
 
Decision Making: Applications in Management and Engineering, Volume 7, Issue 1 (2024) 99-130 

99 

 

 

 

Decision Making: Applications in 

Management and Engineering 

 

Journal homepage: www.dmame-journal.org    
ISSN: 2560-6018, eISSN: 2620-0104 

 

The New Measures of Lorenz Curve Asymmetry: Formulation and 
Hypothesis Testing 
 

Muhammad Fajar1,2, Setiawan Setiawan1,*, Nur Iriawan1 

  
1 Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia 
2 Badan Pusat Statistik-Statistics Indonesia, Jakarta, Indonesia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 24 August 2023 
Received in revised form 23 October 2023 
Accepted 27 October 2023 
Available online 14 November 2023 

The existence of an asymmetric empirical Lorenz curve requires a measure of 
asymmetry that directly involves the geometry of the Lorenz curve as a 
component of its formulation. Therefore, establishing hypothesis testing for 
Lorenz curve asymmetry is necessary to conclude whether the Lorenz curve 
exhibits symmetry in actual data. Consequently, this study aims to construct 
a measure of Lorenz curve asymmetry that utilizes the area and perimeter 
elements of the inequality subzones as its components and establish a 
procedure for hypothesis testing the symmetry of the Lorenz curve. This 
study proposes two types of asymmetry measures, ℛ𝐴 and ℛ𝑃, constructed 
based on the ratio of area and perimeter obtained from the inequality 
subzone. These measures effectively capture the asymmetric phenomenon of 
the Lorenz curve and provide an economic interpretation of the values of ℛ𝐴 
and ℛ𝑃. The Lorenz curve symmetry hypothesis testing, based on ℛ𝐴 and ℛ𝑃 
through a nonparametric bootstrap, yields reliable results when applied to 
actual data. 
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1. Introduction 
The Lorenz Curve is a graphical representation that describes income distribution inequality. It 

was developed by Lorenz [1] to depict wealth distribution, evaluate income disparities among various 
income groups in society, and analyze income inequality. Figure 1 presents the Lorenz curve (OEC̅̅ ̅̅ ̅̅ ), 
showing the relationship between the cumulative proportion of income (𝑞;  0 ≤ 𝑞 ≤ 1) and 
households (𝑝;  0 ≤ 𝑝 ≤ 1). The mathematical formulation of Lorenz curve with the parameter 
vector 𝜽 is denoted as 𝐿(𝑝; 𝜽) [2–13]. 

Various household classes with differing socioeconomic characteristics across regions drive 
income distribution, as evident in the Lorenz curve. The assertion is that the shape may adopt 
asymmetry due to the unequal contributions of the two major income groups to income inequality. 
This notion establishes the groundwork for the economic interpretation of Lorenz curve's asymmetry 
measure developed in this study. The Lorenz curve asymmetry is categorized into two conditions, 
namely Asymmetry Conditions 1 and 2. 
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Fig. 1. The Lorenz curve and inequality 
zone OBCE̅̅ ̅̅ ̅̅ ̅ 

Asymmetry Condition 1 of the Lorenz curve showcases asymmetry shape, thereby presenting a 
bulge in the lower left section, indicated by the green circle in Figure 2. This condition shows 
inequality in income distribution in the population, in which the group with a cumulative proportion 
of income 𝑞 ≤ 𝑞+ contributes more to inequality than those with 𝑞 > 𝑞+. These disparities in 
inequality sharing lead to larger area and perimeter of the inequality subzone W1, created by the 
group with a cumulative proportion of income 𝑞 ≤ 𝑞+, compared to the area and perimeter W2 
formed by 𝑞 > 𝑞+. 

 

 
 
 
 
 
 
 
 

 

The Lorenz curve of Asymmetry Condition 2 shows an asymmetry shape with a noticeable bulge 
in the upper right portion, denoted by the green circle in Figure 3. This asymmetry signifies income 
inequality in the population, where the high-income group surpasses the low-income group in their 
contributions. Consequently, the inequality subzone W2, shaped by the high-income group, 
comprises a larger area and perimeter compared to W1 attributed to the low-income group. 

To address this issue, the study introduces the novel measure of the Lorenz curve asymmetry, 
consisting of two components, including (1) asymmetry measure denoted as ℛ𝐴, based on the ratio 
of the area OBE̅̅ ̅̅ ̅̅  to the area BEC̅̅ ̅̅ ̅, and (2) asymmetry measure designated as ℛ𝑃, based on the ratio 

𝐿(𝑝; 𝜽) 
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Fig. 2. The asymmetry Lorenz 
curve Condition 1 

Fig. 3. The asymmetry Lorenz 
curve Condition 2 

Note: the orange line is the Lorenz curve, and the blue line is the symmetry line. 
The inequality subzones, W1 and W2, formed from the inequality zone bounded 
by the egalitarian line and the asymmetric Lorenz curve Condition 1 divided by 
the line 𝑞 = 1 − 𝑝 (as the symmetry line). The inequality subzones, W1 and W2, 
formed from the inequality zone bounded by the egalitarian line and the 
asymmetric Lorenz curve Condition 2 divided by the line 𝑞 = 1 − 𝑝. 
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of the perimeter OBE̅̅ ̅̅ ̅̅  to the perimeter BEC̅̅ ̅̅ ̅. It is important to be aware that the two measures are 
inherently positive. Further interpretation of these two measures measure take into account the 
cumulative proportions of low-income and high-income groups, segmented by point 𝑞+, which 
represents the intersection of the symmetry line AD̅̅ ̅̅  and the egalitarian line OC̅̅̅̅ . 

In the first scenario, Asymmetry Condition 1 occurs when both ℛ𝐴 and ℛ𝑝 fall within the interval 

[1, ∞). In this case, subzone OBE̅̅ ̅̅ ̅̅  (W1) has a larger area and perimeter than subzone BEC̅̅ ̅̅ ̅ (W2). This 
suggests that the group with a cumulative proportion of income, 𝑞 ≤ 𝑞+, significantly contributes to 
income inequality compared to 𝑞 > 𝑞+. 

In the second scenario, Asymmetry Condition 2 occurs when both ℛ𝐴 and ℛ𝑃 values lie in the 
interval (0, 1]. This condition shows that subzone BEC̅̅ ̅̅ ̅ (W2) possesses a larger area and perimeter 
than the subzone OBE̅̅ ̅̅ ̅̅  (W1). This implies that the group with a cumulative proportion of income, 
𝑞 > 𝑞+, plays a more substantial role in generating income inequality than 𝑞 > 𝑞+. 

In the third scenario presents the symmetrical Lorenz curve when ℛ𝐴 = 1 or ℛ𝑃 = 1. This implies 
that subzone OBE̅̅ ̅̅ ̅̅  (W1) and subzone BEC̅̅ ̅̅ ̅ (W2) share equivalent areas and perimeters. In this case, 
income inequality is equally contributed to by both the groups with a cumulative proportion of 
income, 𝑞 ≤ 𝑞+, and 𝑞 > 𝑞+.  

The study necessitates hypothesis testing to determine whether the Lorenz curve is symmetrical 
or asymmetrical, specifically when the values of ℛ𝐴 or ℛ𝐴 closely method 1. As a result, confirming 
the symmetry or asymmetry of curve is essential. This determination relies on specific value criteria 
and also on a probabilistic framework, ensuring that the conclusions drawn are objective and robust. 

The proposed measures, ℛ𝐴 and ℛ𝑃, offer a precise analysis of income inequality. These two 
measures help identify the income class that significantly contributes to income inequality. The 
information enables analysts and economists to recommend more targeted and effective measures 
to reduce inequality based on the income class that plays a substantial role in inequality. For example, 
when ℛ𝐴 and ℛ𝑃 both equal 1.2 (greater than 1), it suggests that the lower middle-income class is a 
significant contributor to income inequality. This implies that authorities can consider policies to 
increase the minimum wage, provide regular cash assistance to those in poverty, and create labor-
intensive jobs. On the other hand, if ℛ𝐴 and ℛ𝑃 are both 0.8 (less than 1), it shows that the middle-
income class and above are significant contributors to income inequality. In this case, authorities can 
explore measure such as increasing tax rates for individuals with income growth exceeding 50% from 
the previous year, optimizing and expanding Corporate Social Responsibility, and distributing zakat 
funds more strategically to reduce income inequality.  

The two measures introduced in this study differ from another measure of asymmetry, the 
Zanardi index [14,15]. The Zanardi index is based on the ratio of the difference in the Gini index of 
subzones OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅ to the Gini index of the inequality zone (OBCE̅̅ ̅̅ ̅̅ ̅). This can result in the Zanardi 
index value that is positive or negative. However, the Zanardi index lacks a clear economic 

interpretation and does not directly incorporate the geometry of the inequality zone (OBCE)̅̅ ̅̅ ̅̅ ̅̅ ̅, 
including its area and perimeter. Apart from this scenario, the development of Lorenz curve 

asymmetry measure, ℛ𝐴 and ℛ𝑃, directly incorporates the geometry of the inequality zone (OBCE)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
and is more straightforward. As a result, ℛ𝐴 and ℛ𝑃 represent the state of income inequality in 
society, provide a clear interpretation of income inequality, and have formulation related to the 
Lorenz function specification, 𝐿(𝑝; 𝜽). 
 
2. Basic Theory 
2.1 Property of the Lorenz Function 

Assuming the defined and continuous function 𝐿(𝑝; 𝜽) has a parameter vector 𝜽 in the interval 
[0,1]. A function 𝐿(𝑝; 𝜽) is the Lorenz function if it satisfies the following criteria: 
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𝐿(𝑝 = 0; 𝜽) = 0; 𝐿(𝑝 = 1; 𝜽) = 1; 𝐿′(𝑝; 𝜽) ≥ 0; 𝐿′′(𝑝; 𝜽) ≥ 0,                         
 
where 𝐿′(𝑝; 𝜽) and 𝐿′′(𝑝; 𝜽) are the first and second derivatives of 𝐿(𝑝; 𝜽) with respect to 𝑝, 
respectively. The Lorenz function 𝐿(𝑝; 𝜽) is a function with one predictor variable 𝑝, so the criteria 
𝐿′(𝑝; 𝜽) ≥ 0 and 𝐿′′(𝑝; 𝜽) ≥ 0 guarantee that the Lorenz function 𝐿(𝑝; 𝜽) is convex in the interval 
0 ≤ 𝑝 ≤ 1. This convexity is appropriate for describing income inequality concerning the egalitarian 
line. 
 

2.2 Area 
In Figure 4, there is a zone ℶ bounded by the interval [u, v],  𝓀(𝓍), and 𝓂(𝑥). The area of this 

zone can be formulated as shown in reference [16]: 

area  ℶ = ∫ (𝓀(𝓍) − 𝓂(𝓍)) 𝑑𝓍
v

u

.                                                                                                                  (1) 

The concept in Eq. (2) is used to construct asymmetry measure ℛ𝐴, which uses the components in 
the inequality zone OBCE̅̅ ̅̅ ̅̅ ̅. 
 

 
Fig. 4. zone ℶ bounded by functions 𝓀(𝓍) and 𝓂(𝓍). 

 

2.3 Curve Length 
According to Figure 4, curve length formulation of a function is [16]: 
 

curve length 𝓀(𝓍) on the interval [u, v] = ∫ √1 + (
𝑑𝓀(𝓍) )

𝑑𝓍
)

2

𝑑𝓍
v

u

.                                                 (2) 

 
In Eq. (2), when the function 𝓀(𝓍) in the context of income distribution is Lorenz function 𝐿(𝑝; 𝜽) 
bounded by the interval [0,1], then the length of the Lorenz curve represents the Amato index. A 
longer Lorenz curve implies that the inequality will also have a larger area. The concept presented in 
Eq. (2) is used for constructing asymmetry measure ℛ𝑃, drawing from the components in the 

inequality zone OBCE̅̅ ̅̅ ̅̅ ̅. 
 

2.4 Monte Carlo Integration 
If solving the integral cannot be done analytically, then an alternative solution is to use the Monte 

Carlo approach. The Monte Carlo approach's integral solution is as follows [17,18]. 
a. Suppose a function 𝓀(𝓍) with upper bound u and lower bound v: 

 

𝒥 = ∫ 𝓀(𝓍) 𝑑𝓍
v

u

 . 

