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Abstract: A method for improving centroid-based clustering is suggested. 
The improvement is built on diversification of the k-means++ initialization. 
The k-means++ algorithm claimed to be a better version of k-means is tested 
by a computational set-up, where the dataset size, the number of features, 
and the number of clusters are varied. The statistics obtained on the testing 
have shown that, in roughly 50 % of instances to cluster, k-means++ outputs 
worse results than k-means with random centroid initialization. The impact 
of the random centroid initialization solidifies as both the dataset size and 
the number of features increase. In order to reduce the possible 
underperformance of k-means++, the k-means algorithm is run on a separate 
processor core in parallel to running the k-means++ algorithm, whereupon 
the better result is selected. The number of k-means++ algorithm runs is set 
not less than that of k-means. By incorporating the seeding method of 
random centroid initialization, the k-means++ algorithm gains about 0.05 % 
accuracy in every second instance to cluster. 

Key words: centroid-based clustering, k-means++, centroid initialization, 
random initialization, algorithm multiple runs. 

1.  Initialization in centroid-based clustering 

The centroid-based clustering problem is to partition N data points (observations, 
objects) into k clusters (groups) by minimizing the sum of within-cluster squared 
Euclidean distances (Gonzalez, 1985; Hartigan & Wong, 1979; Ikotun et al., 2023). 
Centroid-based clustering, although being a specific field in cluster analysis, has 
many practical implementations (Ostrovsky et al., 2006; Phillips, 2002; Mahajan, 
Nimbhorkar, & Varadarajan, 2009). Clustering flat objects (which have two features) 
is often perceived as a metric facility location problem (Li, 2011; Megiddo & Tamir, 
1982). The task of this problem is to find the best warehouse locations to optimally 
service a given set of consumers whose locations are taken as the data to be 
clustered, and warehouses are seen as cluster centers (centroids) (MacQueen, 1967; 
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Romanuke, 2018b; Mahajan, Nimbhorkar, & Varadarajan, 2009; Jafar et al., 2021). 
For instance, centroid-based clustering is used to rationally assign mobiles 
(consumers) to base stations (that, in a more rigorous manner, are referred to as 
centroids) of a wireless communication network (Romanuke, 2019). Mounting 
locations of base stations also can be determined by centroid-based clustering. It is 
also invoked to build complex models of decision-making (Jafar & Saeed, 2022). 

In practice, the fastest method for centroid-based clustering is the k-means 
algorithm that is an efficient heuristic (Lloyd, 1982; Bottou & Bengio, 1994; Hamerly, 
2010; Kanungo et al., 2002). The algorithm quickly converges to a local optimum (an 
approximate minimum), so it is usually run multiple times and the best approximate 
minimum is selected (Fränti & Sieranoja, 2019; Celebi et al., 2013; Kanungo et al., 
2004). The k-means problem is solved using either the Lloyd’s or Elkan’s algorithm, 
where the latter is more efficient by using the triangle inequality for dense data 
(Ostrovsky et al., 2006; Vattani, 2011; Press et al., 2007). 

While k-means chooses k initial cluster centroids at random, the k-means++ 
algorithm specifically initializes the centroids. It uses an heuristic to find centroid 
seeds for k-means clustering. According to Arthur & Vassilvitskii (2007), k-means++ 
improves both the running time of the Lloyd’s algorithm and the approximate 
minimum of the sum of within-cluster squared Euclidean distances. Nevertheless, it 
is easy to convince that the k-means++ advantage does not come true for every 
centroid-based clustering problem. The advantage works on average. For example, at 
some random state (determining pseudorandom number generation), a dataset of 
2500 points scattered uniformly within a unit square with adding a half of standard 
normal noise is partitioned into 24 clusters more accurately by initializing 24 
centroids at random, where 50 multiples run are used. Indeed, an approximate 
minimum of 119.0397 is obtained by the random initialization within 677.9 
milliseconds on a dual-core processor Intel Core i5-7200U@2.50GHz, whereas the  
k-means++ algorithm takes about 777.8 milliseconds to reach just an approximate 
minimum of 120.947 (see Figure 1, where the centroids are marked with circles). 
Thus, in this particular counterexample, k-means++ is 1.577% less accurate and 
12.84 % slower. This is a quite huge loss in both accuracy and computational speed. 

