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Original scientific paper 

Abstract: Combinatorial Multi-Criteria Acceptability Analysis (CMAA) is a 
new algorithmic framework that enables the use of standard (i.e., single-user) 
multicriteria decision-making methods by groups. In this paper, we present the 
first application of CMAA to a real-life decision. Our objectives were to study 
the performance of the method in a real-life setting and to test two hypotheses 
concerning the application of the method. Three founders of a biotechnology 
startup had to choose a product development project. We describe the decision 
problem and the consensus path taken by the founders, and we illustrate some 
of the analytical possibilities offered by the method. Of the 25 evaluation con-
flicts contained in the initial input, only eight needed to be resolved in order to 
achieve a hard consensus. A simulation experiment showed that the expected 
value for this size problem is 7.6 resolution steps. The method generates a very 
large state space, so complete enumeration can become prohibitively expen-
sive. A computational experiment confirmed our assumption that 10,000 ran-
dom samples are sufficient if Monte Carlo simulation is used instead. A third 
simulation experiment provided support for the hypothesis that consensus-
building with the non-compensatory decision model used is more efficient than 
with a more typical compensatory model. We conclude that the CMAA method 
is well-suited for multi-criteria group decisions; it provides a wealth of analyt-
ical detail, and its entropy-based heuristic can guide the group to consensus in 
a small number of steps.  

Keywords: Decision analysis, acceptability analysis, group decision-making, 
shared mental models, consensus-building. 

1. Introduction 

In this paper we present the first application of the Combinatorial Multicriteria Ac-
ceptability Analysis (CMAA) framework (Goers & Horton, 2023) to a group decision. 
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Our objective is to validate the appropriateness of CMAA for practical decision-making 
and to develop some guidelines for practitioners. In the case study, the founders of a 
biotechnology startup had to select a product development project. 

Typical multi-criteria group decision-making (MCGDM) methods are based on dis-
tance measures – usually between the user inputs and the group average (Moral et al., 
2018; Tapia et al., 2023). Hard consensus means this distance is zero, but this is gen-
erally assumed to be unrealistic, so a soft consensus with a non-zero distance is ac-
cepted instead (Guo et al., 2023). Consensus-building consists of identifying the inputs 
that are to be adjusted using an identification rule, determining a desired correction 
direction for those inputs using a direction rule, and requesting the affected decision-
makers to modify their inputs in the required direction (Zhang et al., 2019). Such ap-
proaches assume that decision-makers have different – and possibly conflicting – ob-
jectives, and that modifying their evaluations will incur a cost (Guo et al., 2023; Zhang 
et al., 2019). However, input averaging approaches have the drawbacks that they re-
sult in an evaluation that corresponds to nobody's opinion and that they suppress out-
lying, but potentially important judgements. 

Combinatorial Multicriteria Acceptability Analysis was developed to support coop-
erative, rational groups in achieving quick decisions with a high degree of consensus. 
CMAA is a framework that can be integrated with any standard multi-criteria decision 
method such as SAW, AHP, TOPSIS or PROMETHEE. Instead of aggregating decision-
maker inputs to an average value, CMAA generates combinations of them, and the pro-
portion of combinations that return an alternative as the preferred alternative is its 
acceptability. The information entropy in the vector of acceptabilities is used as con-
sensus measure, and a consensus-building is an entropy minimization task. Since the 
entropy of the acceptabilities makes no reference to decision-maker inputs, it is an 
output metric, but it is not a `coincidence among solutions´ (Herrera-Viedma et al., 
2014) since it does not compare the scores or ranks produced by individual decision-
makers. The entropy-based consensus-building process has been shown to converge 
considerably faster than a typical input averaging approach (Goers & Horton, 2023). 

A startup is a company that has been recently founded or is in the process of being 
founded and meets two conditions: it is introducing an innovation to the market, and 
it has the intent to grow rapidly (Tech, 2018). Startup founders therefore have to make 
decisions that are based on assumptions and are subject to a large amount of uncer-
tainty. Indeed, one influential definition of a startup is “a human institution, founded 
to create a new product or service in the conditions of extreme uncertainty” (Ries, 
2011). Technological uncertainty is concerned with whether the innovation can be 
made to meet performance, manufacturability, usability and other technical criteria, 
and market uncertainty is centered on whether the market will accept the new and 
unfamiliar solution. Bortolini et al. (2021) state: “In environments and situations of 
great uncertainty, complexity and speed of change, especially for new business ven-
tures or startups, many scholars believe that success comes from the speed at which 
the organization can conduct tests and experiments”. This is particularly true for early-
stage startups, which have very limited time and resources to achieve product-market 
fit. 

In a group decision involving a high degree of uncertainty, the probability is high 
that the decision-makers will submit differing judgements or preferences on any given 
question, because they hold varying information about it or interpret it differently. 
This unshared mental model can explain why a group fails to reach a correct decision, 
even though as a whole it has greater knowledge than any of its individual members 
(Stasser & Titus, 1985). To reveal the correct decision, decision-makers must share 
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their individual mental models to form a shared mental model (De Vreede et al., 2013; 
Schulz-Hardt & Mojzisch, 2012). 

We assume that the decision-making group is cooperative and rational. In this con-
text, ‘cooperative’ means that its members are all pursuing the same objective and that 
hidden agendas and politics do not play a role in the decision, and ‘rational’ means that 
all members will submit the same judgement if they all have access to the same infor-
mation. They are an example of a ‘consensus-committed group’ (DeSanctis & Gallupe, 
1987). In a cooperative, rational group, decision-makers modify their initial evalua-
tions willingly and quickly when they hear new information or stronger arguments 
from the other members of the group. In our experience, both startup founders and 
innovation teams in established companies are cooperative and rational decision-
makers. 

The contributions of this work are as follows: 
• to describe the first application of CMAA to a real-life group decision, and il-

lustrate some of the analytical details it can provide, 
• to define active, inactive and pivot discrepancies, which aid understanding of 

the consensus-building process, 
• to validate the acceptance of the method by independent decision-makers, 
• to demonstrate that CMAA is more efficient when a non-compensatory deci-

sion model is used compared to a compensatory model, and 
• to show that 10,000 random samples are sufficient when the analysis is per-

formed by Monte Carlo simulation. 

2. Background 

2.1. Distributed and shared mental models 

Since a group possesses a wider range of knowledge and information than any of 
its members, it should, in principle, be able to make better decisions than any of them 
individually. However, this is often not the case in practice, and (Stasser & Titus, 1985) 
initiated a field of research known as Hidden Profiles (Lu et al., 2012) in order to study 
this phenomenon. 

Hidden Profile research is based on the concept of a mental model – the set of in-
formation held by a person or group of people on a particular issue. In a heterogeneous 
group of decision-makers, members will have different knowledge and experience, 
and the mental model of the issue is unshared or distributed. In a group decision, a 
distributed mental model (DMM) will lead to differing performance judgements and 
criteria preferences, which we will refer to as judgement discrepancies and preference 
discrepancies, respectively. 

In this context, there exists a correct decision, which is defined as the alternative 
that all members of the group would choose, once their mental models have been 
shared. Hidden Profile studies (Kline, 2005; Schulz-Hardt et al., 2006) have shown that 
a group can discover and agree on the correct decision, if they are successful at sharing 
their mental models. Clearly, initial dissent within the group is necessary for decision 
quality (Dreu & West, 2001; Nijstad et al., 2014), and the ability to share and correctly 
process minority information is critical to the decision-making competence of a group 
(Schulz-Hardt & Mojzisch, 2012). 