 

ℶ 
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b. Assume that 𝒳~Uniform(u, v), then: 
 

𝐸(𝓀(𝒳)) = ∫ 𝓀(𝓍)
1

v − u
 𝑑𝓍

v

u

      

𝒥 = (v − u) 𝐸(𝓀(𝒳)) ≈ (v − u)
1

𝑀
 ∑ 𝓀(𝓍𝒽)

𝑀

𝒽=1

,                                                                 (3) 

where 𝓍𝒽 is generated from the Uniform (u, v) distribution. There are 𝑀 units of 𝓍𝒽 generated. 𝒥 is 

the integral solution of ∫ 𝓀(𝓍) 𝑑𝓍
v

u
. Completing the integral using the Monte Carlo approach 

anticipates the formulation of a measure of Lorenz curve asymmetry based on specification of Lorenz 
functions, which cannot be solved analytically. 
 

2.5 Hypothesis Testing Using Nonparametric Bootstrap 
Hypothesis testing through nonparametric bootstrap methods is designed to assess statistical 

measure when the probability distribution of the population is unknown. In this method, resampling 
from the empirical distribution of bootstrap sample approximates the population probability 
distribution. The following outlines the procedure for hypothesis testing using nonparametric 
bootstrap for the univariate case [19–21].  

Suppose a study conducts a hypothesis test as follows: 
 

H0: Ψ = Ψ0 versus H1: Ψ ≠ Ψ0 
 

a. Result an estimator Ψ calculated from the original sample data, and the test statistic 𝜏 as follows: 

𝜏 = 𝒩(Ψ̂ − Ψ0)
2

 ,                                                                                                                                       (4) 

 

where Ψ̂ is the estimator for Ψ, and 𝜏 is a Wald-type test statistic, with a weight of 1 [22,23]. 
b. Resampling the observational data of size 𝒩, for 𝔹 times (for 𝓃 = 1,2, … , 𝔹), with each 

resampling having a sample size of 𝒩size [20,21]. The statistics for each resampling is then 
calculated as: 
 

𝜏𝓃 = 𝒩(Ψ̂[𝓃] − Ψ̂)
2

,                                                                                                                                  (5) 

 

where Ψ̂[𝓃] is the estimator of Ψ, calculated from the 𝓃-th bootstrap sample. 
c. Calculating the p-value 𝜌(𝜏) for a two-way hypothesis test [20,21] as follows: 

 

𝜌(𝜏) = 2 min (
1

𝔹
∑ 𝐼(𝜏𝓃 ≤ 𝜏)

𝔹

𝓃=1

,
1

𝔹
∑ 𝐼(𝜏𝓃 > 𝜏)

𝔹

𝓃=1

) ,                                                                         (6) 

 
where 𝐼(. ) is the indicator function. 

d. Based on Step (c), if 𝜌(𝜏) < 𝛼, then H0 is rejected. Also, if 𝜌(𝜏) ≥ 𝛼, then H0 fails to be rejected, 
where 𝛼 is the significance level, 0 < 𝛼 < 1. 

 
2.6 Transformation of proportion cumulative 

Constructing 𝑝𝑖 and 𝑞𝑖 derived from the observation order index data and household income 
(𝑥𝑗 , 𝑗 = 1, … , 𝒩, where 𝒩 represents the number of sample households) is an initial and critical 
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step in estimating the Lorenz function parameters. The procedure for constructing 𝑝𝑖 and 𝑞𝑖 are 
presented as follows. 
a. Arranging the dataset as shown in Table 1. 

 
Table 1 
Layout dataset 

Sample Household (𝑗) Household income 

1st household  𝑥1 
2nd household  𝑥2 

⋮ ⋮ 
𝒩-th household 𝑥𝒩  

 
b. Sorting 𝑥𝑗 variables in ascending order, signifying the arrangement of households based on their 

income ownership, as seen in Table 2. 
 

Table 2 
Sorting results based on the dataset in Table 1 

Ordered sample household (𝑗) Ordered household income 𝑥(𝑗) 

(1)-st household  𝑥(1) 

(2)-nd household  𝑥(2) 

⋮ ⋮ 
(𝒩)-th household 𝑥(𝒩) 

 
c. Computing 𝑝𝑖 and 𝑞𝑖 using the cumulative proportion obtained from Table 2: 

 
Table 3 
𝑝𝑖  and 𝑞𝑖 

𝑝𝑖  𝑞𝑖  

𝑝0 = 0  𝑞0 = (𝑥(0))/ ∑ 𝑥(𝑖)
𝒩
𝑖=0 = 0, 𝑥(0) = 0  

𝑝1 = (0 + 1)/ ∑ 𝑖𝒩
𝑖=0   𝑞1 = (𝑥(0) + 𝑥(1))/ ∑ 𝑥(𝑖)

𝒩
𝑖=0   

𝑝2 = (0 + 1 + 2)/ ∑ 𝑖𝒩
𝑖=0   𝑞2 = (𝑥(0) + 𝑥(1) + 𝑥(2))/ ∑ 𝑥(𝑖)

𝒩
𝑖=0   

⋮ ⋮ 

𝑝𝑖 = (0 + 1 + 2 + ⋯ + 𝑖)/ ∑ 𝑖𝒩
𝑖=0   𝑞𝑖 = (𝑥(0) + 𝑥(1) + 𝑥(2) + ⋯ + 𝑥(𝑖))/ ∑ 𝑥(𝑖)

𝒩
𝑖=0   

⋮ ⋮ 

𝑝𝒩 =
∑ 𝑖𝒩

𝑖=0

∑ 𝑖𝒩
𝑖=0

= 1 𝑞𝒩 =
∑ 𝑥(𝑖)

𝒩
𝑖=0

∑ 𝑥(𝑖)
𝒩
𝑖=0

= 1 

 

 

2.7 Nonlinear Least Squares Using Levenberg-Marquardt Algorithm 
The nonlinear least squares estimation method is used in this study to estimate the parameters 

of Lorenz function 𝐿(𝑝; 𝜽). Estimation of parameters in 𝐿(𝑝; 𝜽) to obtain an estimator �̂� by 
minimizing 𝑆∗(𝜽): 

 

min𝜽 𝑆∗(𝜽) = min𝜽  
1

2
(𝒒 − 𝐿(𝒑; 𝜽))

T
(𝒒 − 𝐿(𝒑; 𝜽))                                                                                 (7) 

                       = min𝜽  
1

2
𝒇(𝜽)T𝒇(𝜽)                                                                                         

                       = min𝜽  
1

2
∑(𝑓𝑖(𝜽))

2
𝒩

𝑖=0

.                                                                             
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𝒒 = [

𝑞0
𝑞1

⋮
𝑞𝒩

] , 𝒑 = [

𝑝0
𝑝1

⋮
𝑝𝒩

] , 𝜽 = [

𝜃1

𝜃𝑗

⋮
𝜃𝒹

] , and 𝒹: number of parameters. 

 
In Eq. (7), the concept of distance between the empirical and theoretical distribution functions, 

which is employed for the Kolmogorov-Smirnov test, is used indirectly. It denotes a distance between 
𝒒, representing the experimentally determined cumulative proportion of income, and 𝐿(𝒑; 𝜽). 
Because the Lorenz function 𝐿(𝒑; 𝜽) is also a nonlinear function, it complicates the objective function 
𝑆∗(𝜽), which is dependent on the specification of the functional form of 𝐿(𝒑; 𝜽), so it is difficult to 
solve analytically for the minimization process of the objective function 𝑆∗(𝜽). 

 

𝑆∗(𝜽) =
1

2
∑(𝑞𝑖 − 𝐿(𝑝𝑖; 𝜽))

2
𝒩

𝑖=0

. 

 
The first derivative 𝑆∗(𝜽) with respect to 𝑝𝑖, is: 

 

𝑑𝑆∗(𝜽)

𝑑𝑝𝑖
= − ∑(𝑞𝑖 − 𝐿(𝑝𝑖; 𝜽))𝐿′(𝑝𝑖; 𝜽)

𝒩

𝑖=0

 . 

 
The second derivative 𝑆∗(𝜽) with respect to 𝑝𝑖 is: 
 

𝑑2𝑆∗(𝜽)

𝑑𝑝𝑖
2 = ∑ ((𝐿′(𝑝𝑖; 𝜽))

2
− (𝑞𝑖 − 𝐿(𝑝𝑖; 𝜽))𝐿′′(𝑝𝑖; 𝜽)) .

𝒩

𝑖=0

 

 

The objective function 𝑆∗(𝜽) is a convex function if 
𝑑𝑆∗(𝜽)

𝑑𝑝𝑖
≥ 0 and 

𝑑2𝑆∗(𝜽)

𝑑𝑝𝑖
2 ≥ 0, however this 

depends on how the functions 𝐿′(𝑝; 𝜽) and 𝐿′′(𝑝; 𝜽) are specified. This rule means the objective 
function 𝑆∗(𝜽) is not always convex. Hence, the estimation procedure of 𝜽 involves iteration to 
produce a convergent estimated value of 𝜽 and includes supplying a local minimum on 𝑆∗(𝜽). The 

estimator �̂� is a local minimizer [24–26]: 
 

𝑆∗(�̂�) ≤ 𝑆∗(𝜽) for ‖𝜽 − �̂� ‖ ≤ 𝜖, where 𝜖 is positive and very small. 

In each iteration of 𝐿(𝒑; 𝜽), the parameter vector 𝜽 will be updated with 𝜽 + 𝜹. To determine 𝜹, 
the function 𝐿(𝒑, 𝜽 + 𝜹) is approximated by linearization: 

 

𝑳(𝒑; 𝜽 + 𝜹) ≈ 𝑳(𝒑; 𝜽) + 𝑱∗𝜹, 𝑱∗ =
𝝏𝑳(𝒑; 𝜽)

𝝏𝜽
                             

 

𝐒𝐨, 𝑺∗(𝜽 + 𝜹) ≈
𝟏

𝟐
(𝒒∗ − 𝑳(𝒑; 𝜽) − 𝑱∗𝜹)𝐓(𝒒∗ − 𝑳(𝒑; 𝜽) − 𝑱∗𝜹) 

                𝑺∗(𝜽 + 𝜹) =
𝟏

𝟐
𝒇(𝜽)𝐓𝒇(𝜽) + 𝜹𝐓𝑱𝐓𝒇(𝜽) +

𝟏

𝟐
𝜹𝐓𝑱𝐓𝑱𝜹 

𝓢(𝜹) = 𝑺∗(𝜽) + 𝜹𝐓𝑱𝐓𝒇(𝜽) +
𝟏

𝟐
𝜹𝐓𝑱𝐓𝑱𝜹,                                                                                (𝟖) 
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where − 𝑱∗ = 𝑱, 𝑱 =
𝜕𝒇(𝜽)

𝜕𝜽
, 𝑱 ∈ ℝ𝒩× 𝒹 .                         

 
In Eq. (8), the first derivative of 𝜹 with respect to 𝜽 is performed, so it becomes: 
 

𝒮′(𝜹) = 𝑆∗′(𝜽 + 𝜹) = 𝑱T𝒇(𝜽) + 𝑱T𝑱𝜹.                                                                                                          (9) 
 
The Gauss-Newton step 𝜹gn obtained through the first order condition in Eq. (9) becomes: 

 

𝜹gn = −(𝑱T𝑱)−𝟏𝑱T𝒇(𝜽),                                                                                                                                   (10) 

 
𝑱 is a full rank matrix. In Eq. (10), a modification is made to the component (𝑱T𝑱) by adding the 
damping parameter 𝜆 in the component so that it becomes: 
 
𝜹lm = −(𝑱T𝑱 + 𝜆𝐈𝒹)−1𝑱T𝒇(𝜽), 𝜆 ≥ 0,                                                                                                          (11) 

 
The Levenberg-Marquardt step is denoted by 𝜹lm, while the identity matrix of dimension 𝒹 × 𝒹 is 
denoted by 𝐈𝒹. Eq. (11) becomes a Gauss-Newton step if 𝜆 = 0, and it tends to be a Gauss-Newton 
step if 𝜆 is close to zero. When 𝜆 is sufficiently large, 
 

𝜹sd ≅ −
1

𝜆
𝑱T𝒇(𝜽).                                                                                                                                             (12) 

 
Eq. (12) represents the steepest-descent step. Because the damping parameter 𝜆 greatly 

influences the direction and size of the step, an iteration process is used to obtain the estimator �̂� . 
During the iteration process, 𝜆 can be updated, which is controlled by the gain ratio [26]: 

 

Φ =
𝑆∗(𝜽) − 𝑆∗(𝜽 + 𝜹lm)

1
2 𝜹lm

T (𝜆𝜹lm − 𝑱T𝒇(𝜽))
.                                                                                                                          (13) 

 
If Φ in Eq. (13) is large, it indicates that 𝒮(𝜹lm) is a good approximation for 𝑆∗(𝜽 + 𝜹lm), and the 
value of 𝜆 can be lowered, which makes the Levenberg-Marquardt step close to the Gauss-Newton 
step. If Φ is small, it indicates that 𝒮(𝜹lm) is a poor approximation for 𝑆∗(𝜽 + 𝜹lm), so the value of 𝜆 
should be increased. 