Therefore, the random centroid initialization (which essentially is the k-means 
algorithm) in centroid-based clustering can significantly outperform k-means++. But 
what is the random initialization performance on average? How does it relate to the 
k-means++ performance, i. e. what is the relationship between these two 
approaches? These questions are still open and need to be answered in order to 
ascertain a realistic disadvantage of “careful seeding”. 

2.  Motivation and goal 

An average advantage in performance has a general problem (that might be 
punned as a disadvantage) — it does not guarantee that the advantage happens in 
every single instance (Chakrabarty & Swagatam, 2022; Arthur & Vassilvitskii, 2006). 
The k-means++ algorithm has been believed to have the outperformance with 
respect to other approaches to centroid-based clustering including the k-means with 
the random centroid initialization. The k-means++ underperformance in the 
particular counterexample in Figure 1 may be just an occasional outlier instance, but 
it nonetheless pushes to a suggestion that such outliers do exist. Does the 
pseudorandom number generator state influence it? Maybe the counterexample is 
just an occurrence appeared at 50 algorithm runs, and it disappears at other 
numbers of runs? As a matter of fact, it does not.  
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Figure 1. The particular counterexample, in which centroid-based clustering is done 

by 1.577% more accurately and 12.84 % faster by using the random initialization 

(the top subplot) than by using k-means++ (the bottom subplot) 
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Figure 2 presents a plot of how the sum of within-cluster squared Euclidean 
distances changes versus the number of algorithms runs for the particular 
pseudorandom number generator state. It is clearly seen that as the algorithm is run 
more times, k-means++ continues underperforming, finally reaching an approximate 
minimum of 119.2911 after 78 runs. Meanwhile, the randomly initialized centroids 
here make the sum of within-cluster squared Euclidean distances equal to 120.2943 
in the very beginning. It is even better than 120.947 — the k-means++ performance 
after 50 runs (Figure 1). An approximate minimum of 118.984 is reached after 56 
runs followed the leap-down from the preceding value of 119.0397 related to 
Figure 1. 
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Figure 2. The sum of within-cluster squared Euclidean distances versus the number 

of algorithm runs for k-means++ (black dots) and random (red dotted squares) 

centroid initialization 

By starting with some different pseudorandom number generator state, the same 
dataset is clustered differently. Unlike the previous state performance visualized in 
Figure 2, this time the random centroid initialization starts worse than k-means++ 
(Figure 3), but eventually reaches an approximate minimum of 118.8904 after 146 
runs. Despite a better start lasting until 69 runs, k-means++ still underperforms 
reaching only an approximate minimum of 119.5583 after 38 runs (it is worse than 
that in Figure 2). Therefore, this confirms that the starting relationship between the 
performances can be broken as the algorithm is run more times. 

Issuing from the possible underperformance of k-means++ in centroid-based 
clustering, the goal is to suggest a method of how the underperformance could be 
reduced by using the random centroid initialization. For meeting the goal, the 
following five tasks are to be accomplished: 

1. To formalize a computational set-up to gather statistics of the performance of 
the k-means++ algorithm versus k-means with random centroid initialization. 

2. To study the statistics and suggest a method of how the random centroid 
initialization could improve centroid-based clustering to reduce the possible 
underperformance of k-means++. 

3. To show the suggested method performance versus k-means++. 
4. To discuss practical applicability and scientific significance of the suggested 

method for centroid-based clustering. 
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Figure 3. The performance by a pseudorandom number generator state different 

from that in Figure 2, where k-means++ still underperforms despite a better start 

5. To make an appropriate conclusion and an outlook of how the research might 
be developed further. 

3.  Computational set-up 

To gather statistics of the performance of the k-means++ algorithm versus  
k-means with random centroid initialization, a computational simulation is set up as 
follows. The number of algorithms runs denoted by runsA  is 200. The maximal 

number of iterations (for every run) is set at 300. The number of the dataset points 
to be clustered denoted by N  is selected from a range 

 =   3 4 4 4 5 5
Range 10 , 10 , 2.5 10 , 5 10 , 10 , 2 10N . (1) 

The number of clusters denoted by k  is selected from a range 

 =Range 4, 8, 16, 32, 64K . (2) 

