.2,0.2,0.125,0.22)𝑇. 
 
Table 5  
Details of IFSs in Example 3 

Alternative 
Criteria 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 
𝐴1 ⟨0.23,0.587⟩ ⟨0.61,0.2⟩ ⟨0.192,0.63⟩ ⟨0.22,0.75⟩ ⟨0.196,0.62⟩ 
𝐴2 ⟨0.26,0.554⟩ ⟨0.2,0.61⟩ ⟨0.63,0.192⟩ ⟨0.094,0.875⟩ ⟨0.62,0.196⟩ 
𝐴3 ⟨0.62,0.197⟩ ⟨0.61,0.2⟩ ⟨0.259,0.56⟩ ⟨0.31,0.66⟩ ⟨0.227,0.59⟩ 
𝐴4 ⟨0.197,0.62⟩ ⟨0.36,0.454⟩ ⟨0.337,0.484⟩ ⟨0.15,0.82⟩ ⟨0.332,0.5⟩ 

 
After calculation by the score functions, we summarize the scores of each alternative in Table 

6. 
 

Table 6  
Preference Score of Example 3 

Method 
Score 

𝐴1 𝐴2 𝐴3 𝐴4 Rank 

[1] -0.247 -0.066 -0.045 -0.268 𝐴4 ≺ 𝐴1 ≺ 𝐴2 ≺ 𝐴3 

[8] 0.332 0.441 0.474 0.321 𝐴4 ≺ 𝐴1 ≺ 𝐴2 ≺ 𝐴3 

[10] -0.259 -0.066 -0.002 -0.278 𝐴4 ≺ 𝐴1 ≺ 𝐴2 ≺ 𝐴3 

[3] 0.691 0.864 0.896 0.643 𝐴4 ≺ 𝐴1 ≺ 𝐴2 ≺ 𝐴3 

𝑆𝑃 -0.679 -0.224 -0.080 -0.873 𝐴4 ≺ 𝐴1 ≺ 𝐴2 ≺ 𝐴3 

 
All methods obtained the same rank of 𝐴4 ≺ 𝐴1 ≺ 𝐴2 ≺ 𝐴3. This implies that the proposed 

method can make the same decision under the same conditions as other methods. The 
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advantage of the proposed method is that the scores of different alternatives are more 
discriminative than the others. 

Once we changed the weight of criteria as 𝑤1
′ = (0.3,0.3,0.2,0.1,0.1)𝑇  and 𝑤2

′ =
(0.125,0.125,0.2,0.3,0.25)𝑇, we can obtain the rank of alternatives as 𝐴4 ≺ 𝐴2 ≺ 𝐴1 ≺ 𝐴3, and 
𝐴4 ≺ 𝐴1 ≺ 𝐴3 ≺ 𝐴2 . These results show that the proposed method can be influenced by 
different considerations from decision-makers. 

Example 4. We use large-scale rooftop photovoltaic (LSRPV) projects as an example for the 
actual data analysis. Researchers have generated IFSs from real data as criteria for different 
alternatives [3]. 

In this case study, ten LSRPV projects are denoted as alternatives as 𝐴1 to 𝐴10. 𝐴1 to 𝐴10 are 
located in different areas of China. The details of these ten alternatives are displayed in Table 7. 
 
Table 7  
Location of Alternatives 

 
Alternatives 

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 
City Guangzhou Huangzhou Hefei Jinan Nanchang 
Province Guangdong Zhejiang Anhui Shandong Jiangxi 

 
Alternatives 

𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 
City Ningbo Taizhou Lishui Foshan Dongguan 
Province Zhejiang Zhejiang Zhejiang Guangdong Guangdong 

 

There are three criterion types, with fifteen criteria in total constructed in [3]. The first type 
includes six criteria noted as 𝐶11 , 𝐶12 , 𝐶13 , 𝐶14 , 𝐶22 , and 𝐶23 . These criteria correspondingly 
indicate the initial investment cost, operation and maintenance costs, annual capital income, 
payback period, pollutant emission reduction benefits, and energy-saving benefits. The second 
type consists of five criteria, including 𝐶21, 𝐶31, 𝐶32, 𝐶33, and 𝐶45. This type corresponds to light 
pollution, impact on the local economy, public support, policy support, and extreme weather. 
The last type includes 𝐶41 , 𝐶42 , 𝐶43 , and 𝐶44 . The third type includes annual sunshine hours, 
annual total solar radiation, average temperature, and available rooftop area. 

The IFSs of different alternatives, which are generated by these three types of criteria, are 
displayed in Tables 8, 9, and 10. 