The task of a consensus-building algorithm should therefore be to identify those 
discrepancies whose resolution would improve consensus the most and present these 
to the group for discussion. We call these discussions clarification conferences, in 
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which the distributed mental model becomes a shared mental model, and the decision-
makers agree on a judgement or preference, thereby resolving the discrepancy. (Ya-
haya & Abu-Bakar (2007) describe the clarification conference as follows: “[The group 
member articulates] his basic assumption, his frame of reference and his mental model 
that leads him to believe in something about the uncertainties. When [these] are ex-
changed and challenged, they are tested until the best one prevails.” Goers & Horton 
(2023) have shown that, using the CMAA approach, clarification conferences may only 
be needed for a fraction of the total number of discrepancies generated by the initial 
decision-maker input. 

2.2. Treatment of groups in MCDM 

Multi-criteria decision methods are designed for use by a single decision-maker. 
Therefore, when used in group decision-making, the differing judgements and prefer-
ences must be reduced to single values. This process is known as aggregation and is 
generally realized by averaging the inputs using the arithmetic or geometric mean, or, 
more generally, an ordered weighted average operator (Moral et al., 2018). Linear de-
cision models such as Simple Additive Weighting use the arithmetic mean, while mul-
tiplicative models such as the Analytic Hierarchy Process and the Weighted Product 
Method use the geometric mean. 

One disadvantage of this approach is that the averaged values may misrepresent 
the situation and lead to an incorrect decision. For example, three decision-makers 
might judge the performance of an alternative with respect to a given criterion with 
scores of 1 (very poor), 3 (mediocre) and 5 (very good). A decision method that uses 
the arithmetic mean would treat the performance as mediocre. However, the decision-
maker who submitted the score of 1 (or of 5) may possess a critical piece of infor-
mation that is unknown to the other two decision-makers, and which would convince 
them to also submit a score of 1 (or 5), if they were to learn of it. 

There are many case studies in the literature where judgements vary widely across 
the decision-makers. In one example(Bairagi, 2022; Zhang et al., 2019), four decision-
makers submitted the performance judgements `Fair´, `Medium Good´, `Good´, and 
`Very Good´ for the alternative/criterion pairs (c5, a3) and (c15, a2). These were then 
converted to fuzzy intervals, averaged, and finally converted to crisp numbers to be 
used in the SAW decision method. The criteria were based on objective factors, and 
the decision-makers were stated to be rational. Under these circumstances, it seems 
likely that by sharing their mental models of these questions, the decision-makers 
could have produced a more accurate and more unanimous evaluation of the two is-
sues. 

Most consensus metrics measure the differences between the decision-maker eval-
uations or between their individual rankings. Consensus-building methods improve 
this metric iteratively by identifying the inputs that are to be adjusted, and then either 
prompting the group to discuss the issue, encouraging the affected decision-makers to 
adjust their input in the desired direction (Zhang et al., 2019), or even adjusting the 
inputs automatically and without their originators’ knowledge (Xu, 2009). In each 
case, the goal is to ‘correct’ outlying values in a desired direction. In most cases, the 
desired direction is towards the group average. These steps are repeated until the con-
sensus metric reaches a pre-defined threshold, and a soft consensus is reached. The 
evaluations of decision-makers who refuse to adjust their evaluations may be penal-
ized (Chao et al., 2021; Dong et al., 2016), or even ignored entirely (Kacprzyk & 
Fedrizzi, 1988). 

Moral et al. (2018) showed that the choice of distance metric, including Euclid, 
Manhattan and Cosine, had a significant effect on the convergence speed of the 
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consensus process. Cai et al. (2023a) provide a survey of collaborative decision meth-
ods that covers determination of criteria weights and decision-maker weights as well 
as consensus measuring approaches. Tapia et al. (2023) study the Gini index as a dis-
persion-based, rather than distance-based consensus metric and conclude that it is 
appropriate for use in the MCGDM context. 

Many approaches assign different weights to decision-makers. A survey is pro-
vided by Boix-Cots et al. (2023). Subjective approaches include estimates of decision-
maker experience or competence (Janković & Popović, 2019). Objective approaches 
are based on input values (Koksalmis & Kabak, 2019), for example similarity to group 
average or consistency of ratio judgements. Yue derives weights for each decision-
maker based on the entropy of their judgement matrices (Yue, 2017): the lower the 
entropy of the judgements, the greater their power to discriminate. Therefore, deci-
sion-makers with low-entropy judgements should be assigned a greater weight.  

Some authors assume that input adjustments have a cost. (Zhang et al., 2019) pre-
sent different efficiency metrics for the consensus-building process and derive optimal 
strategies for the judgement adjustments. Guo et al. (2023) consider the tolerance 
level of decision-makers towards adjusting their inputs. 

The driving force towards consensus with these approaches is a model that postu-
lates that arithmetical compromise best represents a set of varying evaluations. How-
ever, for consensus-committed groups (DeSanctis & Gallupe, 1987), this conflicts with 
the observation that minority arguments can be essential to the decision-making abil-
ity of a group (Nijstad et al., 2014). We conclude that – for a cooperative, rational group 
at least – a multi-criteria group decision method should not make any assumptions 
about the desirability of any particular decision-maker input, nor should it assume 
that a certain function of the inputs will produce an appropriate recommendation. 

3. Combinatorial Multicriteria Acceptability Analysis 

In the following, a multicriteria decision problem consists of 𝑚 alternatives, de-
noted by 𝑎𝑖 , 𝑛 criteria, denoted by 𝑐𝑗  and d decision-makers denoted by DMk. 

3.1. Motivation and basic approach 

The goal of Combinatorial Multi-Criteria Acceptability Analysis is to provide a 
means for a group to use their preferred (single-user) multi-criteria decision method. 
The CMAA framework has been shown to work with commonly used decision models 
such as Simple Additive Weighting, TOPSIS and PROMETHEE (Goers & Horton, 2023). 

The key attribute of CMAA, which distinguishes it from other approaches, lies in 
the aggregation of user inputs: instead of fusing them into a single mathematical entity 
such as an arithmetic mean, it retains them separately. It then generates instances of 
the decision by combining inputs from different decision-makers to form single-input 
decisions. The algorithm generates a discrete state space consisting of all instances of 
the problem, applying the decision algorithm to each instance, and updating various 
statistical quantities accordingly. One instance corresponds to the correct decision; 
this is the one in which each discrepancy had been resolved to the judgement or pref-
erence that results from the shared mental model for that issue. In practice, however, 
it is not necessary to find this instance, because a large number of instances yield the 
same preferred alternative, and only a comparatively small number of discrepancies 
must be resolved. 

CMAA provides both decision analysis based on the current state of the user input 
and forward-looking guidance for an iterative consensus-building process. It only 
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requires that the decision algorithm returns the preferred alternative for a given in-
stance of the decision problem, or a complete ranking, if acceptabilities for lower ranks 
are of interest. 

Decision-maker judgements and preferences are combined to form the aggregated 
judgement matrix A and aggregated preference vector P, respectively. These structures 
show where decision-makers agree or disagree about the performance of an alterna-
tive or the importance of a criterion. Examples of judgement and preference aggrega-
tion from the case study are shown in Table 3 and Table 4 in Section 4.3. 

The overall CMAA decision model is written [P; A], where every instance of P is 
combined with every instance of A. The number of instances of the aggregated judge-
ment matrix ||A|| is equal to the number of combinations of resolutions of each judge-
ment discrepancy, and the number of instances of the aggregated preference vector 
||P|| is equal to the number of valid preference vectors that can be generated from it. 
The overall number of instances for a given decision problem is 𝐾 = ‖P‖ ∙ ‖A‖. The 
computational complexity of the analysis grows with the number of discrepancies the 
problem contains and can become extremely large. Unacceptably long computation 
times can be avoided by Monte Carlo simulation, i.e., by only evaluating a random sam-
ple set of the instances. 