The number of object features denoted by m  is selected from a range 

 =Range 2, 3, 4, 5M . (3) 

For every  ,N m  the dataset is generated as points  

    
=  =
=

1 1 1

NN

i lii m i
xX , (4) 

where the value of feature l  is 

=  + 0.5li li lix  by =1,l m  and =1,i N  (5) 

for a value  li  of a random variable  li  distributed uniformly on the open interval 

( )0; 1 , and a value  li  of a random variable  li  distributed normally with the zero 

mean and unit variance. The dataset is partitioned into k  clusters,  Rangek K . The 

performance includes both accuracy and computational (running) time. The accuracy 
is meant by the sum of within-cluster squared Euclidean distances: for centroids 
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   
=  =
=   1 1 1

kk

j ljj m j
cC  (6) 

belonging to respective clusters  
=1

k

j j
S  the sum is 

( )
=  =

= −
2

1 1i j

k m

li li

j S l

D x c
X

. (7) 

Denote sum (7), which can be referred to as a score, and the respective 
computational time for k-means and k-means++ respectively by randD , randt , and ++D , 

++t . The relative tolerance regarding sum (7) is set at 0.0001 to declare convergence. 

The relative difference between the k-means and k-means++ performances for 
number runsA  is calculated as a percentage 

( )
−

=  ++ rand
runs

++

100
D D

p A
D

. (8) 

The relative difference between the k-means and k-means++ running times for 
number runsA  is calculated as a percentage 

( )
−

 =  ++ rand
runs

++

100
t t

A
t

. (9) 

Meanwhile, both the algorithms can be run (in any order, but not in parallel) for 
fewer runs *

runsA , whereupon the minimum 

( )  =* * * *
runs rand ++min ,D A D D  (10) 

is found for the respective solution (herein, both the algorithms are used in a mix), 
where *

randD  and *
++D  are the respective “internal” values of sum (7). The relative 

difference percentage 

( )
( )−

= 
* *

++ runs* *
runs runs

++

, 100
D D A

p A A
D

 (11) 

is calculated to see how much minimum (10) improves the solution with respect to 
the k-means++ solution. In this set-up, =*

runs 80A  and thus the mix algorithm is of 

160 runs. This is done intentionally not to increase its running time with respect to  
k-means++. The relative difference between the mix algorithm and k-means++ 
running times is calculated as a percentage 

( )
( )−

 = 
* *

++ runs* *
runs runs

++

, 100
t t A

A A
t

, (12) 

where ( )* *
runst A  is the computational time taken to find (10) by *

runsA  runs for each of 

k-means and k-means++. 

4.  Statistics of the performance 

As every instance to cluster has been generated for a triple  , ,N m k  by having 

repeated it for five times, there are 10   6 4 5 5  arrays of the following data by 
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(8) — (12): randD , randt , ++D , ++t , ( )* 80D , ( )* 80t , ( )200p , ( ) 200 , ( )* 200, 80p , 

( )* 200, 80 . These arrays are averaged over the last dimension. Then the resulting 

 6 4 5  averages can be averaged over the second dimension getting rid of the 

number of features. So, the relative difference between the k-means and k-means++ 
performances by (8) becomes a 6 5  matrix (Table 1). So do the relative difference 

between the k-means and k-means++ running times by (9) presented in Table 2, the 
relative difference between the mix algorithm and k-means++ performances by (11) 
presented in Table 3, and the relative difference between the mix algorithm and  
k-means++ running times by (12) presented in Table 4. Positive percentage values 
highlighted bold in Tables 1 — 4 imply that the k-means++ algorithm is worse. As the 
number of points increases, k-means may perform even better, and the difference 
becomes more solid (Table 1). However, there is no solid advantage in its running 
time (Table 2). The only exception is the dataset of 1000 points, for which k-means 
performs far faster as the number of clusters is increased. On average, k-means is 
0.1248 % less accurate and 5.5815 % faster than k-means++. As the number of 
features increases from 2 up to 5, the accuracy loss drops from 0.2897 down to 
0.051 %, whereas the speedup grows from 1.9388 up to 6.536 %. 