The following Levenberg-Marquardt algorithm to minimize 𝑆∗(𝜽) is [24–26] : 

1. Set the initial value �̂�(0) and �̂�(0) = 𝜆∗ max (diag(�̂�(0)
T �̂�(0))), 𝜆∗ is a very small positive number. 

2. For 𝑟 = 0,1, …. calculate: 
 

 𝜹lm(r) = −(�̂�(𝑟)
T �̂�(𝑟) + 𝜆(𝑟)𝐈𝒹)

−1
�̂�(𝑟)

T 𝒇(�̂�(𝑟)) 

 

        Φ(𝑟) =
𝑆∗(�̂�(𝑟)) − 𝑆∗(�̂�(𝑟) + 𝜹lm(r))

1
2 𝜹lm(𝑟)

T (𝜆(𝑟)𝜹lm(𝑟) − �̂�(𝑟)
T 𝒇(�̂�(𝑟)))

                      

 
a. If Φ(𝑟) > 0, then:  
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�̂�(𝑟+1) = �̂�(𝑟) + 𝜹lm(𝑟);  𝜆(𝑟+1) = 𝜆(𝑟) max (
1

3
, 1 − (2Φ(𝑟) − 1)

3
) ; ℓ(𝑟) = 2     

 
b. If Φ(𝑟) < 0, then: 

 

 �̂�(𝑟+1) = �̂�(𝑟) + 𝜹lm(𝑟);  𝜆(𝑟+1) = 𝜆(𝑟)ℓ(𝑟);  ℓ(𝑟+1) = 2ℓ(𝑟)                                             

 

3. The 𝑟-th iteration stops if ‖�̂�(𝑟+1) − �̂�(𝑟)‖ ≤ 𝜖, where 𝜖 is a very small positive number and close 

to zero. 

4. From Step 3, the algorithm produces the estimator �̂�. 
 

3. Method and Data  
3.1 Construction Method of  ℛ𝐴 and ℛ𝑃 (The Proposed Measure) 

The development of the asymmetry measure and testing the symmetry of the Lorenz curve to 
achieve the research objectives follow the following steps: 
(1) Identify the equations that form the inequality subzones of OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅  as presented in Figure 

1. 
(2) Identify the intersection points of the inequality subzones of  OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅ based on Figure 1. 
(3) Step (2) results are the upper and lower bounds used to calculate the area and perimeter of the 

area bounded by the egalitarian line, the Lorenz curve, and the line AD̅̅ ̅̅ .  
(4) Construct a general formulation of the area for the inequality subzones of OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅ bounded 

by the interval [u, v] using Eq. (1). This asymmetry measure is formed based on the ratio of the 
area OBE̅̅ ̅̅ ̅̅  to the area BEC̅̅ ̅̅ ̅. This asymmetry measure is denoted as ℛ𝐴. 

(5) Construct a general formulation of the perimeter for the inequality subzones of OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅ 
bounded by the interval [u, v] using Eq. (2). This second measure of asymmetry is formed based 
on the ratio of the perimeter OBE̅̅ ̅̅ ̅̅  to the perimeter BEC̅̅ ̅̅ ̅, which is denoted as ℛ𝑃. 

(6) Formulate the asymmetry measures of the Lorenz function 𝐿(𝑝; 𝜽), ℛ𝐴 and ℛ𝑃, based on Steps 
(4) and (5). ℛ𝐴 and ℛ𝑃 can be calculated when the estimated value of the vector parameter 𝜽 is 
known. The Levenberg-Marquardt algorithm is used to estimate the Lorenz function parameters 
as described in Section 2.7. 

(7) Suppose the integral solution in Steps (4), (5), and (6) cannot be solved analytically so that no 
close-form solution is obtained. The integral solution is approached using the Monte Carlo 
through Eq. (3) in Section 2.4. 

(8) Construct a formulation that establishes a relationship between ℛ𝐴 and the Gini index. This 
formulation complements the information provided by ℛ𝐴 since it is a relative measure that does 
not reflect the magnitude of inequality. Therefore, it is essential to formulate the relationship 
between ℛ𝐴 and the Gini index. 

 

3.2 Data 
The data utilized in this analysis came from three sources: 

a. Household consumption expenditure data for one month. This information is derived from 
SUSENAS March 2020, conducted by BPS-Statistics of Banten Province. The object of study is a 
sample of Banten Province households totaling 6,964 households. Regardless of the origin of 
the items, household consumption is distinguished from food and non-food consumption. It is 
restricted to expenditure for home needs, omitting business expenditure, or expenditure 
supplied to third parties. Food expenditures are estimated for the previous week, whereas non-
food expenditures are calculated for the previous month and 12 months. The average monthly 
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spend for food and non-food consumption is calculated. So, consumption expenditure is a 
proxy of income. 

b. The total income employment data per family sourced from the Ghana Statistical Service's 
Ghana Living Standards Survey IV was completed in 1998. Out of the targeted 6,000 
households, 5,999 are successfully enumerated. However, one household is excluded from the 
dataset due to incomplete data, resulting in a total of 5,998 households in the dataset. 

c. Household income data obtained from Statistics South Africa's Living Conditions Survey 
2014/2015, performed from October 13, 2014, to October 25, 2015. The dataset included 
23,380 households. Household income includes all receipts in the form of money and goods 
received by all household members in exchange for employment or capital investment, as well 
as receipts collected from other sources such as social grants, pensions, Etc. 

 
4. Results and Discussion 
4.1 The Measure of Lorenz Curve Asymmetry Based on Area Ratio: ℛ𝐴  

The asymmetry measure of the Lorenz curve is constructed based on the ratio of the areas and 
perimeters of the subzones OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅, respectively. This measure aims to identify the dominant 
concentration of income inequality between two income groups: the group with cumulative 
proportion of income 𝑞 ≤ 𝑞+ and the group with cumulative proportion of income 𝑞 > 𝑞+, as shown 
in Figure 1. It illustrates three component lines used in constructing the asymmetry measure: the 
egalitarian line OC̅̅̅̅ , the line AD̅̅ ̅̅  serving as the symmetry line, and the Lorenz curve OEC̅̅ ̅̅ ̅̅ . The 
egalitarian line is formed by points O, B, and C, with the angle between this line and the horizontal 
axis 𝑝 being 45° (or the angle between the egalitarian line and the vertical axis 𝑞 being 45°). The 
Lorenz curve is the curve that connects points O, E, and C, lying below the egalitarian line. The area 
between the egalitarian line and the Lorenz curve represents the magnitude of income inequality. 
When the value of income inequality is zero, the Lorenz curve coincides with the egalitarian line, 
indicating equal income distribution in society. The egalitarian line is mathematically represented by 
the equation 𝑞 = 𝑝 (the line connecting points O, B, and C in Figure 1). 

Various measures of income inequality have emerged from this concept of inequality areas, 
including the Gini index (𝐺). Based on the visualization in Figure 1, the Gini index is given by the 
following formula [27]: 

 

𝐺 =
Area  OBE̅̅ ̅̅ ̅̅ + Area OEC̅̅ ̅̅ ̅̅

Area OAC̅̅ ̅̅ ̅̅
 , 0 ≤ 𝐺 ≤ 1.                                                                                                   (14) 

Point B represents the intersection between the egalitarian line and the line AD̅̅ ̅̅ . Therefore, point 
B has coordinates (𝑝+, 𝑞+), serving as the midpoint on the egalitarian line and the center point of the 
zone OACD̅̅ ̅̅ ̅̅ ̅̅ . Since 𝑝 and 𝑞 denote the cumulative proportion of income and the cumulative 
proportion of households, respectively, they fall within the interval [0,1]. As a result, point B, the 

center point of the zone OACD̅̅ ̅̅ ̅̅ ̅̅ , has coordinates (0.5, 0.5), with 𝑝+ = 0.5 and 𝑞+ = 0.5.  
The equation of the egalitarian line is: 
 

𝑞 = 𝑝 .                                                                                                                                                                  (15) 
 
The equation of the line AD̅̅ ̅̅  is: 
 
𝑝 + 𝑞 = 1,                                                                                                                                                           (16) 
 
input Eq. (15) into (16) thus: 
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𝑝 + 𝑝 = 1                                                                                                                                                                      
 𝑝 = 0.5.                                                                                                                                                        (17) 

 
Then, input Eq. (17) into (16), thus obtained 𝑞 = 0.5. So, point B has coordinates (0.5, 0.5), so 𝑝+ =
0.5  and 𝑞+ = 0.5. 

Point 𝑞+ represents the midpoint on the vertical axis 𝑞, dividing the cumulative proportion of 
income into two levels: the cumulative proportion of income 50% and below (𝑞 ≤ 0.5),  and the 
cumulative proportion of income more than 50% (𝑞 > 0.5). Point E represents the intersection 
between the Lorenz curve and the line AD̅̅ ̅̅ , with coordinates (𝑝++, 𝑞++). The line BE̅̅̅̅ , which is a 
segment of the line AD̅̅ ̅̅ , divides the inequality zone into two subzones: OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅. The asymmetry 
measure constructed in this study is based on the ratio between the area OBE̅̅ ̅̅ ̅̅  to the area BEC̅̅ ̅̅ ̅, which 
is formulated as follows: 

ℛ𝐴 =
Area OBE̅̅ ̅̅ ̅̅

Area BEC̅̅ ̅̅ ̅
.                                                                                                                                               (18) 

 
ℛ𝐴 measures the Lorenz curve asymmetry based on the area ratio between the two inequality 

subzones. ℛ𝐴 can take several possible values, namely: 
a.  ℛ𝐴 = 1 occurs when the area OBE̅̅ ̅̅ ̅̅  equals the area BEC̅̅ ̅̅ ̅. It indicates that both groups equally 

contribute to income inequality in the group with cumulative proportion of income 𝑞 ≤ 0.5 (the 
cumulative proportion of income 50% and below) and the group with cumulative proportion of 
income 𝑞 > 0.5 (the cumulative proportion of income more than 50%). 

b. ℛ𝐴 > 1 occurs when the area OBE̅̅ ̅̅ ̅̅  is greater than the area BEC̅̅ ̅̅ ̅. This condition indicates that the 
group with cumulative proportion of income 𝑞 ≤ 0.5 contributes more to the creation of income 
inequality (income gap level) compared to the group with cumulative proportion of income 𝑞 >
0.5. 

c. ℛ𝐴 < 1 occurs when the area OBE̅̅ ̅̅ ̅̅  is less than the area BEC̅̅ ̅̅ ̅. This condition indicates that the 
group with the cumulative proportion of income 𝑞 > 0.5 has a greater contribution to the 
creation of income inequality (income gap level) than the group with cumulative proportion of 
income 𝑞 ≤ 0.5. 

 
Proposition 1 
Based on Eq. (18), the measure of Lorenz curve asymmetry based on the ratio of area subzone 
inequality is: 
 

ℛ𝐴 =
−

1
4 − (

1
2 𝑝++

2 − 𝑝++) − ∫ 𝐿(𝑝; 𝜽) 𝑑𝑝
𝑝++

0

3
4 + (

1
2 𝑝++

2 − 𝑝++) − ∫ 𝐿(𝑝; 𝜽) 𝑑𝑝
1

𝑝++

,                                                                                       (19) 

 
where  𝑝++ is the Kolkata index derived from the Lorenz function 𝐿(𝑝; 𝜽). 
 