Table 1. CMAA example 

P  A 

{3}  {3, 4} {4, 3} {2, 3} {3, 2} 

{1}  {3} {2, 1} {3, 1} {1, 2} 

We illustrate the CMAA approach using the very small group decision with m=4, 
n=d=2 shown in Table 1. Values in curly brackets are the decision-maker inputs. The 
decision-makers submit the same judgement at (c2, a1) and the same preferences for 
both c1 and c2. All other judgements are discrepancies. We thus have ‖P‖ = 1 and 
‖A‖ = 27 = 128. The decision model is Simple Additive Weighting. 

3.2. Acceptability 

The principal analysis variable in CMAA is the rank acceptability index 𝑏𝑖
𝑟 . This is 

the relative frequency within the space of problem instances with which alternative ai 
achieves rank 𝑟. In this paper, we will only consider the rank 1 acceptability indices 
𝑏𝑖

1, which we refer to simply as acceptabilities. Acceptability values returned by the 
CMAA algorithm yield a sum greater than 1 when the decision algorithm returns mul-
tiple preferred alternatives. Rank acceptability was introduced by Lahdelma & 
Salminen (2001) in the context of Stochastic Multicriteria Acceptability Analysis, 
where it was computed using samples from a continuous distribution that represents 
uncertainty in the inputs. 

An alternative with a high acceptability has a large amount of support in the state 
space, and one with a low acceptability has little support. We will characterize these 
as ‘strong’ and ‘weak’ alternatives, respectively. It is important to recognize that these 
characterizations do not express the probability of selection of an alternative: under 
the DMM assumption, the result of the decision is already fixed, and the consensus 
iteration is a deterministic search algorithm. 

In order to enable decision analysis and consensus-building, the acceptability of an 
alternative can be refined with two new analysis variables: the judgement acceptability 
and the preference acceptability. Their purpose is to measure the effect of each 
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individual decision-maker input. They are defined as the proportion of rank 1 occur-
rences of each alternative within the search space that are due to each individual 
judgement or preference. Each variable can be computed to reflect either the current 
state or the potential future state of the decision. Table 6 in Section 4.4 shows exam-
ples of current judgement acceptabilities, and Table 11 in Section 5.1 show examples 
of potential preference acceptabilities from the case study. 

In Table 1, the acceptabilities of alternatives a1, a2, a3 and a4 are 96/128, 32/128, 
8/128 and 0, respectively. Based on these decision-maker inputs, a1 is the strongest, 
because 75% of all instances return it as the preferred alternative. The acceptabilities 
sum to 136/128, because eight instances return a two-way tie for the preferred alter-
native. 

3.3. Entropy-based consensus-building heuristic 

Consensus-building in CMAA is based on identifying the resolution that advances 
consensus the furthest by using information entropy (Shannon, 1948). The entropy ℎ 
of a probability vector 𝑝 of dimension m is given by 

ℎ = − ∑ 𝑝𝑖 ∙ log2(𝑝𝑖) .

𝑚

𝑖=1

(1) 

Information entropy expresses the amount of uncertainty inherent in a set of prob-
ability values. The greater the separation of the 𝑝𝑖 , the lower the entropy; the maxi-
mum value of ℎ = log2(1/𝑚) is obtained when all 𝑝𝑖  are equal, and the minimum value 
ℎ = 0 is reached when 𝑝𝑖 = 1 for some i, and all other values are 0. Thus, substituting 
the normalized acceptabilities 𝑏𝑖

1 into Eqn. (1) yields a measure of the degree of sepa-
ration of the alternatives into those with weak and those with strong support. 

Substituting the potential judgement acceptabilities gives the judgement entropies, 
and substituting the potential preference acceptabilities gives the preference entropies. 
These show how each resolution would affect the separation of the acceptabilities. 
Since 𝑝 must be a probability vector, the acceptabilities must first be normalized, if the 
analysis contained instances that returned multiple rank 1 placements. The smallest 
of these values identifies the judgement or preference resolution that will lead to the 
greatest separation of rank 1 acceptabilities. The facilitator then recommends the dis-
crepancy containing this resolution to the decision-makers for clarification. If the de-
cision-makers agree on a resolution that reduces the entropy, they will have moved 
closer to consensus. Each resolution reduces the number of instances in the search 
space and may render one or more active discrepancies inactive (see Section 3.4). The 
process terminates, when: 

• the entropy reaches 0, indicating that a hard consensus has been achieved, 
• the entropy falls below a pre-determined threshold, indicating a soft consen-

sus, 
• no resolution will result in a change in the acceptabilities 𝑏𝑖

1, or  

• an acceptability reaches a pre-determined threshold such as 0.95 and is con-
sidered ‘strong enough’ to determine the preferred alternative. 
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This entropy-based heuristic is greedy (myopic) because it only looks ahead one 
step. Goers & Horton (2023) have shown that it does not always find the shortest path 
to consensus. The heuristic is also optimistic, because it is oriented towards the most 
advantageous discrepancy resolution at each step. However, the decision-makers can, 
of course, resolve the discrepancy differently, which may reduce the entropy in the 
acceptabilities by a smaller amount, or even increase it. 

Figure 1. Flowchart of the CMAA consensus-building heuristic 

Figure 1 shows the CMAA consensus-building process. In each iteration, the dis-
crepancy containing the resolution resulting in the lowest entropy is identified. This 
discrepancy is discussed by the decision-makers, who (in the ideal case) return a 
unanimous evaluation; if they are unsuccessful, the next-best discrepancy is selected. 
The acceptabilities are re-computed for the new, simpler decision. These steps are re-
peated until the entropy of the acceptabilities reaches a specified threshold.  

3.4. Inactive, active and pivot discrepancies 

The key idea behind consensus-building in CMAA is to determine the impact of 
each discrepancy resolution on the acceptability of each alternative. In this context, we 
can distinguish between three types of discrepancy that we call ‘active’, ‘inactive’ and 
‘pivot’. 

An inactive discrepancy is one whose resolution has no effect on the outcome of the 
decision and therefore can be ignored safely. For example, if a decision is determined 
solely by performances with respect to most important criteria, then discrepancies as-
sociated with low criteria weights or priorities are inactive. During consensus-build-
ing, an active judgement discrepancy (𝑐𝑗 , 𝑎𝑖) becomes inactive when alternative ai is 

eliminated from the decision. The efficiency of the combinatorial consensus process 
stems from the fact that discrepancies can be converted from active to inactive status 
rapidly. 

The various decision-maker judgements for criterion 𝑐𝑗  and alternative 𝑎𝑖2 are rep-

resented by 𝜆𝑘(𝑗, 𝑖2), where the index 𝑘 is local to each criterion. For example, in Table 

Input decision-maker
evaluations

Compute acceptabilities
and their entropy

Identify entropy-
minimizing discrepancy

DMs share
mental models

Update resolved
evaluation

Entropy <= threshold?
Yes

Yes

No

No Resolution
successful?

End
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3, the judgement discrepancy (𝑐1, 𝑎4) has 𝜆1(1,4) = 𝐵 and 𝜆2(1,4) = 𝑋. The judgement 
discrepancy for criterion 𝑐𝑗  and alternative 𝑎𝑖2 is inactive when all resolution possibil-

ities 𝜆𝑘(𝑗, 𝑖2) for that discrepancy deliver the same potential acceptability for all alter-
natives. 

The various decision-maker preferences for criterion 𝑐𝑗  are represented by µ𝑘(𝑗), 

where the index 𝑘 is local to each criterion. For example, the preference discrepancy 
for criterion 𝑐4 in Table 4 has the four possible resolutions µ1(4) = 1, µ2(4) = 4, 
µ3(4) = 5 and µ4(4) = 6. A preference discrepancy is inactive, when all resolution 
possibilities deliver the same potential acceptability for all alternatives.  