Table 1. The averaged relative difference ( )200p  

 
k 

4 8 16 32 64 

N, 
thousand 

points 

1 0.0038 –0.0332 0.0499 –0.5858 –2.9195 

10 0.0028 –0.0029 0.0194 –0.0093 –0.1851 

25 –0.0032 –0.0044 0.0018 –0.0084 –0.071 

50 –0.0017 0.0003 –0.0136 –0.011 –0.0422 

100 0.003 0.002 0.0023 0.005 0.0301 

200 –0.0026 0.0089 0 –0.012 0.0326 

Table 2. The averaged relative difference ( ) 200  

 
k 

4 8 16 32 64 

N, 
thousand 

points 

1 15.9466 20.2476 26.0419 40.4715 56.623 

10 –11.7908 –5.8843 –2.2911 –0.8097 –2.1711 

25 –10.2717 –2.9196 0.6984 2.4742 –2.7903 

50 –1.514 6.0402 6.5657 2.6504 –4.1854 

100 4.5527 6.7761 5.5678 1.7482 –3.7013 

200 5.9929 7.0517 6.3528 2.5478 –2.574 

 
On average, the mix does not outperform k-means++ (Table 3) by losing about 

0.0265 % in accuracy. However, the loss drops down to 0.0037 % as the dataset 
becomes larger (for instance, it is clearly seen by the column for 64 clusters). 
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Moreover, the mix is 22.2059 % faster (see Table 4, in which only cells are 
highlighted bold which correspond to those in Table 3). 

Table 3. The averaged relative difference ( )* 200, 80p  

 
k 

4 8 16 32 64 

N, 
thousand 

points 

1 –0.0018 –0.0339 0.0444 –0.0898 –0.4169 

10 –0.0015 –0.0119 –0.0037 –0.0171 –0.0753 

25 –0.0057 –0.004 –0.0031 –0.0198 –0.0386 

50 –0.009 0.001 –0.0148 –0.0131 –0.0432 

100 0.0007 0.0011 –0.0042 –0.0073 –0.0097 

200 –0.0062 –0.0005 –0.0003 –0.0161 0.0048 

Table 4. The averaged relative difference ( )* 200, 80  

 
k 

4 8 16 32 64 

N, 
thousand 

points 

1 26.5908 27.7943 29.0979 35.8353 41.6295 

10 15.5539 17.9377 18.7276 18.7803 19.0342 

25 15.4327 18.8305 20.167 21.3691 19.0413 

50 21.136 22.0985 23.0131 21.1487 18.1065 

100 22.4393 22.2942 22.8851 21.0932 18.6342 

200 22.458 22.5046 22.7475 20.8289 18.9677 

 
So, the main inference from the statistics is that, as both the number of points and 

the number of features increase, the impact of the random centroid initialization 
solidifies. As the number of clusters is increased, no such or other distinct pattern is 
observed. However, there is another distinct property of the statistics that is as solid 
as the mentioned inference is. This is about the rate of instances for which k-means 
performs better than k-means++ (based on the data for Table 1). In fact, about a half 
of 600 instances (this is the total number of instances) are clustered more accurately 
by k-means (Table 5). The dependence on the number of features, on the dataset size, 
and on the number of clusters is hardly perceivable. Nearly the same quality of the 
performance is seen for the mix algorithm (Table 6), where the tie on the same 
performance is broken by the shorter running time of the mix algorithm. 

On average, the k-means performance is better, the same, and worse in 
49.8333 %, 0.5 %, and 49.6667 % of all instances generated. The respective averaged 
rates of the mix performance are 36.6667 %, 13 %, and 50.3333 %. Obviously, the 
mix algorithm configured for =*

runs 80A  by 200 runs of k-means++ is always faster 

(Table 4). Meanwhile, k-means does not always outrun k-means++ (Table 7), which 
is also inferred from Table 2. An exception occurs when the dataset is of a medium to 
small size, although there are two cells in Table 7 for 10000-point and 25000-point 
datasets, where k-means++ is likelier to be faster. As the dataset size increases,  
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k-means++ becomes slower, and the slowness builds up. On average, k-means is 
faster at 68.3333 % rate. 