 
Table 8  
IFSs for the First Type Criteria [3] 

Alt. 𝐶11 𝐶12 𝐶13 𝐶14 𝐶22 𝐶23 
𝐴1 ⟨0.33,0.65⟩ ⟨0.36,0.64⟩ ⟨0.27,0.73⟩ ⟨0.30,0.69⟩ ⟨0.25,0.73⟩ ⟨0.25,0.74⟩ 
𝐴2 ⟨0.28,0.71⟩ ⟨0.28,0.72⟩ ⟨0.34,0.66⟩ ⟨0.33,0.67⟩ ⟨0.32,0.67⟩ ⟨0.32,0.66⟩ 
𝐴3 ⟨0.26,0.73⟩ ⟨0.25,0.75⟩ ⟨0.36,0.63⟩ ⟨0.33,0.66⟩ ⟨0.35,0.63⟩ ⟨0.35,0.63⟩ 
𝐴4 ⟨0.40,0.58⟩ ⟨0.38,0.61⟩ ⟨0.24,0.76⟩ ⟨0.33,0.66⟩ ⟨0.26,0.72⟩ ⟨0.26,0.72⟩ 
𝐴5 ⟨0.41,0.58⟩ ⟨0.31,0.68⟩ ⟨0.29,0.70⟩ ⟨0.30,0.69⟩ ⟨0.26,0.71⟩ ⟨0.27,0.72⟩ 
𝐴6 ⟨0.41,0.58⟩ ⟨0.36,0.62⟩ ⟨0.23,0.77⟩ ⟨0.31,0.67⟩ ⟨0.23,0.74⟩ ⟨0.23,0.74⟩ 
𝐴7 ⟨0.30,0.69⟩ ⟨0.33,0.66⟩ ⟨0.31,0.68⟩ ⟨0.32,0.67⟩ ⟨0.31,0.67⟩ ⟨0.31,0.67⟩ 
𝐴8 ⟨0.26,0.73⟩ ⟨0.26,0.73⟩ ⟨0.35,0.64⟩ ⟨0.31,0.68⟩ ⟨0.36,0.60⟩ ⟨0.36,0.60⟩ 
𝐴9 ⟨0.23,0.76⟩ ⟨0.25,0.74⟩ ⟨0.37,0.62⟩ ⟨0.24,0.74⟩ ⟨0.35,0.62⟩ ⟨0.35,0.62⟩ 
𝐴10 ⟨0.28,0.71⟩ ⟨0.30,0.69⟩ ⟨0.34,0.65⟩ ⟨0.32,0.66⟩ ⟨0.32,0.65⟩ ⟨0.32,0.65⟩ 
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Table 9  
IFSs of the Second Type Criteria [3] 

Alt. 𝐶21 𝐶31 𝐶32 𝐶33 𝐶45 
𝐴1 ⟨0.54,0.35⟩ ⟨0.54,0.34⟩ ⟨0.79,0.14⟩ ⟨0.72,0.20⟩ ⟨0.51,0.38⟩ 
𝐴2 ⟨0.65,0.25⟩ ⟨0.67,0.23⟩ ⟨0.77,0.16⟩ ⟨0.54,0.34⟩ ⟨0.57,0.32⟩ 
𝐴3 ⟨0.73,0.18⟩ ⟨0.73,0.18⟩ ⟨0.73,0.18⟩ ⟨0.75,0.17⟩ ⟨0.72,0.20⟩ 
𝐴4 ⟨0.56,0.32⟩ ⟨0.61,0.28⟩ ⟨0.61,0.28⟩ ⟨0.73,0.18⟩ ⟨0.58,0.31⟩ 
𝐴5 ⟨0.67,0.23⟩ ⟨0.65,0.25⟩ ⟨0.78,0.15⟩ ⟨0.70,0.21⟩ ⟨0.65,0.25⟩ 
𝐴6 ⟨0.79,0.14⟩ ⟨0.49,0.38⟩ ⟨0.75,0.17⟩ ⟨0.75,0.17⟩ ⟨0.40,0.47⟩ 
𝐴7 ⟨0.72,0.20⟩ ⟨0.72,0.20⟩ ⟨0.76,0.16⟩ ⟨0.70,0.21⟩ ⟨0.58,0.30⟩ 
𝐴8 ⟨0.52,0.37⟩ ⟨0.54,0.34⟩ ⟨0.78,0.15⟩ ⟨0.58,0.30⟩ ⟨0.58,0.30⟩ 
𝐴9 ⟨0.58,0.31⟩ ⟨0.62,0.27⟩ ⟨0.72,0.20⟩ ⟨0.78,0.15⟩ ⟨0.45,0.44⟩ 
𝐴10 ⟨0.65,0.25⟩ ⟨0.72,0.20⟩ ⟨0.54,0.34⟩ ⟨0.75,0.17⟩ ⟨0.51,0.38⟩ 

 

Table 10  
IFSs of the Third Type Criteria [3] 