Since all its resolutions lead to the same acceptability, resolving an inactive dis-
crepancy would not advance the consensus-building process. Therefore, in the inter-
est of efficiency, it should be ignored. 

An active discrepancy is one in which different resolutions will lead to different ac-
ceptabilities for one or more alternatives. Every discrepancy is either active or inac-
tive. The consensus-building process is steered by the sequence of active discrepan-
cies that are selected for resolution. Consensus is complete when no active discrepan-
cies remain. 

The judgement discrepancy (𝑗, 𝑖2) is a pivot discrepancy (or simply a pivot) for al-
ternative 𝑎𝑖 , if it contains a resolution 𝜆𝑘(𝑗, 𝑖2) that reduces the acceptability of 𝑎𝑖  to 0. 
Similarly, the preference discrepancy for criterion 𝑐𝑗  is a pivot for alternative 𝑎𝑖 , if 

there is a resolution µ𝑘(𝑗)  that reduces the acceptability of 𝑎𝑖  to 0. If the decision-
makers select such a judgement or preference in a clarification conference, the af-
fected alternatives are eliminated from the decision, and any associated discrepancies 
become inactive. This reduces the complexity of the decision and thereby accelerates 
the process towards convergence. Knowledge of the current active, inactive and pivot 
discrepancies helps the facilitator in monitoring and guiding the consensus-building 
process. 

In Table 1, the {3,4} judgement discrepancy at (c1, a1) is a pivot because resolution 
to 4 results only in instances in which a1 is the preferred alternative, eliminating the 
other three. In this case, hard consensus would be achieved in just one step. The two 
discrepancies associated with alternative a4 are inactive because no combination of 
judgements can make this the preferred alternative. The {2,1} discrepancy at (c2, a2) 
is inactive, because regardless of how it is resolved, a2 will be preferred if the discrep-
ancy at (c1, a1) is resolved to 3, and it will not be preferred if it is resolved to 4. The 
remaining three discrepancies are active.  

4. The product-development decision problem 

4.1. The decision context 

A group of three post-doctoral researchers at a leading public research institute in 
Germany was planning to found a biotechnology startup. Their company would de-
velop and market two innovative technologies for cultivating viruses for use in vaccine 
manufacturing and gene therapy. The founders met the conditions for a cooperative, 
rational group, and none of them had any previous experience with formal decision-
making methods. 

Their first invention was a bioreactor for cultivating viruses in host cells. It was 
based on a novel design which promised faster throughput and eliminated the risk of 
virus mutations, which are highly undesirable in an industrial manufacturing process. 
The second invention was a purification device for separating the virus product from 
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the cultivation medium. It used a new filter material that made the device cheaper and 
easier to use and gave a higher yield than existing technologies. 

All three founders had PhDs in Bioprocess Engineering. Each of the first two found-
ers was responsible for developing one of the technologies, and the third was respon-
sible for business development. The decision was taken one year into a two-year gov-
ernment-funded development and entrepreneurship program, after which the found-
ers would have to have acquired venture capital funding and launched their company. 
The founders had identified six possible laboratory experiments that would help them 
to develop these products further. The decision task was to select the experiment that 
delivered the greatest value. 

As with any technology-based startup, the founders were confronted with a high 
degree of uncertainty. There was technological uncertainty whether the devices would 
perform as expected and be scalable from laboratory prototypes up to industrial di-
mensions. On the market side, it was unknown whether potential customers such as 
gene therapy research institutes and vaccine manufacturers would accept the new and 
unfamiliar technologies. For these reasons, the new devices would have to achieve sig-
nificantly better performance than existing solutions and demonstrate successful ap-
plication by independent test users. 

4.2. The decision problem 

The decision consisted of six alternatives, denoted by 𝑎𝑖 , and six criteria, denoted 
by 𝑐𝑗 . The three decision-makers are denoted by 𝐷𝑀𝑑 . The alternatives, which have 

been partially anonymized for reasons of confidentiality, were as follows: 
• 𝑎1: Test whether the new virus can be cultivated in the current bioreactor using 

cell-type A. 
• 𝑎2: Test whether the new virus can be cultivated in the current bioreactor using 

cell-type B. 
• 𝑎3: Design, build and evaluate the performance of an updated version of the bi-

oreactor. 
• 𝑎4: Test whether the new filter material can achieve comparable performance 

to the current material. 
• 𝑎5: Test whether the modified filter membrane improves performance. 
• 𝑎6: Design, build and evaluate a scaled-up version of the filter with four times 

the throughput. 

The alternatives can be categorized in different ways. For example, 𝑎1, 𝑎2 and 𝑎3 
were concerned with the bioreactor and were therefore competitors for the attention 
of the first technical co-founder, while 𝑎4, 𝑎5 and 𝑎6 were concerned with the filter 
product and competed for the attention of the second technical co-founder. Concern-
ing the time frames, alternatives 𝑎1 and 𝑎2 could be carried out with existing hardware, 
𝑎4 and 𝑎5 required modifications to existing hardware, and 𝑎3 and 𝑎6 required build-
ing new hardware from scratch. 

The ‘new virus’ in alternatives 𝑎1 and 𝑎2 refers to a COVID-19 vaccine candidate. 
The bioreactor was being developed for cultivating the adeno-associated virus, which 
is widely used in gene therapy. However, the COVID-19 pandemic broke out during 
the project, and COVID vaccine manufacturing suddenly became an important and un-
expected new application possibility for the two technologies. Thus, these two alter-
natives were concerned with a new and potentially very important application of the 
technology, whereas the other four alternatives represented planned applications. 

The six performance criteria supplied by the decision-makers were: 
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• 𝑐1: If successful, the product will attract more potential customers. This is im-
portant to accelerate the early growth of the startup. 

• 𝑐2: If successful, the idea underlying the resulting product will be patentable. 
Patent protection is essential in order to prevent copycat products. 

• 𝑐3: The experiment has a high probability of success. ‘Success’ means that the 
experiment will deliver the hoped-for result. 

• 𝑐4: The experiment will yield a result in four weeks or less. ‘Result’ here means 
a definitive learning, be it positive or negative. 

• 𝑐5: The experiment is relevant for developing an MVP. A minimum viable prod-
uct (MVP) is an early or partial version of a product that is used to gather 
user feedback. It is an essential component of the ‘lean’ approach to startup 
planning (Moogk, 2012). 

• 𝑐6: A positive result will increase the chances of raising venture capital. The 
founders knew they would need a large amount of venture capital in order to 
bring their products to market successfully. 

None of the criteria are directly mutually contradictory. The opposite is often the 
case in product development, for example The product is highly innovative/The product 
can be developed quickly. However, they do address different areas of concern and dif-
ferent time frames. Criteria 𝑐3 and 𝑐4 are short-term issues, 𝑐5 is concerned with vali-
dation, 𝑐2 and 𝑐6 are concerned with the attractiveness to investors, and 𝑐1 is con-
cerned with post-launch growth, which at the time was at least 18 months into the 
future. 

The decision model was lexicographic, with three equivalence classes for the per-
formance judgements: 

• A: The alternative meets the criterion exceptionally well. 
• B: The alternative meets the criterion satisfactorily. 
• X: The alternative meets the criterion barely, or not at all. 
This decision model is called ‘ABX-Lex’ (Horton & Goers, 2021). This is an ordered 

linguistic term set, which is preferable to numerical judgements for qualitative deci-
sions (Li et al., 2020). 