Proof: 
a. Area  OBE̅̅ ̅̅ ̅̅  

OBE̅̅ ̅̅ ̅̅  is formed from the intersection of the egalitarian line (𝑞 = 𝑝), the Lorenz curve, and the 
line AD̅̅ ̅̅  (𝑞 = 1 − 𝑝). 
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Area  OBE̅̅ ̅̅ ̅̅ = ∫ 𝑝 − 𝐿(𝑝; 𝜽)𝑑𝑝
𝑝+

0

+ ∫ ((1 − 𝑝) − 𝐿(𝑝; 𝜽))𝑑𝑝
𝑝++

𝑝+

.                                                (20) 

 
Because 𝑝+ = 0.5, Eq. (20) becomes: 
 

Area  OBE̅̅ ̅̅ ̅̅ = ∫ (𝑝 − 𝐿(𝑝; 𝜽)) 𝑑𝑝
0.5

0

+ ∫ ((1 − 𝑝) − 𝐿(𝑝; 𝜽)) 𝑑𝑝
𝑝++

0.5

          

= −
1

4
− (

1

2
𝑝2++

2 − 𝑝++) − ∫ 𝐿(𝑝; 𝜽) 𝑑𝑝
𝑝++

0

 .                                                               (21) 

 
b. Area BEC̅̅ ̅̅ ̅ 

BEC̅̅ ̅̅ ̅ is formed by the intersection of the egalitarian line (𝑞 = 𝑝), the Lorenz curve, and the line 

AD̅̅ ̅̅  (𝑞 = 1 − 𝑝). 
 

Area BEC̅̅ ̅̅ ̅ = ∫ (𝑝 − (1 − 𝑝)) 𝑑𝑝
𝑝++

𝑝+

+ ∫ (𝑝 − 𝐿(𝑝; 𝜽)) 𝑑𝑝
1

𝑝++

                                                       (22) 

 
Since 𝑝+ = 0.5, Eq. (22) becomes: 
 

Area BEC̅̅ ̅̅ ̅ = ∫ (𝑝 − (1 − 𝑝)) 𝑑𝑝
𝑝++

0,5

+ ∫ (𝑝 − 𝐿(𝑝; 𝜽)) 𝑑𝑝
1

𝑝++

                                                                 

 

=
3

4
+ (

1

2
𝑝++

2 − 𝑝++) − ∫ 𝐿(𝑝; 𝜽) 𝑑𝑝
1

𝑝++

.                                                                        (23) 

 
Eqs. (21) and (23) are inserted into (18) to obtain the following: 
 

ℛ𝐴 =
−

1
4 − (

1
2 𝑝++

2 − 𝑝++) − ∫ 𝐿(𝑝; 𝜽) 𝑑𝑝
𝑝++

0

3
4 + (

1
2 𝑝++

2 − 𝑝++) − ∫ 𝐿(𝑝; 𝜽) 𝑑𝑝
1

𝑝++

 , Eq (19) is proved.                                                     

In Eq. (19), we have 𝑝++, which is part of the coordinates of point E, denoted as (𝑝++, 𝑞++). Point 
E represents the intersection of the Lorenz curve and the line 𝑞 = 1 − 𝑝. Geometrically, 𝑝++ is known 
as the Kolkata index [28–30], and it satisfies the following equations:  

 
𝐿(𝑝++) + 𝑝++ = 1                                                                                                                                            (24) 

𝑞++ + 𝑝++ = 1 .                                                                                                                                          (25) 
 
The Kolkata index's determination depends on the Lorenz function specification used in Eq. (24). The 
solution of Eq. (24) can be obtained analytically or numerically, depending on the specification of 
𝐿(𝑝; 𝜽). The Monte Carlo approach is employed to approximate the measure of Lorenz curve 
asymmetry ℛ𝐴 (21), which is given by: 
 

ℛ𝐴 ≈
−

1
4 − (

1
2 𝑝++

2 − 𝑝++) − (
𝑝++

ℳ  ∑ 𝐿(�̃�𝒽; 𝜽)ℳ
𝒽=1 )

3
4 + (

1
2 𝑝++

2 − 𝑝++) − (
(1 − 𝑝++)

ℳ  ∑ 𝐿(�̃�𝒽; 𝜽)ℳ
𝒽=1 )

, 𝒽 = 1, … , ℳ,                                          (26) 
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where �̃�𝒽 is generated from the Uniform distribution (0, 𝑝++). The number of �̃�𝒽 units generated is 
ℳ units. �̃�𝒽 is generated from the Uniform distribution (𝑝++, 1). There are ℳ units of �̃�𝒽 
generated. ℳ is a large number. 

Since the Lorenz function 𝐿(𝑝; 𝜽) contains a vector of parameters to be estimated using the 
Levenberg-Marquardt algorithm as described in Section 2.7. So, Eqs. (19) and (26) become Eqs. (27) 
and (28), respectively. 

 

ℛ̂𝐴 =
−

1
4 − (

1
2

(𝑝++̂)2 − 𝑝++̂) − ∫ 𝐿(𝑝; �̂�) 𝑑𝑝
𝑝++̂

0

3
4 + (

1
2

(𝑝++̂)2 − 𝑝++̂) − ∫ 𝐿(𝑝; �̂�) 𝑑𝑝
1

𝑝++̂

,                                                                              (27) 

 

≈
−

1
4

− (
1
2

(𝑝++̂)2 − 𝑝++̂) − (
𝑝++̂

ℳ
 ∑ 𝐿(�̃�𝒽; �̂�)ℳ

𝒽=1 )

3
4 + (

1
2

(𝑝++̂)2 − 𝑝++̂) − (
(1 − 𝑝++̂)

ℳ  ∑ 𝐿(�̃�𝒽; �̂�)ℳ
𝒽=1 )

, 𝒽 = 1, … , ℳ .                                (28) 

 

𝐿(𝑝; �̂�) is the Lorenz Function based on sample data of size 𝒩, where the specification contains the 

estimator �̂�. 
Geometrically, the Gini index is the ratio of the inequality area to the triangle OAC̅̅ ̅̅ ̅̅  in Figure1 

presented in Eq. (14). Based on Figure 1, the information that the inequality area is the sum of areas 
OBE̅̅ ̅̅ ̅̅  and BEC̅̅ ̅̅ ̅, and the area of the triangle OAC̅̅ ̅̅ ̅̅  is 0.5, so Eq. (14) becomes: 

 

𝐺 =
Area OBE̅̅ ̅̅ ̅̅ + Area  BEC̅̅ ̅̅ ̅ 

Area  OAC̅̅ ̅̅ ̅̅
                                                                                                                                    

 

= 2 × (Area OBE̅̅ ̅̅ ̅̅ + Area BEC̅̅ ̅̅ ̅) .                                                                                                               (29) 
 
Proposition 2 
The relation between the asymmetry measures ℛ𝐴, and the Gini index is: 
 

ℛ𝐴 =
𝐺 

3
2 + (𝑝++

2 − 2𝑝++) − 2 ∫ 𝐿(𝑝; 𝜽)𝑑𝑝
1

𝑝++

− 1 .                                                                                    (30) 

 
Proof: 
Relate Eq. (29) and ℛ𝐴 so that it becomes: 
 

𝐺 = 2((ℛ𝐴 × Area BEC̅̅ ̅̅ ̅) + Area  BEC̅̅ ̅̅ ̅)                                                                                                                
 

ℛ𝐴 =
𝐺

2 × Area  BEC̅̅ ̅̅ ̅
− 1 .                                                                                                                               (31) 

 
Insert Eq. (23) into (31), and it becomes: 
 

ℛ𝐴 =
𝐺 

2 (
3
4 + (

1
2 𝑝++

2 − 𝑝++) − ∫ 𝐿(𝑝; 𝜽)𝑑𝑝
1

𝑝++
)

− 1                        

 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 1 (2024) 99-130 

112 

 

 

 

      =
𝐺 

3
2 + (𝑝++

2 − 2𝑝++) − 2 ∫ 𝐿(𝑝; 𝜽)𝑑𝑝
1

𝑝++

− 1 .  So, Eq. (30) is proved.                  

 
4.2 The Measure of Lorenz Curve Asymmetry Based on Perimeter Ratio: ℛ𝑃 

The asymmetry measure is constructed based on the perimeter ratio between the two subzones 
of inequality. Therefore, this study also proposes a Lorenz curve asymmetry measure based on the 
ratio between the perimeters OBE̅̅ ̅̅ ̅̅  and  BEC̅̅ ̅̅ ̅, as illustrated in Figure 1. The measure of Lorenz curve 
asymmetry using the perimeter approach is formulated as follows: 

 

ℛ𝑃 =
perimeter OBE̅̅ ̅̅ ̅̅

perimeter BEC̅̅ ̅̅ ̅
                                                                                                                                                

=
length OB̅̅ ̅̅ + length BE̅̅̅̅ + length OE̅̅ ̅̅

length BC̅̅̅̅ + length BE̅̅̅̅ + length EC̅̅̅̅
.                                                                                              (32) 

 
ℛ𝑃 represents the Lorenz curve asymmetry measure based on the perimeter ratio of subzone 
inequality. It can take on several possible values, including: 

a. ℛ𝑃 = 1 occurs when the perimeter OBE̅̅ ̅̅ ̅̅  equals the perimeter BEC̅̅ ̅̅ ̅. This value indicates that 
both groups contribute equally to income inequality (income gap level) in the group with 
cumulative proportion of income 𝑞 ≤ 0.5 and the group with the cumulative proportion of 
income 𝑞 > 0.5. 

b. ℛ𝑃 > 1 occurs when the perimeter OBE̅̅ ̅̅ ̅̅  is greater than the perimeter BEC̅̅ ̅̅ ̅. This value indicates 
that the group with cumulative proportion of income 𝑞 ≤ 0.5 contributes more to creating 
income inequality (income gap level) than the group with cumulative proportion of income 𝑞 >
0.5. 

c. ℛ𝑃 < 1 occurs when the perimeter OBE̅̅ ̅̅ ̅̅  is less than the perimeter BEC̅̅ ̅̅ ̅. This value indicates that 
the group with cumulative proportion of income 𝑞 > 0.5 has a greater contribution to the 
creation of income inequality (income gap level) compared to the group with cumulative 
proportion of income 𝑞 ≤ 0.5. 

Based on Figure 1 and Section 4.1, the following information can be obtained: 
(1) Length OA̅̅ ̅̅ = OD̅̅ ̅̅ = AC̅̅̅̅ = CD̅̅ ̅̅ = 1. 
(2) Length OC̅̅̅̅ = AD̅̅ ̅̅  . 

        Length OC̅̅ ̅̅ = √(OA̅̅ ̅̅ )2 + (AC̅̅̅̅ )2 = √12 + 12 = √2 .                                             

(3) Length OB̅̅ ̅̅ = BC̅̅̅̅ = AB̅̅ ̅̅ = BD̅̅ ̅̅ = OC̅̅̅̅
2⁄ = AD̅̅ ̅̅

2⁄ , thus: 

Length OB̅̅ ̅̅ = BC̅̅̅̅ = AB̅̅ ̅̅ = BD̅̅ ̅̅ =
√2

2
 .                                                                                                             

The length OB̅̅ ̅̅  can also be obtained from the coordinates of point B, which are 𝑝+ = 0.5, 𝑞+ = 0.5, 
and the triangle O𝑝+B̅̅ ̅̅ ̅̅ ̅ is a right triangle, thus:  

Length OB̅̅ ̅̅ = √𝑝+
2 + 𝑞+

2 = √(
1

2
)

2

+ (
1

2
)

2

= √
1

2
=  

√2

2
 .                                                                      (33) 

 
Proposition 3 
The length BE̅̅̅̅  is a hypotenuse of a right triangle (see Figure 1): 
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Length BE̅̅̅̅ = (𝑝++ −
1

2
) √2 .                                                                                                                         (34) 

Proof: 
Since the coordinates of point B, i.e. 𝑝+ = 0.5, 𝑞+ = 0.5 and BE̅̅̅̅  is the hypotenuse, it follows: 
 

Length BE̅̅̅̅ = √(𝑝++ −
1

2
)

2

+ (
1

2
− 𝑞++)

2

 .                                                                                              (35) 

 
Based on Eq. (25), Eq. (35) becomes (34). 
 