Alt. 𝐶41 𝐶42 𝐶43 𝐶44 
𝐴1 ⟨0.27,0.73⟩ ⟨0.30,0.70⟩ ⟨0.26,0.74⟩ ⟨0.28,0.72⟩ 
𝐴2 ⟨0.28,0.72⟩ ⟨0.32,0.68⟩ ⟨0.35,0.65⟩ ⟨0.33,0.67⟩ 
𝐴3 ⟨0.31,0.69⟩ ⟨0.32,0.68⟩ ⟨0.35,0.65⟩ ⟨0.37,0.63⟩ 
𝐴4 ⟨0.41,0.59⟩ ⟨0.37,0.63⟩ ⟨0.43,0.57⟩ ⟨0.23,0.77⟩ 
𝐴5 ⟨0.34,0.66⟩ ⟨0.28,0.72⟩ ⟨0.32,0.68⟩ ⟨0.32,0.68⟩ 
𝐴6 ⟨0.31,0.69⟩ ⟨0.32,0.68⟩ ⟨0.31,0.69⟩ ⟨0.23,0.77⟩ 
𝐴7 ⟨0.32,0.68⟩ ⟨0.32,0.68⟩ ⟨0.30,0.70⟩ ⟨0.31,0.69⟩ 
𝐴8 ⟨0.26,0.74⟩ ⟨0.30,0.70⟩ ⟨0.29,0.71⟩ ⟨0.27,0.63⟩ 
𝐴9 ⟨0.32,0.68⟩ ⟨0.32,0.68⟩ ⟨0.26,0.74⟩ ⟨0.37,0.63⟩ 
𝐴10 ⟨0.32,0.68⟩ ⟨0.33,0.67⟩ ⟨0.26,0.74⟩ ⟨0.31,0.69⟩ 

 

After calculation by the proposed score function, we can compare the scores of each 
alternative with previous score functions. We assume that the weight of each criterion is the 
same; then, the scores obtained by different score functions are shown in Table 11. 

 
Table 11  
Scores of Alternatives 

Method 
Alternatives 

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 
[3] 0.88 0.91 1.01 0.91 0.95 0.91 0.96 0.88 0.90 0.90 
𝑆𝑃 - 0.52 - 0.43 - 0.30 - 0.40 - 0.38 - 0.53 - 0.37 - 0.47 - 0.47 - 0.44 

 

From the scores in Table 9, the conclusion can be drawn as the ranking of the alternatives as 
𝐴6 ≺ 𝐴1 ≺ 𝐴8 ≺ 𝐴9 ≺ 𝐴10 ≺ 𝐴2 ≺ 𝐴4 ≺ 𝐴5 ≺ 𝐴7 ≺ 𝐴3 by 𝑆𝑃. The ranking of alternatives by 𝑆𝐺 
is 𝐴1 ≺ 𝐴8 ≺ 𝐴9 ≺ 𝐴10 ≺ 𝐴2 ≺ 𝐴4 ≺ 𝐴6 ≺ 𝐴5 ≺ 𝐴7 ≺ 𝐴3 . Here is a difference in the ranking 
order. However, we can still notice that the top three alternatives with preference are 𝐴5 ≺ 𝐴7 ≺
𝐴3 by 𝑆𝑃 and 𝑆𝐺. 

Even though the order of alternatives is different between the proposed method and the 
previous method, we can analyze the correlation between these two methods by Spearman’s 
rank correlation coefficient [22]. For any two datasets 𝑎 and 𝑏 including the same number of 
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alternatives, Spearman’s rank correlation coefficient 𝜌(𝑎, 𝑏) between the two datasets can be 
expressed as: 

𝜌 = 1 −
1

𝑛
∑ (𝑅(𝑎𝑖)−𝑅(𝑎))(𝑅(𝑏𝑖)−𝑅(𝑏))𝑛

𝑖=1

√(
1

𝑛
∑ (𝑅(𝑎𝑖)−𝑅(𝑎))

2
𝑛
𝑖=1 )(

1

𝑛
∑ (𝑅(𝑏𝑖)−𝑅(𝑏))

2
𝑛
𝑖=1 )

                                                                      (21) 

where 𝑛 is the number of alternatives and 𝑅(⋅) and 𝑅(⋅) denote the rank of each alternative 
and the average rank for the dataset, respectively. 

Eq. (21) can be simplified as follows: 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
                                                                                                                                (22) 

where 𝑑𝑖 is the difference of the rank between corresponding alternatives. 
 