A non-compensatory decision model with ordinal criteria was used, because in an 
entrepreneurial context, a strong performance in a single high-priority criterion can 
in and of itself justify the inclusion of an alternative in the choice set. For example, if 
raising venture capital had top priority for the founders, then an alternative that per-
forms strongly for it would be more attractive than others that score poorly for it, re-
gardless of their strength with respect to lower-priority criteria. 

Table 2. Individual performance judgements 

 𝐷𝑀1 𝐷𝑀2 𝐷𝑀3 
 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 

𝑐1 A A A B B A A A B X X A A A B B X B 
𝑐2 B B A A B A A A A A A B A A A A B B 
𝑐3 B B A B B A B B B A A A B B B B B A 
𝑐4 B B B A A B B B B A A X X B A B B B 
𝑐5 A A A A A A A A A A A A A A A A B A 
𝑐6 A A A B X B A A B B B B A A B B X B 
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4.3. Decision-maker input 

The decision-makers submitted their initial performance judgements and criteria 
preferences via email without conferring. Their performance judgements are shown 
in Table 2. The decision-makers were generally optimistic: only seven of the 3 ∙ 36 =
108 judgements were judged to have performance X. We assume this is because the 
decision-makers were unlikely to propose alternatives that generally performed badly 
against their own criteria. 

Table 3. Aggregated performance judgements 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 
𝑐1 A A AB BX BX AB 
𝑐2 AB AB A A AB AB 
𝑐3 B B AB AB AB A 
𝑐4 BX B AB AB AB BX 
𝑐5 A A A A AB A 
𝑐6 A A AB B BX B 

Table 3 shows the aggregated performance judgements. Of the 36 judgement tasks, 
19 were discrepancies. All discrepancies were bivalent (AB or BX), so the total number 
of judgement instances generated by this input was ||A|| = 219 = 524,288. 

Table 4. Individual (left) and aggregated (right) preference vectors 

 𝐷𝑀1 𝐷𝑀2 𝐷𝑀3  𝑃 
𝑐1 {3,4} {4,5} {1,2}  {1,2,3,4,5} 
𝑐2 {4,5,6} {2,3} {3}  {2,3,4,5,6} 
𝑐3 {4,5} {1,2} {1,2,3,4,5,6}  {1,2,3,4,5,6} 
𝑐4 {1} {4,5,6} {5,6}  {1,4,5,6} 
𝑐5 {2,3} {1,2} {3,4}  {1,2,3,4} 
𝑐6 {4,5,6} {3,4} {2,3}  {2,3,4,5,6} 

Table 4 shows the criteria preferences of the three decision-makers, together with 
the aggregated preference vector P. The decision-makers did not agree on a priority 
for any of the criteria, resulting in six preference discrepancies. Only in two cases was 
a decision-maker certain about their preferred priority of a criterion: 𝐷𝑀1 with (𝑐4, 1) 
and 𝐷𝑀3 with (𝑐2, 3). 𝐷𝑀3had no opinion about the priority for criterion 𝑐3 and there-
fore submitted all possible priorities. The number of feasible criteria vectors for each 
decision-maker was quite small, namely 4, 2 and 2 for 𝐷𝑀1, 𝐷𝑀2 and 𝐷𝑀3, respec-
tively. For example, the top four criteria positions for 𝐷𝑀3 are, in fact, uniquely deter-
mined. Because the priorities must be totally ordered, the aggregated preference vec-
tor generates only ||P|| = 200 feasible criteria vectors. The total number of instances 
of the decision problem was therefore 𝐾 = 104,857,600. 

Table 5. Initial acceptability indices (before normalization) 

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6  Σ 
0.12 0.21 0.40 0.11 0.05 0.19  1.08 
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4.4. Initial acceptability analysis 

Table 5 shows the (rank 1) acceptabilities computed by the CMAA analysis algo-
rithm, which yielded the ranking 𝑎3 ≻ 𝑎2 ≻ 𝑎6 ≻ 𝑎1 ≻ 𝑎4 ≻ 𝑎5. The sum of the values 
is greater than 1, because some of the instances produced multiple winners. The en-
tropy in the (normalized) acceptabilities according to Eqn. (1) was ℎ = 2.33, which is 
close to the maximum possible value of 2.58, corresponding to the greatest uncer-
tainty. The algorithm was coded in the C programming language without compiler op-
timizations and executed on a 2.3 GHz MacBook Pro. The computation time for ana-
lyzing the 104,857,600 instances was 76 seconds. 

Alternative 𝑎3 (Design, build and evaluate the performance of an updated version of 
the bioreactor) dominates by a large margin; it would have become the preferred al-
ternative, if the decision had terminated at this point without a subsequent consensus-
building phase. However, this conclusion would have been incorrect, as Section 5.1 
will show. 

Current acceptabilities give the decision-makers insight into how their existing 
judgements and preferences affect the acceptabilities of each alternative. The analysis 
provides sensitivity information and highlights the most influential discrepancies. 
This is particularly important if consensus-building is unlikely to succeed completely 
– for example when decision-makers represent different stakeholders who are un-
likely to agree on criteria preferences. The decision-makers know which issues can be 
ignored and concentrate on resolving those that can provide most clarity. 

Table 6. Initial current judgement acceptabilities for alternative a3. 

  𝑎1   𝑎2  𝑎3  𝑎4   𝑎5   𝑎6  
 A B X A B A B A B X A B X A B X 

𝑐1 - - - - - 0.28 0.12 - 0.20 0.20 - 0.20 0.20 0.19 0.22 - 

𝑐2 0.20 0.21 - 0.20 0.21 - - - - - 0.20 0.20 - 0.20 0.21 - 

𝑐3 - - - - - 0.28 0.12 0.20 0.21 - 0.20 0.20 - - - - 

𝑐4 - 0.20 0.20 - - 0.26 0.14 0.19 0.21 - 0.19 0.21 - - 0.20 0.20 

𝑐5 - - - - - - - - - - 0.20 0.20 - - - - 

𝑐6 - - - - - 0.25 0.16 - - - - 0.20 0.20 - - - 

Table 6 shows the initial current judgement acceptabilities for alternative 𝑎3: Build 
and test the updated bioreactor. There are several discrepancies such as (𝑐6, 𝑎5), where 
the sensitivity is 0 – both judgements B and X make equal contributions to this alter-
native’s acceptability, and (at this point during the process) resolving the discrepancy 
would not help to clarify the status of this alternative. By contrast, at the discrepancy 
(𝑐1, 𝑎3), the judgement A contributes more than twice as much support than the judge-
ment B. 

Analogous data exists for the other alternatives and for the criteria preferences at 
each step of the consensus iteration, from which similar observations can be made and 
conclusions drawn. The authors are not aware of any other approach to multicriteria 
group decision making that provides this amount of analytical detail. 

CMAA is intended for use by consensus-committed groups in an iterative consen-
sus-building process. However, there may be occasions where complete consensus is 
unlikely to be achieved. In such situations, the algorithm can still be used to establish 
partial successes, answer ‘what-if’ questions and provide guidance when individual 
clarification attempts fail: 

• ‘Unfortunately, we were not able to agree on the performance of alternative 
𝑎3: Test updated bioreactor with respect to criterion 𝑐4: Result in four weeks or 
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less. However, evaluating this alternative with respect to 𝑐3: The experiment 
has a high probability of success also has a high potential to reduce the uncer-
tainty in our decision.’ 

•  ‘Alternatives 𝑎4: Test the new filter material and 𝑎5: Test the modified filter 
membrane are the two weakest alternatives based on our initial input. If we 
could agree that criterion 𝑐1: Will attract more potential customers has the 
highest priority, we could eliminate both of these alternatives immediately.’ 

•  ‘The attractiveness of both alternatives concerning the new virus depends 
strongly on the relative priorities of criteria 𝑐4: Result in four weeks and 𝑐5: 
Relevant for MVP. Perhaps we should discuss that question first.’ 