Proposition 4 
The measure of Lorenz curve asymmetry based on the ratio of the perimeter of  OBE̅̅ ̅̅ ̅̅  to  BEC̅̅ ̅̅ ̅ is: 
 

ℛ𝑃 =
𝑝++√2 + ∫ √1 + (𝐿′(𝑝; 𝜽))

2𝑝++

0
𝑑𝑝

𝑝++√2 + ∫ √1 + (𝐿′(𝑝; 𝜽))
21

𝑝++
𝑑𝑝

 .                                                                                               (36) 

 
Proof: 
Length OE̅̅ ̅̅  and EC̅̅̅̅  are, respectively: 
 

Length OE̅̅ ̅̅ = ∫ √1 + (𝐿′(𝑝; 𝜽))
2

𝑝++

0

𝑑𝑝 .                                                                                                   (37) 

Length EC̅̅̅̅ = ∫ √1 + (𝐿′(𝑝; 𝜽))
2

1

𝑝++

𝑑𝑝   .                                                                                                   (38) 

Eqs. (33), (34), (37), and (38) are inserted into Eq. (32), thus: 
 

ℛ𝑃 =
𝑝++√2 + ∫ √1 + (𝐿′(𝑝; 𝜽))

2𝑝++

0
𝑑𝑝

𝑝++√2 + ∫ √1 + (𝐿′(𝑝; 𝜽))
21

𝑝++
𝑑𝑝

  .                                                                                                         

 
So, Eq. (36) is proved. It comprises integral components in both the numerator and denominator. If 
the integral component cannot be solved analytically, the Monte Carlo approach can obtain the 
solution using Eq. (3). Therefore, the measure of asymmetry ℛ𝑃, using the Monte Carlo approach, is 
given by: 

ℛ𝑃 ≈
𝑝++√2 +

𝑝++

ℳ  ∑ √1 + (𝐿′(�̃�𝒽; 𝜽))
2ℳ

𝒽=1

𝑝++√2 + (
(1 − 𝑝++)

ℳ  ∑ √1 + (𝐿′(�̃�𝒽; 𝜽))
2ℳ

𝒽=1 )

 ,                                                                       (39) 

 
where �̃�𝒽 is generated from the Uniform distribution (0, 𝑝++), the number of �̃�𝒽 units generated is 
ℳ units, and �̃�𝒽 is generated from the Uniform distribution (𝑝++, 1). There are ℳ units of �̃�𝒽 
generated. 
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Since the Lorenz function 𝐿(𝑝; 𝜽) contains a vector of parameters to be estimated using the 
Levenberg-Marquardt algorithm as described in Section 2.7, the formulations (36) and (39) become 
Eqs. (40) and (41), respectively: 

 

ℛ̂𝑃 =
𝑝++̂√2 + ∫ √1 + (𝐿′(𝑝; �̂�))

2𝑝++̂

0
𝑑𝑝

𝑝++̂√2 + ∫ √1 + (𝐿′(𝑝; �̂�))
21

𝑝++̂
𝑑𝑝

                                                                                                (40) 

≈
𝑝++̂√2 +

𝑝++̂

ℳ  ∑ √1 + (𝐿′(�̃�𝒽; �̂�))
2

ℳ
𝒽=1

𝑝++̂√2 + (
(1 − 𝑝++̂)

ℳ  ∑ √1 + (𝐿′(�̃�𝒽; �̂�))
2

ℳ
𝒽=1 )

 .                                                                      (41) 

 
4.3 Formulations of ℛ𝐴 and ℛ𝑃 Based on Four Types of Lorenz functions 

Several well-known Lorenz function specifications, namely derive the ℛ𝐴 and ℛ𝑃 formulations: 
a. Lorenz-Sarabia Function 

The Lorenz-Sarabia function has a specification as presented in Eq. (42) [11]: 
 

𝐿𝑆𝐵(𝑝; 𝛾) = 𝑝𝛾, 𝛾 ≥ 1;  0 ≤ 𝑝 ≤ 1 .                                                                                                      (42) 
 
The ℛ𝐴 formulation derived from Eq. (42) is 
 

ℛ𝐴𝑆𝐵
=

−
1
4 − (

1
2 𝜅𝑆𝐵

2 − 𝜅𝑆𝐵) −
(𝜅𝑆𝐵)𝛾+1

𝛾 + 1
3
4 + (

1
2 𝜅𝑆𝐵

2 − 𝜅𝑆𝐵) −
1

𝛾 + 1
(1 − (𝜅𝑆𝐵)𝛾+1)

,                                                                       (43) 

where 𝜅𝑆𝐵  is the Kolkata index derived from Eq. (42). 
The ℛ𝑃 formulation derived from Eq. (42) is 

ℛ𝑃𝑆𝐵
=

𝜅𝑆𝐵√2 + 𝒱

𝜅𝑆𝐵√2 + ( F2 1 (
1

2(𝛾 − 1)
, −

1
2 , 1 +

1
2(𝛾 − 1)

, −𝛾2) − 𝒱)
,                                           (44) 

where: 

𝒱 = 𝜅𝑆𝐵 F2 1 (
1

2(𝛾 − 1)
, −

1

2
; 1 +

1

2(𝛾 − 1)
; −(𝛾(𝜅𝑆𝐵)𝛾−1)2) 

F2 1(𝒜, ℬ; 𝒞; 𝒟) is the hypergeometric function. 
 

b. Lorenz-Hossain & Saeki (Lorenz-HS) Function 
The Lorenz-HS function has a specification as presented in Eq. (45) [4]: 
 

𝐿𝐻𝑆(𝑝; 𝜎1, 𝜎2, 𝜎3) = 𝑝𝜎1𝑒𝜎2(𝑝−1)(1 − (1 − 𝑝)𝜎3), 𝜎1 ≥ 0; 𝜎2 ≥ 0; 0 < 𝜎3 ≤ 1; 0 ≤ 𝑝 ≤ 1.   (45) 
 
The ℛ𝐴 and ℛ𝑃 formulations derived based on Eq. (45) are not close-form, so the formulations 
use a Monte Carlo approach. The ℛ𝐴 formulation derived from Eq. (45) using the Monte Carlo 
approach is 
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ℛ𝐴𝐻𝑆
≈

−
1
4 − (

1
2 𝜅𝐻𝑆

2 − 𝜅𝐻𝑆) − (
𝜅𝐻𝑆

ℳ  ∑ (�̃��̃�)
𝜎1

𝑒𝜎2(𝑧�̃�−1)(1 − (1 − �̃��̃�)
𝜎3

)ℳ
𝒽=1 )

3
4 + (

1
2 𝜅𝐻𝑆

2 − 𝜅𝐻𝑆) − (
(1 − 𝜅𝐻𝑆)

ℳ  ∑ ( �̃��̃�)
𝜎1

𝑒𝜎2( �̃��̃�−1)(1 − (1 −  �̃��̃�)
𝜎3

)ℳ
𝒽=1 )

,       (46) 

 

where 𝜅𝐻𝑆 is the Kolkata index derived from 𝐿𝐻𝑆(𝑝), �̃��̃� is generated from the Uniform 

distribution (0, 𝜅𝐻𝑆). The number of �̃��̃� units generated is M units. �̃��̃� is generated from the 

Uniform distribution (𝜅𝐻𝑆, 1). The number of units �̃��̃� generated is ℳ units. ℳ is a large 
number. The ℛ𝑃 formulation derived from Eq. (45) using the Monte Carlo approach is 
 

ℛ𝑃𝐻𝑆
≈

𝜅𝐻𝑆√2 +
𝜅𝐻𝑆

ℳ  ∑ √1 + (𝐿𝐻𝑆
′ (�̃��̃�; 𝜎1, 𝜎2, 𝜎3))

2
ℳ
𝒽=1

𝜅𝐻𝑆√2 + (
(1 − 𝜅𝐻𝑆)

ℳ  ∑ √1 + (𝐿𝐻𝑆
′ (�̃�𝒽; 𝜎1, 𝜎2, 𝜎3

̃ ))
2

ℳ
𝒽=1 )

,                                             (47) 

𝐿𝐻𝑆
′ (. ) is the first derivative of 𝐿𝐻𝑆(𝑝; 𝜎1, 𝜎2, 𝜎3) with respect to 𝑝. 

 
c. Lorenz-Rohde Function 

The Lorenz-Rohde function has a specification as presented in Eq. (48) [7]: 
 

𝐿𝑅(𝑝; 𝑎𝑅) =
(𝑎𝑅 − 1)𝑝

𝑎𝑅 − 𝑝
, 𝑎𝑅 > 1, 0 ≤ 𝑝 ≤ 1                                                                                       (48) 

 
The ℛ𝐴 formulation derived from Eq. (48) is 
 

ℛ𝐴𝑅
 =

−
1
4 − (

1
2 𝜅𝑅

2 − 𝜅𝑅) − (1 − 𝑎𝑅) (𝜅𝑅 + 𝑎𝑅 log (|1 −
𝜅𝑅

𝑎𝑅
|))

3
4 + (

1
2 𝜅𝑅

2 − 𝜅𝑅) − (1 − 𝑎𝑅) (1 − 𝜅𝑅 + 𝑎𝑅 log (|
1 − 𝑎𝑅

𝜅𝑅 − 𝑎𝑅
|))

,                                        (49) 

𝜅𝑅 = 𝑎𝑅 − √𝑎𝑅
2 − 𝑎𝑅, and 𝜅𝑅 is the Kolkata index derived from Eq. (48). 

 
The ℛ𝑃 formulation derived from Eq. (48) is: 
 

ℛ𝑃𝑅
=

𝜅𝑅√2 + (𝜅𝑅 − 𝑎𝑅) 𝐹2 1 (−
1
2

, −
1
4

;
3
4

; −
𝑎𝑅

2 (𝑎𝑅 − 1)2

(𝑎𝑅 − 𝜅𝑅)4 ) + 𝑎𝑅 𝐹2 1 (−
1
2

, −
1
4

;
3
4

; −
(𝑎𝑅 − 1)2

𝑎𝑅
2 )

𝜅𝑅√2 + (1 − 𝑎𝑅) 𝐹2 1 (−
1
2

, −
1
4

;
3
4

; −
𝑎𝑅

2

(𝑎𝑅 − 1)2) − (𝜅𝑅 − 𝑎𝑅) 𝐹2 1 (−
1
2

, −
1
4

;
3
4

; −
𝑎𝑅

2 (𝑎𝑅 − 1)2

(𝑎𝑅 − 𝜅𝑅)4 )

.     (50) 

 

d. Lorenz-Chotikapanich Functions 
The Lorenz-Chotikapanich function is formulated as follows [9]: 
 

𝐿𝐶(𝑝; ℵ) =
𝑒ℵ𝑝 − 1

𝑒ℵ − 1
, ℵ > 1, 0 ≤ 𝑝 ≤ 1.                                                                                               (51) 

 
The ℛ𝐴  formulation derived from the Lorenz-Chotikapanich function (51) using the Monte Carlo 
approach is as follows: 
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ℛ𝐴𝐶
≈

−
1
4 − (

1
2 𝜅𝐶

2 − 𝜅𝐶) − (
𝜅𝐶

ℳ  ∑
𝑒ℵ𝑧𝒽

∗∗∗
− 1

𝑒ℵ − 1
ℳ
𝑗=1 )

3
4 + (

1
2 𝜅𝐶

2 − 𝜅𝐶) − (
(1 − 𝜅𝐶)

ℳ  ∑
𝑒ℵ�̃�𝒽

∗∗∗
− 1

𝑒ℵ − 1
ℳ
𝑗=1 )

 ,                                                               (52) 

 
where 𝜅𝐶  is the Kolkata index derived from the Lorenz-Chotikapanich function (51), �̃�𝒽

∗∗∗ is 
generated from the Uniform distribution (0, 𝜅𝐶) with the number of �̃�𝒽

∗∗∗ units generated being 
ℳ units. �̃�𝒽

∗∗∗ is generated from the Uniform distribution (𝜅𝐶 , 1) with the number of �̃�𝒽
∗∗∗ units 

generated being ℳ units. 
The ℛ𝑃 formulation derived from the Lorenz-Chotikapanich function (51) using the Monte 

Carlo approach is as follows: 

ℛ𝑃𝐶
≈

𝜅𝐶√2 +
𝜅𝐶

ℳ  ∑ √1 + (
ℵ𝑒ℵ𝑧𝒽

∗∗∗

𝑒ℵ − 1
)

2

ℳ
𝒽=1

𝜅𝐶√2 + (
(1 − 𝜅𝐶)

ℳ
∑ √1 + (

ℵ𝑒ℵ�̃�𝒽
∗∗∗

𝑒ℵ − 1
)

2

ℳ
𝒽=1 )

 .                                                                     (53) 

 
4.3 Hypothesis Testing of Lorenz Curve Symmetry Using ℛ𝐴 and ℛ𝑃 
 

The Lorenz curve symmetry hypothesis testing is constructed using the nonparametric bootstrap, 
as explained in Section 2.5. The flowchart of the Lorenz curve symmetry hypothesis testing based on 
ℛ𝐴 and ℛ𝑃 is presented in Figure 5. The following is an explanation of the steps to test the Lorenz 
curve symmetry hypothesis:  
(1) Hypothesis statement  

H0: ℛ𝐴 = 1  (Symmetrical Lorenz curve) versus H1: ℛ𝐴 ≠ 1  (Asymmetrical Lorenz curve) 
Or  
H0: ℛ𝑃 = 1  (Symmetrical Lorenz curve) versus H1: ℛ𝑃 ≠ 1  (Asymmetrical Lorenz curve) 

(2) From the observation data 𝑥𝑗 , 𝑗 = 1, … , 𝒩 is cumulatively proportioned to obtain data 

𝑝𝑖 and 𝑞𝑖, 𝑖 = 0,1, … , 𝒩; 𝑝0 = 0, 𝑝𝒩 = 1, 𝑞0 = 1, 𝑞𝒩 = 1, where the cumulative proportion 
process is explained in Section 2.6. Furthermore, these 𝑝𝑖 and 𝑞𝑖 data are input materials for 
Lorenz curve fitting. Determine the best fitting Lorenz function to the empirical Lorenz curve 
from the candidates of the Lorenz function based on the minimum mean squared error (MSE) 
and/or mean absolute error (MAE). 