Table 12  
Ranks of Alternatives 

Method 
Alternatives 

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 
[3] 9.5 5 1 5 3 5 2 9.5 7.5 7.5 
𝑆𝑃 9 5 1 4 3 10 2 7.5 7.5 6 

 

Table 12 presents the rank of each alternative. We find that the alternatives 𝐴1 and 𝐴8, 𝐴2, 
𝐴4 and 𝐴6, and 𝐴9 and 𝐴10 have the same rank by 𝑆𝐺. By the proposed method, only 𝐴8 and 𝐴9 
have the same rank. 

After calculation, the Spearman’s correlation coefficient between 𝑆𝑃  and 𝑆𝐺  is 𝜌(𝑆𝑃, 𝑆𝐺) =
0.803, and the p value 𝑝 = 0.0056. This result shows that there is a strong positive correlation 
between 𝑆𝐺 and the proposed method 𝑆𝑃. 

5. Discussions 
Realizing the use of the preference function with the score function is fundamental to solving 

the decision-making problem, and more concrete and differentiative measures are needed. 
Specifically, IFS data include hesitation when they constitute the total information together with 
𝜇(𝑥) and 𝜈(𝑥). A graphical representation of 𝜋(𝑥) is illustrated by Figures 1 and 2, which help 
communicate the data behaviours. With the Poincaré metric, the score function designed with 
𝜇(𝑥) and 𝜈(𝑥) showed strict monotonicity characteristics. Its characteristics are summarized by 
Theorem 1 and proven, and strict decreases and increases in the score function 𝑆𝑃(𝐴) with 
respect to 𝜇(𝑥)  and 𝜈(𝑥)  are also summarized in the subsequent corollary. Decreasing the 
hesitation degree 𝜋(𝑥) makes the positive alternative better and the negative alternative worse. 
This implies that the hesitation degree 𝜋(𝑥) affects the significance of the score function. For 
more general application, the score function is extended to the multicriteria decision problem. 
Definition 5 considers the multicriteria IFSs as two parts: 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥). The membership 
degrees of different criteria are considered as the independent variable. The score function 
structures of the single criterion and multicriteria are similar; Definitions 6 and 9. It is notified 
only from 𝜇𝐴(𝑥)  and 𝜈𝐴(𝑥)  to ‖ 𝑀𝐴(𝑥)‖  and ‖𝑁𝐴(𝑥)‖  in Eq. (18), respectively. The score 
function of the multicriteria vector form of IFSs is summarized in Theorem 1 and Corollaries 1 
and 2. 
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The proposed score function is applied to the existing examples to verify its usefulness. By 
the numerical examples, the proposed method shows its effectiveness in solving the conditions 
that cannot make clear decisions by existing methods. Meanwhile, the essence of sensitivity and 
comparative analysis is also illustrated by a multicriteria decision-making example. Under the 
same conditions, the same result can be drawn by the proposed method and the existing 
methods. Meanwhile, the influence of decision-makers on the proposed method is also 
illustrated by the examples. With the help of the exponential changing rate from the Poincaré 
metric, the scores obtained by the proposed method are more discriminative when the changes 
are slight in IFSs. 

The obtained research provides an effective measure to discriminate attributes with strict 
monotonicity characteristics. Even IFSs include comprehensive information; support, descent, 
absence, and 𝜋(𝑥) considerations show clear differentiation in decision-making. 

6. Conclusions 
We have proposed a new score function with the help of the Poincaré metric for decision-

making with IFSs, which is based on a pair of independent two-dimensional vectors composed of 
the membership and non-membership degrees of an IFS; 𝜇(𝑥)  and 𝜈(𝑥). In this regard, we 
propose strict monotonic properties in Theorem 1, Corollary 1, and Corollary 2; in particular, the 
score function dependency on the difference between membership and non-membership 
degrees is emphasized in Corollary 1. Compared with the existing research, the proposed score 
function showed clear decision results with the help of strict monotonic properties. 

Through illustrative examples, we have also demonstrated the advantages of the proposed 
score function over existing ones; the proposed score function overcomes the shortcomings of 
the previous research on the single-criteria decision-making problem. By mapping the 
membership and non-membership degrees to a high-dimensional space, the proposed score 
function can achieve equivalent scores as the previous methods. Due to the strict monotonicity 
of the proposed method, it is possible to obtain a more discriminative result when the 
membership and non-membership degrees are similar in different alternatives. Additionally, it 
achieves more flexible decision results in multicriteria problems. Finally, actual data were applied 
and showed consistency in high preference results. Due to the exponential changing rate, the 
score function based on the Poincaré metric outperformed previous methods when the changes 
in membership and non-membership degrees were slight. 

Research outputs make it possible to extend actual data decision making with the obtained 
research not only single criterion but also multi-criteria. Furthermore, independent vector 
processing with Poincaré metric helps to treat to general data tasking. However, data 
fuzzification is the challenge; specifically, to IFSs. It was carried out through subjective ways – 
personally. Data fuzzification to the objective method should be followed for more application.      
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