5. Consensus-building and decision-maker feedback 

5.1. Consensus-building 

In order to move forward from the initial acceptability analysis to a consensual de-
cision, the authors facilitated a face-to-face meeting with the three founders. The con-
sensus-building algorithm was used as an interactive digital assistant and to visualize 
the intermediate results. 

Table 7. Initial judgement entropies 

  𝑎1   𝑎2  𝑎3  𝑎4   𝑎5   𝑎6  
 A B X A B A B A B X A B X A B X 

𝑐1 - - - - - 2.07 2.44 - 2.35 2.31 - 2.35 2.32 2.30 2.28 - 
𝑐2 2.36 2.23 - 2.27 2.32 - - - - - 2.35 2.32 - 2.32 2.33 - 
𝑐3 - - - - - 2.04 2.45 2.35 2.28 - 2.36 2.30 - - - - 
𝑐4 - 2.37 2.23 - - 2.02 2.50 2.32 2.25 - 2.40 2.21 - - 2.33 2.33 
𝑐5 - - - - - - - - - - 2.35 2.31 - - - - 
𝑐6 - - - - - 2.20 2.42 - - - - 2.34 2.32 - - - 

The consensus process is driven by the entropies obtained for each possible dis-
crepancy resolution. Table 7 shows the entropies for each resolution of a judgement 
discrepancy based on the original input, and Table 8 shows the initial entropies for 
each resolution of a preference discrepancy. At this stage, no judgement resolution 
could have had a significant effect on the entropy: the greatest improvement (i.e., re-
duction) would have been obtained by resolving (𝑐4, 𝑎3) to A. The smallest value from 
either table is located at (𝑐3, 1) among the preference entropies; the value ℎ = 1.56 
represents a substantial improvement in the separation of the alternatives. It is not 
surprising that selecting the dictator criterion would yield the greatest entropy im-
provement, owing to its dominating influence in the lexicographic decision model. 
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Table 8. Initial preference entropies 

 Position in preference vector 
 1 2 3 4 5 6 

𝑐1 1.92 2.32 2.30 2.26 2.18 - 
𝑐2 - 2.28 2.31 2.34 2.34 2.35 
𝑐3 1.56 2.16 2.32 2.23 2.15 2.13 
𝑐4 1.86 - - 2.21 2.15 2.19 
𝑐5 2.16 2.33 2.34 2.34 - - 
𝑐6 - 2.18 2.30 2.31 2.27 2.24 

 The first clarification conference therefore considered the question, Which priority 
should criterion 𝑐3 have? The decision-makers chose to answer the alternative ques-
tion, Which criterion should have top priority? If, after exchanging their mental models 
for this question, the decision-makers had agreed on priority 1 for criterion 𝑐3, the 
entropy in the rank 1 acceptabilities would have improved from 2.33 to 1.56, while 
resolution to other priorities would have resulted in much smaller improvements. 
Throughout the consensus-building process, the effects of the various resolutions on 
the entropy were not revealed to the decision-makers, in order to avoid the possibility 
of influencing their choice. 

Table 9. Consensus path chosen by the decision-makers. 

S 𝑅𝑒𝑠 𝑏1
1 𝑏2

1 𝑏3
1 𝑏4

1 𝑏5
1 𝑏6

1 ℎ 𝑅𝑒𝑠𝐸𝑂  ℎ𝐴 

- - 0.12 0.21 0.40 0.11 0.05 0.19 2.33 (𝑐3, 1) 1.56 
1 (𝑐4, 1) 0.02 0.05 0.51 0.28 0.17 0.02 1.86 (𝑐4, 𝑎3) = 𝐴 0.58 
2 (𝑐4, 𝑎3) = 𝐵 0.05 0.11 0.10 0.47 0.31 0.03 2.04 (𝑐4, 𝑎4) = 𝐴 0.49 
3 (𝑐4, 𝑎4) = 𝐴 0.00 0.00 0.00 0.91 0.11 0.00 0.49 (𝑐4, 𝑎5) = 𝐵 0.00 
4 (𝑐4, 𝑎5) = 𝐴 0.00 0.00 0.00 0.82 0.22 0.00 0.74 (𝑐1, 𝑎4) = 𝐵 0.48 
5 (𝑐4, 𝑎4) = 𝐵 0.00 0.00 0.00 0.92 0.11 0.00 0.48 (𝑐3, 𝑎4) = 𝐴 0.20 
6 (𝑐3, 𝑎4) = 𝐴 0.00 0.00 0.00 1.00 0.03 0.00 0.20 (𝑐1, 𝑎5) = 𝑋 0.00 
7 (𝑐1, 𝑎5) = 𝐵 0.00 0.00 0.00 1.00 0.06 0.00 0.32 (𝑐2, 𝑎5) = 𝐵 0.00 
8 (𝑐1, 𝑎5) = 𝐵 0.00 0.00 0.00 1.00 0.00 0.00 0.00 - - 

Table 9 shows the consensus path taken by the decision-makers. Shown for each 
step S are the resolution chosen by the decision-makers 𝑅𝑒𝑠, the resulting acceptabil-
ity indices for each alternative 𝑏𝑖

1, the entropy h in the acceptability indices, the reso-
lution that would result in the greatest reduction in entropy at the next step 𝑅𝑒𝑠𝐸𝑂 , 
and the resulting smallest achievable entropy ℎ𝐴. Note that the raw acceptability val-
ues are shown, whose sum can be greater than 1. At steps 4, 5, 6 and 7, there was more 
than one resolution that minimized the entropy; in each case, the decision-makers se-
lected the discrepancy to discuss they thought would be easiest to resolve. The pre-
ferred alternative at consensus in Step 8 was 𝑎4: Test whether the new filter material 
can achieve comparable performance to the current material. 

At step 1, the decision-makers agreed that criterion 𝑐4: The experiment will yield a 
result in four weeks or less should have the highest priority. The founders were faced 
with many uncertainties regarding the manufacturability and performance of their de-
vices, and it was important to reduce them quickly in order to avoid spending time and 
money on the wrong products. By choosing the resolution (𝑐4, 1), the founders made 
learning speed their top priority. 

In steps 1, 2, 4 and 7, the decision-makers did not choose the resolutions with the 
greatest entropy improvement, resulting in an entropy increase in three cases. In Steps 
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4 and 7, the entropy-optimal resolution of the pivot would have led directly to a hard 
consensus. 

The dramatic improvement in entropy in step 3 results from a large increase in the 
rank 1 acceptability for alternative 𝑎4 and the elimination of alternatives 𝑎1, 𝑎2, 𝑎3 and 
𝑎6. The procedure could have been terminated at this point, declaring 𝑎4 as the deci-
sion result. This consensus, although technically still soft, could perhaps be regarded 
as “very firm”. 

The significance of Step 3 can be understood by inspecting the aggregated perfor-
mance judgements in Table 3. After Step 2, the decision-makers had selected the abil-
ity to yield results in four weeks (criterion 𝑐4) as their top priority, and resolved the 
discrepancy at (𝑐4, 𝑎3) to B. In this situation, resolving (𝑐4, 𝑎4) to A at Step 3 immedi-
ately eliminated alternatives 𝑎1, 𝑎2, 𝑎3 and 𝑎6 (since a performance of A outranks per-
formances B and BX), leaving only 𝑎5 as a competitor. Thus, after only three resolution 
steps, it was already clear that the winning alternative would relate to the filter and 
not to the bioreactor. Significantly, alternatives 𝑎4 and 𝑎5 were the two weakest alter-
natives based on the initial input. This shows how misleading the initial acceptability 
indices can be: only three distributed mental models needed to be shared in order to 
overturn the initial result. 