(3) From Step (2): 

i. Calculate ℛ̂𝐴 using Eq. (27) or (28), and calculate 𝜏(ℛ̂𝐴) based on Eq. (4). 

 

𝜏(ℛ̂𝐴) = (𝒩 + 1)(ℛ̂𝐴 − 1)
2

.                                                                                                         (54)  

 
Suppose the Lorenz-Sarabia, Lorenz-HS, Lorenz-Rohde, and Lorenz-Chotikapanich functions 

fit the empirical Lorenz curve. In this case, ℛ̂𝐴 can be replaced by estimation of ℛ𝐴𝑆𝐵
 (43), 

ℛ𝐴𝐻𝑆
 (46), ℛ𝐴𝑅

 (49), or ℛ𝐴𝐶
 (52), respectively. 

ii. Calculate ℛ̂𝑃 using Eq. (40) or (41), and calculate 𝜏(ℛ̂𝑃) based on Eq. (4). 

 

𝜏(ℛ̂𝑃) = (𝒩 + 1)(ℛ̂𝑃 − 1)
2

.                                                                                                        (55) 
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Suppose the Lorenz-Sarabia, Lorenz-HS, Lorenz-Rohde, and Lorenz-Chotikapanich functions 

fit the empirical Lorenz curve. In that case, ℛ̂𝐴 can be replaced by estimation of ℛ𝑃𝑆𝐵
 (44), 

ℛ𝑃𝐻𝑆
 (47), ℛ𝑃𝑅

 (50), or ℛ𝑃𝐶
 (53), respectively. 

(4) Perform resampling 𝔹 times (𝓃 = 1, … , 𝔹) on observation data 𝑥𝑗 with a bootstrap sample size 

of 𝒩 units. From the resampling result data: 

i. Based on the 𝓃-th bootstrap sample, 𝑥𝑗
[𝓃]

; 𝓃 = 1, … , 𝔹, of size N units, process the 

cumulative proportions to obtain 𝑝𝑖
[𝓃]

 and 𝑞𝑖
[𝓃]

 as described in Section 2.6. 

ii. Use the 𝑝𝑖
[𝓃]

 and 𝑞𝑖
[𝓃]

 from Step (4).i for Lorenz curve fitting using the Lorenz function 

defined. 
iii. From the Step (4).ii: 

a. Calculate ℛ̂𝐴
[𝓃]

 using Eq. (27) or (28). Suppose the Lorenz-Sarabia, Lorenz-HS, Lorenz-
Rohde, and Lorenz-Chotikapanich functions fit the empirical Lorenz curve. In this case, 

ℛ̂𝐴 can be replaced by estimation of ℛ𝐴𝑆𝐵
 (43), ℛ𝐴𝐻𝑆

 (46), ℛ𝐴𝑅
 (49), or ℛ𝐴𝐶

 (52), 

respectively. 

b. Calculate ℛ̂𝑃
[𝓃]

 using Eq. (40) or (41). Suppose the Lorenz-Sarabia, Lorenz-HS, Lorenz-
Rohde, and Lorenz-Chotikapanich functions fit the empirical Lorenz curve. In this case, 

ℛ̂𝑃 can be replaced by estimation of ℛ𝑃𝑆𝐵
 (44), ℛ𝑃𝐻𝑆

 (47), ℛ𝑃𝑅
 (50), or ℛ𝑃𝐶

 (53), 

respectively. 
iv. From Step (4).iii: 

a. Calculate the statistics 𝜏𝓃(ℛ̂𝐴) based on Eq. (5). 

 

𝜏𝓃(ℛ̂𝐴) = (𝒩 + 1) (ℛ̂𝐴
[𝓃]

− ℛ̂𝐴)
2

.                                                                                      (56) 

 

b. Calculate the statistics 𝜏𝓃(ℛ̂𝑃) based on Eq. (5). 

 

𝜏𝓃(ℛ̂𝑃) = (𝒩 + 1) (ℛ̂𝑃
[𝓃]

− ℛ̂𝑃)
2

.                                                                                      (57) 

(5) Based on Step (4), construct the p-value 𝜌 (𝜏(ℛ̂𝐴)) and 𝜌 (𝜏(ℛ̂𝑃)) based on Eq. (6). 

 

𝜌 (𝜏(ℛ̂𝐴)) = 2 min (
1

𝔹
∑ 𝐼 (𝜏𝓃(ℛ̂𝐴) ≤ 𝜏(ℛ̂𝐴))

𝔹

𝓃=1

,
1

𝔹
∑ 𝐼 (𝜏𝓃(ℛ̂𝐴) > 𝜏(ℛ̂𝐴))

𝔹

𝓃=1

).                   (58) 

𝜌 (𝜏(ℛ̂𝑃)) = 2 min (
1

𝔹
∑ 𝐼 (𝜏𝓃(ℛ̂𝑃) ≤ 𝜏(ℛ̂𝑃))

𝔹

𝓃=1

,
1

𝔹
∑ 𝐼 (𝜏𝓃(ℛ̂𝑃) > 𝜏(ℛ̂𝑃))

𝔹

𝓃=1

).                  (59) 

 
(6) Based on Step (5): 

i. The hypothesis testing decision using 𝜌 (𝜏(ℛ̂𝐴)) is: 

a. If 𝜌 (𝜏(ℛ̂𝐴)) < 𝛼, then H0 is rejected, and the conclusion is that the Lorenz curve is 

asymmetric. 

b. If 𝜌 (𝜏(ℛ̂𝐴)) ≥ 𝛼, then H0 failed to be rejected, and the conclusion is that the Lorenz 

curve is symmetric. 
x 
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Fig. 5. Steps for hypothesis testing of Lorenz curve symmetry using nonparametric bootstrap 

 

ii. The hypothesis testing decision using 𝜌 (𝜏(ℛ̂𝑃)) is: 

a. If 𝜌 (𝜏(ℛ̂𝑃)) < 𝛼, then H0 is rejected, and the conclusion is that the Lorenz curve is 

asymmetric. 

b. If 𝜌 (𝜏(ℛ̂𝑃)) ≥ 𝛼, then H0 failed to be rejected, and the conclusion is that the Lorenz 

curve is symmetric. 
 

Statistics 𝜏𝓃(ℛ̂𝐴) 

and 𝜏𝓃(ℛ̂𝑃) based 

on Eqs. (56) and 
(57), respectively 

a. Based on ℛ𝐴 
       H0: ℛ𝐴 = 1 versus H1: ℛ𝐴 ≠ 1 
b.Based on ℛ𝑃 
       H0: ℛ𝑃 = 1 versus H1: ℛ𝑃 ≠ 1 

 

Data 𝑥𝑗, 𝑗 = 1, … , 𝒩 

Cumulative proportion based on 
the explanation of Section 2.6 to 

get 𝑝𝑖 and 𝑞𝑖 

Fitting the Lorenz curve with the 
best Lorenz function indicated by 
the minimum MSE and/or MAE. 

Statistics 𝜏(ℛ̂𝐴) and 𝜏(ℛ̂𝑃) based 

on Eqs. (54) and (55), respectively 

For 𝓃 = 1, … , 𝔹 

Resampling with a 
bootstrapped sample 

size of 𝒩 

 𝑥𝑗
[𝓃]

, 𝑗 = 1, … , 𝒩 

Cumulative proportion based 
on the explanation of Section 

2.6 to get 𝑝𝑖 and 𝑞𝑖 
 

Fitting the Lorenz curve with 
the best Lorenz function 

indicated by the minimum 
MSE and/or MAE. 

 

Start 

p-value 𝜌 (𝜏(ℛ̂𝐴)) and 

𝜌 (𝜏(ℛ̂𝑃)) based on Eqs. 

(58) and (59), respectively 

Decision: 

a. If (𝜌 (𝜏(ℛ̂𝐴)) ∨  𝜌 (𝜏(ℛ̂𝐴))) < 𝛼, 

then H0 rejected 

b. If (𝜌 (𝜏(ℛ̂𝑃)) ∨  𝜌 (𝜏(ℛ̂𝑃))) ≥ 𝛼, 

then H0 failed to be rejected. 

 

Conclusion 

Finish 
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Testing the Lorenz curve symmetry hypothesis using both ℛ̂𝐴 and ℛ̂𝑃 provides a consistent 

decision because the Monte Carlo process generates sequences 𝜏𝓃(ℛ̂𝐴) and 𝜏𝓃(ℛ̂𝑃) that have 

varying values so that the determination of the symmetrical or asymmetrical decision of the Lorenz 
curve is based on the proportion which is the p-value presented in Eqs. (58) and (59). Then, due to 
the nature of the Lorenz curve, which is essentially a visualization of a convex function bounded by 
the interval [0,1], the change between the perimeter and the area of the inequality zone is consistent 
and coherent. Hence, this condition also makes the decision results from testing the Lorenz curve 

symmetry hypothesis using either ℛ̂𝐴 or ℛ̂𝑃 consistent and coherent. 
 
4.5 Bootstrap Confidence Interval of ℛ𝐴 and ℛ𝑃 
 

To corroborate the results of the Lorenz curve symmetry test through bootstrapping, we 
constructed bootstrap confidence intervals of ℛ𝐴 and ℛ𝑃 by adopting the Chen-Shao algorithm [31], 
which was originally used to construct the highest probability density (HPD) interval from Markov 
chain Monte Carlo (MCMC) samples. We have argued for using the Chen-Sao algorithm to anticipate 
the asymmetry of the sampling distribution of statistic/estimator calculated from bootstrap samples. 
The following are the steps to form confidence intervals based on bootstrap samples: 

(1) Determine the bootstrap samples of ℛ𝐴 and ℛ𝑃, which are ℛ̂𝐴
[𝓃]

 and ℛ̂𝑃
[𝓃]

, respectively, 𝓃 =
1, … , 𝔹. 

(2) Based on the result of Step (1), sort ℛ̂𝐴
[𝓃]

 and ℛ̂𝑃
[𝓃]

 from the lowest to the largest value so that 

the set of ℛ𝐴 and ℛ𝑃 containing their respective member elements is obtained: ℛ̂𝐴
(1)

≤ ℛ̂𝐴
(2)

≤

⋯ ≤ ℛ̂𝐴
(𝔹)

 and ℛ̂𝑃
(1)

≤ ℛ̂𝑃
(2)

≤ ⋯ ≤ ℛ̂𝑃
(𝔹)

. 
(3) Based on the results from Step (2), calculate the 100(1 − 𝛼)% interval for each of ℛ𝐴 and ℛ𝑃 

is: 

a. ℜℛ𝐴

𝑘 = (ℛ̂𝐴
(𝑘)

, ℛ̂𝐴
(𝑘+(1−𝛼)𝔹)

), 𝑘 = 1,2, … , 𝔹 − ((1 − 𝛼)𝔹). 

b. ℜℛ𝑃

𝑘 = (ℛ̂𝑃
(𝑘)

, ℛ̂𝑃
(𝑘+(1−𝛼)𝔹)

), 𝑘 = 1,2, … , 𝔹 − ((1 − 𝛼)𝔹), 

(4) 100(1 − 𝛼)% HPD interval, only one unit is symbolized by ℜ𝑘∗
. It is the bootstrap confidence 

interval with the shortest width among all confidence intervals based on Step (3). 
 