Steps 4 to 8 merely served to reduce the acceptability of 𝑎5, the single remaining 
competitor to 𝑎4, from 0.11 to 0.0. In fact, from Step 6 on, alternative 𝑎5 could no longer 
overtake 𝑎4 – it could at best share top rank. This can be concluded from the raw ac-
ceptabilities. Alternative 𝑎4 receives an acceptability of 1.0 in step 6, which means it 
achieves rank 1 in every instance, whereas 𝑎5 only achieves rank 1 in 3% of all in-
stances. 

 

 

Figure 2. Number of judgement and preference discrepancies of each type 

during consensus-building 

Figure 2 shows the number of each type of judgement and preference discrepan-
cies at each step of the consensus-building process. The initial decision-maker input 
contained 19 judgement discrepancies and six preference discrepancies, all of which 
are active. The large number of discrepancies that switched from active to inactive in 
Step 3 is a result of the group choosing the entropy-optimal resolution that eliminated 
the four alternatives 𝑎1, 𝑎2, 𝑎3 and 𝑎6. At Step 3, only two alternatives remained, and a 
resolution to B would have led to an immediate consensus. However, in the clarifica-
tion conference, the decision-makers chose the judgement A, so the process continued. 
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This situation repeated in Step 6. Finally, in Step 7, the decision-makers chose in favor 
of the judgement that eliminated the last remaining rival to alternative 𝑎4. After Step 
8, all remaining judgement discrepancies are (by definition) inactive. All the remaining 
instances returned 𝑎4 as the preferred alternative. 

Table 10 shows the aggregated judgement matrix 𝐀 and preference vector 𝐏 after 
consensus was reached. Unique values that resulted from the clarification of discrep-
ancies are underlined. 12 judgement discrepancies remained, yielding ||𝐀|| = 212 =
4,096. These discrepancies were all, by definition, inactive and could safely be ignored. 
In the aggregated preference vector, only one discrepancy needed to be resolved: cri-
terion 𝑐4: The experiment will yield a result in four weeks or less was assigned to the top 
priority. The number of instances of the final preference vector was ||𝐏|| = 54. The 
total number of instances remaining at consensus was thus 221,184. 

Table 10. Aggregated judgement matrix A and preference vector P at con-

sensus 

  𝐀  𝐏 
  𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6   

𝑐1  A A AB B B AB  {2,3,4,5} 
𝑐2  AB AB A A B AB  {2,3,4,5,6} 
𝑐3  B B AB A AB A  {2,3,4,5,6} 
𝑐4  BX B B A A BX  {1} 
𝑐5  A A A A AB A  {2,3,4,5} 
𝑐6  A A AB B BX B  {2,3,4,5} 

During the consensus-building phase, the potential acceptabilities show the deci-
sion-makers how each resolution would affect the acceptabilities in the next step. This 
information is used to compute the entropies and can provide facilitator guidance at 
critical junctures. 

Table 11. Initial potential preference acceptabilities for alternative a2 

 Position in criteria vector 
 1 2 3 4 5 6 

𝑐1 0.368 0.196 0.150 0.106 0.079 - 
𝑐2 - 0.185 0.205 0.198 0.197 0.187 
𝑐3 0.000 0.075 0.208 0.293 0.307 0.284 
𝑐4 0.050 - - 0.266 0.257 0.219 
𝑐5 0.283 0.160 0.160 0.139 - - 
𝑐6 - 0.331 0.258 0.171 0.129 0.093 

 For example, Table 11 shows the potential preference acceptabilities for alterna-
tive 𝑎2: Test whether the new virus can be cultivated in the current bioreactor using cell-
type B after the initial input. The most beneficial preference resolution from the point 
of view of this alternative is (𝑐1, 1), which would improve its acceptability from 0.213 
to 0.368. The discrepancy at 𝑐3 is a pivot since the resolution (𝑐3, 1) would eliminate 
𝑎2 from the decision. During the actual decision process, the decision-makers chose 
(𝑐4, 1), which weakened 𝑎2 considerably. 

Analogous data exists for the other alternatives and for the performance judge-
ments at each step of the consensus iteration, from which similar observations can be 
made and conclusions drawn. 
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5.2. Feedback from the decision-makers 

One objective with this study was to record any reservations by the decision-mak-
ers about the method and the results obtained. To this end, we conducted a debriefing 
that consisted of the following five questions: 

• Q: Were you happy with the number and meaning of the three judgement cate-
gories A, B and X? 
A: Yes, they were sufficient. A larger number of categories would have increased 
the cognitive load. 

• Q: 1) Did you understand the dictator property of non-compensatory criteria 
and 2) did it concern you? 
A: 1) Yes; 2) No 

• Q: Does the DMM approach (i.e., the assumption that discrepancies are caused 
by differing mental models and that they can be resolved by sharing them) seem 
applicable?  
A: Yes, but it requires the group to be cooperative. 

• Q: Was the consensus-building transparent and understandable?  
A: Yes. 

• Q: How do you feel about the fact that there were unresolved discrepancies re-
maining after consensus had been reached? 
A: It was surprising at first, but understandable and not a concern. 

We conclude that the CMAA approach and the decision model were appropriate 
and acceptable and achieved the desired transparency. 

A second objective with this study was to uncover opportunities for improvement 
of the CMAA algorithm. We observed that the format used to represent the decision-
makers’ criteria preferences was not appropriate. This had two negative conse-
quences: The first was that decision-makers’ input contained redundancies which they 
were not aware of, as described in Section 4.3. The second negative consequence was 
that the cognitive load for stating preferences and for resolving preference discrepan-
cies was too high. The tasks Which criterion should occupy this position in the criteria 
vector? or Which of the following positions in the criteria vector could this criterion oc-
cupy? are non-atomic questions that involve multiple options and are not in the spirit 
of multi-criteria decision models. In the debriefing session, all three decision-makers 
stated that they would have preferred to express their preferences in the form 𝑐𝑗1 ≻

𝑐𝑗2 (Criterion 𝑐𝑗1 is more important to me than criterion 𝑐𝑗2), rather than name absolute 

priorities for each criterion. They stated this would have been easier, faster, and more 
intuitive. 

We assume that it is more likely that a decision-maker will have a mental model 
that provides an argument for Criterion 𝑐𝑗1 is more important than criterion 𝑐𝑗2 than 

one for Criterion cj1 might belong at priority 𝑝. For this reason, the input becomes more 
intuitive, and a clarification conference for the question Which of the criteria 𝑐𝑗1 and 

𝑐𝑗2 is more important? is more straightforward than What priority should criterion 𝑐𝑗1 

have? or Which criterion should have priority 𝑝? 
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6. Simulation experiments 

6.1. Accuracy of the Monte Carlo simulation 

If the number of decision instances is very large, Monte Carlo simulation can be 
used instead of sampling the entire state space. This raises the question of whether a 
limited number of random samples can still achieve sufficient accuracy. 

Table 12. Acceptability indices for full sampling and random sampling 

 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6  ℎ 
10,000 samples 0.123 0.203 0.415 0.111 0.057 0.193  2.411 
Full problem 0.124 0.213 0.404 0.112 0.054 0.191  2.414 

To investigate this question, we performed a CMAA analysis of the decision prob-
lem defined by Table 3 and Table 4, using Monte Carlo simulation with 10,000 random 
instances. This represents about 0.01% of the overall state space. 

Table 12 compares the acceptabilities obtained from the complete analysis (see 
Table 5) with those obtained with the Monte Carlo simulation, as well as their respec-
tive entropies h (after normalization). All acceptabilities are within 5% of the ground 
truth values. The difference in the entropies is about 0.1%, and both variants gener-
ated the same consensus path. Even if a small deviation in the entropy did cause the 
Monte Carlo-based method to select a different discrepancy to be resolved, the ex-
pected consensus path length will almost certainly be unaffected. 