4.6 Empirical Study 

In this section's empirical study, the Lorenz curve in three regions, namely Banten Province in 
Indonesia, Ghana, and South Africa, is modeled using four specifications of the Lorenz function. 

 
4.6.1. The Case of Banten Province in Indonesia 

Figure 6 illustrates the visual fitting of the Lorenz curve using the Lorenz-Sarabia, Lorenz-HS, 
Lorenz-Rohde, and Lorenz-Chotikapanich functions. The Lorenz-Rohde and Lorenz-HS functions 
closely align with the empirical Lorenz curve. Judging whether the Lorenz curve is symmetric or 
asymmetric and assessing the significance of any asymmetry in the empirical Lorenz curve presents 
a challenge. Consequently, determining the Lorenz function that best fits the empirical data is 
essential in acquiring a credible measure of asymmetry for the empirical Lorenz curve. Among the 
four candidate Lorenz functions (Lorenz-Sarabia, Lorenz-HS, Lorenz-Rohde, and Lorenz-
Chotikapanich), the selected Lorenz function yields the lowest MSE or MAE. This selection determines 
the value of the asymmetry measure corresponding to the condition of the empirical Lorenz curve. 
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Fig. 6. Empirical Lorenz curve Fitting by Lorenz-Sarabia, 
Lorenz-HS, Lorenz-Rohde, Lorenz-Chotikapanich functions, 
Banten Province 2020 

 

The findings in Table 4 demonstrate that the Lorenz-HS function exhibits the lowest MSE and 
MAE values compared to the Lorenz-Sarabia, Lorenz-Rohde, and Lorenz-Chotikapanich functions. 
This information indicates that the Lorenz-HS function is the most precise in fitting the empirical 
Lorenz curve in Banten Province for 2020. Consequently, the asymmetry measures ℛ𝐴 and ℛ𝑃 
calculated by the Lorenz-HS function accurately reflect the true condition of the empirical Lorenz 
curve. 
 

Table 4 
Parameter estimation results, MSE, and MAE of Lorenz-Sarabia, Lorenz-HS, Lorenz-Rohde, Lorenz-
Chotikapanich Functions, Banten Province in 2020 

Lorenz Function Estimator Value estimate MSE MAE 

Lorenz-Sarabia 𝛾 2.2158 2.0105 × 10-3 3.8762 × 10-2 

Lorenz-HS 

�̂�1 0.2530 

1.0262 × 10-6 7.8351 × 10-4 �̂�2 0.2693 

�̂�3 0.5984 

Lorenz-Rohde �̂�𝑅 1.4553 2.3323 × 10-4 1.1231 × 10-2 

Lorenz-Chotikapanich ℵ̂ 2.4404 6.2743 × 10-4 1.8799 × 10-2 

 

Table 5 displays the estimated values of the Kolkata index and asymmetry measures (ℛ̂𝐴 and ℛ̂𝑃) 
of the Lorenz curves, which were computed using the Lorenz-HS function. The Kolkata index is 
instrumental in constructing the asymmetry measures in this study. Its interval is [0.5,1], signifying 
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that a value such as 0.6345 indicates a lower degree of income distribution inequality. Utilizing the 
Lorenz-HS function, we obtained estimated values of ℛ𝐴 and ℛ𝑃 as 0.9446 and 0.9974, respectively. 
If we consider only mathematical criteria without any probabilistic mechanism, the Lorenz curve, 
represented by the Lorenz-HS function, would be classified as asymmetric under Condition 2. 

However, the values of ℛ̂𝐴 and ℛ̂𝑃 produced by the Lorenz-HS function are proximate to 1. 
Consequently, it is imperative to test the hypothesis of Lorenz curve symmetry to determine whether 
the empirical Lorenz curve is symmetric or asymmetric 
 

Table 5 

Value estimate of asymmetry measures of Kolkata Index, ℛ̂𝐴, and ℛ̂𝑃 Based 
on the Lorenz-HS Function, Banten Province in 2020 

Lorenz Function Kolkata Index (𝑝++̂) ℛ̂𝐴 ℛ̂𝑃 
Lorenz-HS 0.6345 0.9446 0.9974 

Table 6 
Results of Lorenz curve symmetry test and bootstrap confidence interval of ℛ𝐴 and ℛ𝑃, 
Banten Province in 2020 

Statistical 
Hypothesis 

Test Statistic p-value Decision 

H0: ℛ𝐴 = 1 
H1: ℛ𝐴 ≠ 1 

𝜏(ℛ̂𝐴) = 21.3566 0.0000 H0 is rejected at 5% significance level (𝛼 = 0.05). 

H0: ℛ𝑃 = 1 
H1: ℛ𝑃 ≠ 1 

𝜏(ℛ̂𝑃) = 0.0477 0.0000 H0 is rejected at 5% significance level. 

The bootstrap confidence interval of ℛ𝐴(ℜℛ𝐴

𝑘∗
): 0.9297 ≤ ℛ𝐴 ≤ 0.9599 

The bootstrap confidence interval of ℛ𝑃(ℜℛ𝑃

𝑘∗
): 0.9966 ≤ ℛ𝑃 ≤ 0.9982 

Note: In testing the hypothesis through a nonparametric bootstrap, replication was conducted in 4,000 
replications (𝔹=4,000).  

 
The results of the Lorenz curve symmetry test, as presented in Table 6, corroborate the 

information previously discussed. As can be seen in Table 6, both p-values of (ℛ̂𝐴) and 𝜏(ℛ̂𝑃) are 

0.0000, which is below the 5% significance level. This finding is further substantiated by the bootstrap 
confidence intervals of ℛ𝐴 and ℛ𝑃, which do not encompass the value 1. Both the upper and lower 
bounds of these intervals are less than 1. Consequently, this observation suggests the existence of 
an upper right bulge, indicative of the Lorenz curve’s asymmetry. Furthermore, it reveals that the 
group with a cumulative proportion of income greater than 0.5 (𝑞 > 0.5) contributes more to 
inequality generation than the group with a cumulative proportion of income less than or equal to 
0.5 (the Lorenz curve of asymmetric Condition 2). 

The hypothesis testing of Lorenz curve symmetry, based on ℛ𝐴 and ℛ𝑃 in Banten Province in 
2020, concluded that the most significant contribution to income inequality originated from the 
upper middle-income group (the group with cumulative proportion of income greater than 0.5 𝑞 >
0.5). Therefore, the local government can implement policies prioritizing the upper middle-income 
group to reduce income inequality and foster conditions for income redistribution to the lower 
middle-income group. These policies include: 

a. Increasing taxes for individuals earning more than IDR 120 million per year. The values of ℛ̂𝐴 and 

ℛ̂𝑃 indicate that the group primarily contributes income inequality with a cumulative proportion 
of income more than 0.5 (upper middle-income class). According to Deloitte Southeast Asia [32], 
consumer income is classified into four income classes: 
• Upper income class (More than IDR 120 million per year) 
• Upper middle-income class (IDR 60 million - IDR 120 million per year) 
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• Lower middle-income class (IDR 36 million - IDR 60 million per year) 
• Lower-income class (Less than IDR 36 million per year). 

The tax increase for households earning more than IDR 120 million per year should correspond 
to the increase in income reported on the tax return. This tax increase aims to enhance the social 
security rate, such as Program Keluarga Harapan (the Family Hope Program). 

a. Increasing social security transfers, such as the Family Hope Program and direct cash transfers, 
but with improved targeting accuracy of beneficiaries. 

b. Implementing a policy of transparency and bureaucratic efficiency for labor-intensive 
investment licensing to stimulate job growth and absorb labor from the constructed industrial 
region. 

c. Providing tax incentives for businesses or industries affected by the COVID-19 pandemic to 
mitigate massive layoffs. 

d. Optimizing the distribution of community zakat funds collected by the National Zakat Agency 
(BAZNAS). Zakat collected by BAZNAS serves as an alternative financing source for social security 
for individuals without social security. 

e. Allocating an additional social security budget in village funds. Village funds should not only focus 
on village infrastructure but also need an additional social security post for individuals 
experiencing poverty who have yet to receive any social security program. 

 
4.6.2. The Case of Ghana 

Table 7 displays the results of parameter estimation, MSE, and MAE obtained from fitting the 
empirical Lorenz curve of Ghana in 1998 using the Lorenz-Sarabia, Lorenz-HS, Lorenz-Rohde, and 
Lorenz-Chotikapanich functions. Among these functions, the Lorenz-HS function exhibits the lowest 
MSE and MAE values compared to the other three functions (The Lorenz-Sarabia, Lorenz-Rohde, and 
Lorenz-Chotikapanich). This information suggests that the Lorenz-HS function is the most appropriate 
choice for fitting the empirical Lorenz curve of Ghana in 1998. The Lorenz-HS function effectively 
encapsulates the natural occurrence of an asymmetric Lorenz curve, precisely Condition 1, 
characterized by a lower left bulge. Figure 7 visually substantiates this finding by depicting the fitting 
of the four Lorenz functions to the empirical Lorenz curve of Ghana in 1998. It is evident that the 
Lorenz-HS function provides a superior fit to the empirical Lorenz curve of Ghana compared to the 
other three functions. 
 

Table 7 
Parameter estimation results of Lorenz-Sarabia, Lorenz-HS, Lorenz-Rohde, Lorenz-
Chotikapanich Functions of empirical Lorenz curve based on total income employment per 
household, Ghana in 1998 

Lorenz Function Estimator Value estimate MSE MAE 

Lorenz-Sarabia 𝛾 15.1426 1.3787 × 10-4 5.5773 × 10-3 

Lorenz-HS 

�̂�1 12.6137 

1.2365 × 10-4 5.6894 × 10-3 �̂�2 0.0000 

�̂�3 0.6600 

Lorenz-Rohde �̂�𝑅  1.0303 2.3389 × 10-3 3.5982 × 10-2 

Lorenz-Chotikapanich ℵ̂ 15.9529 1.6829 × 10-4 6.7903 × 10-3 
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Fig. 7. Empirical Lorenz curve fitting by Lorenz-Sarabia, Lorenz-HS, 
Lorenz-Rohde, Lorenz-Chotikapanich functions based on total 
employment income per household, Ghana in 1998 

 

The Lorenz-HS function yields an estimated value of 0.8707 for the Kolkata index, signifying a 
substantial income distribution disparity (as shown in Table 8). The inequality zone of Ghana is larger 
than that of the Banten Province case. Moreover, the estimated values of ℛ𝐴 and ℛ𝑃 generated by 
the Lorenz-HS function for Ghana are 1.1492 and 1.0184, respectively. These values suggest that the 
empirical Lorenz curve for Ghana adheres to an asymmetric Lorenz curve of Condition 1. 
 

Table 8 

Value estimate of asymmetry measures of Kolkata Index, ℛ̂𝐴, and ℛ̂𝑃 Based 
on the Lorenz-HS Function, Ghana in 1998 

Lorenz Function Kolkata Index (𝑝++̂) ℛ̂𝐴 ℛ̂𝑃 
Lorenz-HS 0.8707 1.1492 1.0184 

 
This result is corroborated by the results of the hypothesis testing for Lorenz curve symmetry, as 

presented in Table 9. The test reveals that the p-values of 𝜏(ℛ̂𝐴) and 𝜏(ℛ̂𝑃) are 0.0000, which is 

below the 5% significance level. This finding is further substantiated by the bootstrap confidence 
intervals of ℛ𝐴 and ℛ𝑃, which do not encompass the value 1. Both the upper and lower bounds of 
these intervals exceed 1. Consequently, this observation confirms the asymmetry of the Lorenz curve, 
as indicated by the presence of a lower left bulge in the curve. Therefore, it can be concluded that 
the group with a cumulative proportion of income less than or equal to 0.5 contributes significantly 
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more to income inequality among workers than the group with cumulative proportion of income 
greater than 0.5 (the Lorenz curve of asymmetric Condition 1). 

 
Table 9 
Results of Lorenz curve symmetry test and bootstrap confidence interval of ℛ𝐴 and ℛ𝑃, Ghana 
in 1998 

Statistical 
Hypothesis 

Test Statistic p-value Decision 

H0: ℛ𝐴 = 1 
H1: ℛ𝐴 ≠ 1 

𝜏(ℛ̂𝐴) = 133.5311 0.0000 H0 is rejected at 5% significance level (𝛼 = 0.05). 

H0: ℛ𝑃 = 1 
H1: ℛ𝑃 ≠ 1 

𝜏(ℛ̂𝑃) = 2.0244 0.0000 H0 is rejected at 5% significance level. 