We conclude that – for this decision problem at least – 10,000 random samples 
would have been sufficient. The computation time for the analysis could have been 
reduced to less than one second. 

6.2. Consensus path length 

The decision-makers needed eight clarification steps to achieve consensus. We 
now consider the questions whether this was a representative number of steps for this 
particular problem and whether the decision problem itself was typical in this regard. 

We performed a Monte Carlo simulation in which 10,000 consensus paths were 
generated for the decision problem. At each step, the discrepancy that promised the 
greatest decrease in entropy was selected, and the decision-makers were simulated 
by choosing resolutions randomly with equal probability. In Figure 3. Distribution of 
path lengths for the decision problem and similarly dimensioned random problems, 
the darker columns show the distribution of path lengths needed to achieve consen-
sus, using the primary vertical axis. The shortest path had only four steps – one of these 
selects the entropy-minimizing resolution at each step. The values tail off rapidly, so 
the probability of a long path is small. The mean number of steps to consensus is 7.7. 
We conclude that the number of steps needed to achieve consensus in the real-life case 
was representative. In other words, it was not a lucky result of the specific resolutions 
chosen by the decision-makers: on average, other choices would have led to a similar 
number of steps. 
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Figure 3. Distribution of path lengths for the decision problem and simi-

larly dimensioned random problems 

The lighter columns in Figure 3 show the distribution of consensus path lengths for 
a set of 1,000 randomly generated decision problems of size 𝑚 = 𝑛 = 6 using the same 
decision model and solution method and with similar values for ||A|| and ||P||. For 
each decision problem, 100 random consensus paths were simulated, resulting in 
100,000 simulated decisions overall. Its values correspond to the secondary vertical 
axis. The general shape of the distribution is very similar to that obtained using the 
real-life input, with the exception that there were decisions where fewer than four 
clarification steps were needed. The mean number of steps to achieve consensus is 7.6. 
We conclude that the specific 6 × 6 problem in the case study was typical, in the sense 
that the number of steps to consensus was very close to the expected value for com-
parable problems. 

6.3. Comparison with compensatory decision models 

We hypothesize that CMAA will reach consensus in fewer steps using the non-com-
pensatory ABX-Lex decision model than with a compensatory one. This is because of 
its ‘dictator’ property: in descending order of criterion priority, all alternatives with a 
less-than-highest score with respect to that criterion are eliminated. Thus, any resolu-
tion of a discrepancy during the consensus-building process may eliminate several al-
ternatives simultaneously. 

We tested this hypothesis with a simulation experiment using three compensatory 
decision models: Simple Additive Weighting (SAW), TOPSIS and Weighted Product 
Model (WPM). The decision-maker inputs of Table 2 and Table 3 were re-interpreted 
as numerical performance scores and criteria weights. The judgements A, B and X were 
replaced by scores 3, 2 and 1, respectively, and the criteria priorities 1...6 were re-
placed by the weights 6...1. 
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Figure 4. Distribution of CMAA consensus path lengths for ABX-Lex and 

three compensatory models 

10,000 consensus paths were generated, whereby each discrepancy was resolved 
randomly. Figure 4 shows the distributions of the consensus path lengths for each 
model. The histogram for ABX-Lex is clearly shifted to the left compared to the other 
three. The mean path length obtained with ABX-Lex is 7.53, compared to 13.55, 13.17 
and 13.45 for SAW, TOPSIS and WPM, respectively, providing support for the hypoth-
esis. 

7. Conclusions 

7.1. Summary 

Combinatorial Multicriteria Acceptability Analysis is an algorithmic framework 
that permits standard multicriteria decision methods to be used by groups without 
aggregating individual evaluations to a single value such as the arithmetic mean. It 
provides a detailed decision analysis based on acceptability variables and a guided 
consensus-building process that attempts to minimize their information entropy. 

CMAA was used to facilitate a product development decision by the founders of a 
biotechnology startup. This is the first application of CMAA to a real-world decision. 
The entropy-optimal consensus path would have required only four steps. However, 
the decision-makers diverged from this shortest path four times, leading to eight res-
olution steps in total, each of which lasted only a few minutes. The strongest alterna-
tive based on the initial input did not become the consensus alternative, highlighting 
the importance of including a clarification process to identify the correct alternative. 
The decision-makers were satisfied with the result and reported no problems or con-
cerns with the model or the process. 

Three computational experiments were performed. The first studied the consensus 
path length for the decision, yielding an expected value of 7.7 resolution steps. The 
second experiment showed that Monte Carlo simulation with 10,000 samples pro-
vided sufficient accuracy, even though the complete decision contained more than 
100,000,000 instances. The third confirmed our expectation that CMAA reaches con-
sensus more quickly with a non-compensatory decision model than with a compensa-
tory one. 
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Our conclusions are based on single experiments, and further validation is needed. 
The case study was based on a comparatively small decision with only six alternatives 
and criteria and three decision-makers; the efficiency of the consensus-building and 
acceptance by the decision-makers should be tested for larger dimensions. 

The decision-makers were a consensus committed, cooperative and rational group, 
and all discrepancies were resolved quickly and without controversy. The CMAA ap-
proach is tolerant of failed or partial resolutions, which can result in longer paths to 
consensus, and it would be instructive to observe its performance with a less ideal 
group of decision-makers. 

The absolute values used for the criteria preferences led to a higher cognitive load 
than pairwise comparisons (such as are used in AHP) would have done, and they also 
resulted in redundant input combinations. If ordinal preferences are to be used, then 
pairwise comparisons would be more appropriate. 

Various future developments of the CMAA algorithm suggest themselves. Entropy 
could be computed across multiple ranks if a complete ranking is to be determined. In 
its current form, the consensus-building algorithm is myopic – it only considers the 
next resolution step; it may be possible to discover discrepancies with a greater en-
tropy-reducing potential by extending the look-ahead to more than one step. Similarly, 
it might be more efficient to select the discrepancy to be resolved based on the ex-
pected value of the resulting entropy, rather on than the minimum value. Finally, a 
fully automated digital facilitator could be developed for use in conjunction with an 
internet-based communication tool. 

7.2. Recommendations 

We recommend Combinatorial Multicriteria Acceptability Analysis as a multicrite-
ria group decision-making method if three conditions can be met. 

First, the decision is being made by a rational, cooperative group that is committed 
to consensus. This implies that decision-makers will likely be able to resolve their dif-
ferences once they have shared their information and interpretations of each issue. 

Second, performance is subjective: even if objective measurements are available, 
decision-makers will be required to make value judgements of them, for example us-
ing a Likert scale, or even just a pass/fail choice. 

Third, if a non-compensatory decision model is to be used, the decision-makers 
should be aware of the consequences: an alternative that is not assigned to the highest 
value/performance category with respect to the highest-priority criterion can no 
longer be ‘rehabilitated’ by a high score in a lower-priority criterion. If this feature is 
not desired, a more familiar model such as Simple Additive Weighting, AHP or TOPSIS 
can be used instead, possibly at the cost of a longer consensus process. 

If these conditions are fulfilled, CMAA offers the following benefits to a decision-
making group: 

• Hard consensus can be achieved in a small number of steps, without having 
to resolve all discrepancies, even when there is a large amount of initial disa-
greement.  

• The cognitive load is low, since most discrepancies do not need to be ad-
dressed at all. 

• The method encourages the sharing of mental models, leading to a common 
understanding of critical issues within the group. 

• The method delivers detailed insights into the effect of individual inputs on 
the strength of each alternative. 
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