The bootstrap confidence interval of ℛ𝐴(ℜℛ𝐴

𝑘∗
) : 1.1400 ≤ ℛ𝐴 ≤ 1.1598  

The bootstrap confidence interval of ℛ𝑃(ℜℛ𝑃

𝑘∗
): 1.0178 ≤ ℛ𝑃 ≤ 1.0193 

Note: In testing the hypothesis through a nonparametric bootstrap, replication was conducted in 4,000 
replications (𝔹 =4,000). 

 
The hypothesis testing of Lorenz curve symmetry based on ℛ𝐴 and ℛ𝑃 in Ghana concludes that 

the most significant contribution to income inequality originates from the lower middle-income 
group (the group with a cumulative proportion of income less than or equal to 0.5, 𝑞 ≤ 0.5). 
Therefore, the local government can implement policies prioritizing this group to reduce income 
inequality and improve economic welfare. These policies include: 
a. Increasing the minimum wage. This policy can reduce income inequality by ensuring that low-

income workers earn wages sufficient for their livelihoods [33]. It can also help alleviate poverty 
and enhance economic mobility. 

b. Expanding the scope of the Earned Income Tax Credit (EITC). Intended for low- to moderate-
income workers, this policy can help reduce poverty and promote upward economic mobility 
[33]. 

c. Encouraging asset accumulation for working households. Policy measures that facilitate asset 
accumulation, such as savings accounts or homeownership opportunities, can play a role in 
reducing income inequality by encouraging economic mobility among working families [33]. 

d. Ensuring equal opportunities: Policies that promote equality of opportunity, including removing 
discriminatory regulations and practices and investing in skills development, can reduce income 
inequality by ensuring equal opportunities for all individuals to succeed. 

 
4.6.3. The Case of South Africa 

The Lorenz-HS function demonstrates superior performance over the Lorenz-Sarabia, Lorenz-
Rohde, and Lorenz-Chotikapanich functions in generating the lowest MSE and MAE values, as 
evidenced in Table 10. This finding underscores the preeminence of the Lorenz-HS function in 
modeling the empirical Lorenz curve for South Africa. Figure 8 provides a visual representation of the 
congruence between the empirical Lorenz curve and the fits of the four Lorenz functions. However, 
ascertaining whether the Lorenz curve is symmetric or asymmetric based solely on visual inspection 
remains a task. Consequently, the asymmetry measure developed in this study emerges as an 
alternative indicator derived from the Lorenz curve, demonstrating effective applicability to actual 
data. 
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Fig. 8. Empirical Lorenz curve fitting by Lorenz-Sarabia, 
Lorenz-HS, Lorenz-Rohde, Lorenz-Chotikapanich functions 
based on household income, South Africa in 2015 

 
 
 

Table 10 
Parameter estimation results of Lorenz-Sarabia, Lorenz-HS, Lorenz-Rohde, Lorenz-
Chotikapanich Functions of empirical Lorenz curve based on household income, South Africa 
in 2015 

Lorenz Function Estimator Value estimate MSE MAE 

Lorenz-Sarabia 𝛾 4.7203 3.0075 × 10-3 4.5448 × 10-2 

Lorenz-HS 

�̂�1 0.0000 

6.6606 × 10-5 6.2529 × 10-3 �̂�2 1.9891 

�̂�3 0.4403 

Lorenz-Rohde �̂�𝑅 1.1343 1.0512 × 10-4 7.5726 × 10-3 

Lorenz-Chotikapanich ℵ̂ 5.3218 1.5100 × 10-3 3.0411 × 10-2 

 
As indicated in Table 11, the Lorenz-HS function yields an estimated Kolkata index value of 0.7367 

for South Africa. This value is lower than the Kolkata index observed in the case of Ghana but higher 
than the Kolkata index of Banten Province, suggesting that income distribution inequality in South 
Africa is not as severe as in Ghana but is still more pronounced than in Banten Province. The Lorenz-

HS function produces values of ℛ̂𝐴 and ℛ̂𝑃 as 1.0236 and 1.0031, respectively, for South Africa. Given 

that the values of ℛ̂𝐴 and ℛ̂𝑃 for the empirical Lorenz curve are greater than 1 (Asymmetry Condition 
1), this indicates an asymmetric Lorenz curve characterized by a lower left bulge. However, it would 
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be premature to conclude that the curve is asymmetric based solely on these values since ℛ̂𝐴 and 

ℛ̂𝑃 are proximate to 1. Consequently, it is imperative to conduct a test for the asymmetry of the 
Lorenz curve to draw definitive conclusions. 

Table 11 

Value estimate of asymmetry measures of Kolkata Index, ℛ̂𝐴, and ℛ̂𝑃 Based on 
the Lorenz-HS Function, South Africa in 2015 

Lorenz Function Kolkata Index (𝑝++̂) ℛ̂𝐴 ℛ̂𝑃 
Lorenz-HS 0.7367 1.0236 1.0031 

 
Therefore, testing the Lorenz curve symmetry hypothesis in South Africa is paramount. As 

evidenced in Table 12, the test result unequivocally indicates that the empirical Lorenz curve in South 
Africa for 2015 exhibits asymmetry. This finding is substantiated by the bootstrap confidence 
intervals of ℛ𝐴 and ℛ𝑃, which do not encompass the value 1. Furthermore, both the upper and lower 
bounds of these intervals exceed 1. Consequently, this compelling evidence strongly suggests that 
the group with a cumulative proportion of income less than or equal to 0.5 (𝑞 ≤ 0.5) contributes 
significantly more to income inequality among households than the group with a cumulative 
proportion of income greater than 0.5 (resulting in Lorenz curve of asymmetry Condition 1). 

 
Table 12 
Results of Lorenz curve symmetry test and bootstrap confidence interval of ℛ𝐴 and ℛ𝑃, South Africa in 2015 

Statistical Hypothesis Test Statistic p-value Decision 

H0: ℛ𝐴 = 1 
H1: ℛ𝐴 ≠ 1 

𝜏(ℛ̂𝐴) = 13.0415 0.0000 
H0 failed to be rejected at 5% significance level (𝛼 =
0.05) 

H0: ℛ𝑃 = 1 
H1: ℛ𝑃 ≠ 1 

𝜏(ℛ̂𝑃) = 0.2219 0.0000 H0 failed to be rejected at 5% significance level 

The bootstrap confidence interval of ℛ𝐴(ℜℛ𝐴

𝑘∗
): 1.0158 ≤ ℛ𝐴 ≤ 1.0305 

The bootstrap confidence interval of ℛ𝑃(ℜℛ𝑃

𝑘∗
): 1.0026 ≤ ℛ𝑃 ≤ 1.0036 

Note: In testing the hypothesis through a nonparametric bootstrap, replication was conducted in 4,000 replications (𝔹 =4,000). 

 
The hypothesis testing of Lorenz curve symmetry based on ℛ𝐴 and ℛ𝑃 for South Africa concludes 

that the most significant contribution to income inequality originates from the lower-middle income 
group (the group with a cumulative proportion of income less than or equal to 0.5 (𝑞 ≤ 0.5)). 
Therefore, local authorities can implement several policies to reduce income inequality, including: 
a. Progressive Fiscal Redistribution: The Government of South Africa has instituted progressive 

fiscal redistribution as a fundamental policy approach for mitigating income inequality [34,35]. 
This multifaceted strategy encompasses the amplification of social spending, the targeted 
disbursement of government transfers, and the implementation of affirmative action initiatives 
aimed at diversifying wealth ownership and fostering entrepreneurial endeavors among 
previously marginalized demographic segments. 

b. Expansion of Social Grants: The expansion of social grants has a significant equalizing effect in 
South Africa [36,37]. Social grants are crucial in helping people out of poverty and effectively 
reducing income inequality. 

c. Creation of Skill-Oriented Employment Opportunities for lower-income class: The Government 
of South Africa duly recognizes the imperative of establishing skill-oriented employment 
prospects for low-income people as a strategic measure to reduce inequality [38]. Drawing upon 
the counsel of the World Bank, a suite of policy interventions, including the creation of skilled 
employment opportunities for those experiencing poverty and the facilitation of economic 
growth through heightened competition, policy stability, and the promotion of skilled migration, 
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are considered instrumental in the potential reduction of South Africa's poverty rate by half by 
the year 2030. 

d. Enhancement of the Efficiency and Effectiveness of Social Spending: In concordance with 
recommendations from the World Bank, a policy avenue of paramount significance involves 
augmenting the efficiency and effectiveness of social spending initiatives among member 
countries of the Southern African Customs Union (SACU) [39].This policy framework entails 
refining quality, targeting precision, and overall efficiency of social spending programs, 
amplifying their contributory role in diminishing income inequality. 

 
4.7.4. Discussion 

The asymmetry measures ℛ𝐴 and ℛ𝑃 in this study still hinge on selecting Lorenz functions that 
align with the data conditions. The criteria for selecting the Lorenz function are based on the 
minimum MSE or MAE generated from several candidate functions. However, these criteria’s 
procedure is not yet under a probabilistic framework, such as the Kolmogorov-Smirnov test and its 
development [40], the Anderson-Darling test and its development [41,42], the Chi-square test and 
its extensions [43], and Bayesian model selection using the Bayes factor [44]. The procedure for 
selecting the Lorenz function could be constructed by adopting one of the ideas from the 
aforementioned studies. 

In assessing the asymmetry of the empirical Lorenz curve, ℛ𝐴 and ℛ𝑃 serve as reliable indicators 
of asymmetrical measure. However, to ensure the accuracy and reliability of these measures, it is 
crucial to supplement them with additional supporting information. This may include visual 
representations of the empirical Lorenz curve and other inequality measures such as the Kolkata, 
Gini, Amato, and Pietra indices. The accuracy of the Lorenz function used to model the empirical 
Lorenz curve is pivotal in ensuring the credibility of ℛ𝐴 and ℛ𝑃. 

Supporting information is crucial because ℛ𝐴 and ℛ𝑃 are ratio measures that do not consider 
the size of the inequality zone. For instance, if two subzones of the empirical Lorenz curve generate 
identical ℛ𝐴 values, it is impossible for an analyst to determine whether the ℛ𝐴 value corresponds to 
an inequality zone with a large or small size. It is important to note that a larger inequality zone 
indicates a more unequal income distribution. Therefore, the Kolkata index, which is based on Eq. 
(24), can be used as an additional indicator for the asymmetry analysis of the Lorenz curve, serving 
as a proxy for the size of the Lorenz curve. For example, the value of the Kolkata index increases as 
the size of the inequality zone expands. 

The hypothesis testing for Lorenz curve symmetry in this study employs a nonparametric 
bootstrap method, which requires the transformation of cumulative proportions to calculate ℛ𝐴 and 
ℛ𝑃 measures, utilizing 𝑝 and 𝑞 from the original data (𝑥). Nevertheless, the omission of the 
cumulative proportion process from hypothesis testing might be feasible if it is possible to represent 
ℛ𝐴 and ℛ𝑃 formulations within the context of the original data (𝑥). 

Regarding policies that can be implemented based on the results of income inequality analysis 
through Lorenz curve visualization and asymmetry measures (ℛ𝐴 and ℛ𝑃), priority should be given 
to policies that target the reduction of income inequality caused by the main contributing groups 
before addressing other groups. Essentially, policies intended to reduce income inequality should be 
based on a commitment to improving welfare while sustaining long-term economic growth by 
considering the Government Budget [45–47]. 
 
5. Conclusions 

Based on the empirical results and discussions, it can be concluded that ℛ𝐴 and ℛ𝑃 effectively 
encapsulate the inherent asymmetric phenomenon of the empirical Lorenz curve. However, the 
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credibility of both measures is contingent upon the utilization of a Lorenz function that accurately 
fits the empirical Lorenz curve. The inclusion of supporting indicators, such as the Kolkata index, is 
pivotal for a comprehensive analysis of the symmetry of the Lorenz curve and for obtaining more 
precise information. The hypothesis testing for Lorenz curve symmetry, developed in this study and 
employing a nonparametric bootstrap, provides a probabilistic framework for assessing the 
symmetry or asymmetry of a Lorenz curve rather than merely comparing a single value to a specific 
threshold. Based on the three cases examined in this study, this hypothesis test for the symmetry of 
the Lorenz curve proves effective in drawing definitive conclusions about the asymmetric condition 
of the empirical Lorenz curve. Consequently, the government can implement policies to reduce 
income inequality while prioritizing the target beneficiaries of these executed policies. 
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