Table 5. Percentage of instances on which the k-means performance  
is better or worse 

By the number of features 
By the dataset size  

(in thousands of points) 
By the number of clusters 

m better equal worse Size better equal worse k better equal worse 

2 47.3333 2 50.6667 1 34 3 63 4 55 1.6667 43.3333 

3 55.3333 0 44.6667 10 51 0 49 8 53.333 0.833 45.833 

4 46 0 54 25 45 0 55 16 55.8333 0 44.1667 

5 50.6667 0 49.3333 50 47 0 53 32 45.8333 0 54.1667 

    100 63 0 37 64 39.1667 0 60.8333 

    200 59 0 41     

Table 6. Percentage of instances on which the mix performance is better or worse 

By the number of features 
By the dataset size  

(in thousands of points) 
By the number of clusters 

m better equal worse Size better equal worse k better equal worse 

2 42 8.6667 49.3333 1 27 22 51 4 35.833 15.833 48.333 

3 42.667 13.333 44 10 44 10 46 8 39.167 14.167 46.667 

4 34.6667 12 53.3333 25 32 11 57 16 35.833 14.167 50 

5 27.3333 18 54.6667 50 32 11 57 32 39.1667 12.5 48.3333 

    100 44 14 42 64 33.333 8.333 58.333 

    200 41 10 49     

 
The obtained data remain nearly the same if the computational simulation is 

repeated (starting from different pseudorandom number generator states). In 
general, the abovementioned main inference from the statistics remains the same. 
Moreover, the advantage of the mix algorithm solidifies further if the number of  
k-means and k-means++ runs (inside this algorithm) is increased from 80 up to 115. 

Table 7. Percentage of instances on which k-means performs faster or slower 

By the number of features 
By the dataset size  

(in thousands of points) 
By the number of clusters 

m faster equal slower Size faster equal slower k faster equal slower 

2 53.3333 0 46.6667 1 100 0 0 4 55 0 45 

3 73.3333 0 26.6667 10 43 0 57 8 73.3333 0 26.6667 

4 71.3333 0 28.6667 25 42 0 58 16 80.8333 0 19.1667 

5 75.3333 0 24.6667 50 69 0 31 32 73.3333 0 26.6667 

    100 76 0 24 64 59.1667 0 40.8333 

    200 80 0 20     
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5.  The improved performance 

Whichever number runsA  is, number *
runsA  cannot be selected such that k-means 

would outperform k-means++. Nevertheless, by ignoring the seeding method of 
random centroid initialization, k-means++ loses about 0.05 % accuracy in every 
second instance to cluster. All the more that much higher accuracy losses are likely. 
For instance, a 1000-point dataset with 4 features has been partitioned into 16 
clusters by k-means++ with a score of 417.222, whereas k-means has performed on 
the dataset with a score of 414.5155 (that is 0.6487 % more accurate). At the same 
time, k-means may perform too poorly on smaller-sized problems. Thus, another 
1000-point dataset with 2 features has been partitioned into 64 clusters by  
k-means++ with a score of 13.6557, whereas the k-means score is 14.8535 (that is 
8.7712 % less accurate). 

To prevent potential accuracy losses, the random centroid initialization is 
incorporated into k-means++. Inasmuch as k-means cannot be used standalone, the 
mix algorithm is a simple solution. However, minimum (10) still can occasionally 
exceed ++D  if number *

runsA  is a fraction of runsA  (i. e., when *
runs runsA A ). If both  

k-means and k-means++ are initiated by the same pseudorandom number generator 
state, then 

 by =*
runs runsA A . (13) 

If not, then inequality (13) does not always hold. Meanwhile, it is not about the 
competition between the two approaches. It is rather about the diversity of scores 
among which the minimum should be selected. It is similar to the hybridization and 
fuzzification used for decision-making in multi-attributes and multi-objective 
problems (Jafar et al., 2022; Jafar et al., 2020a; Romanuke, 2018a). The best solution 
is to run both k-means and k-means++ on parallel cores, whichever number *

runsA  is, 

whereupon to conclude on minimization operation (10). Besides, inasmuch as  
k-means++ is more robust, it can be run for more times than k-means. For example, 
in overall 160 runs, k-means is run for 40 times and k-means++ is run for 120 times, 
where four processor cores may be used to run the algorithms in parallel. This 
improves the performance in every second instance to cluster. 

6.  Discussion and conclusion 

In nearly a half of instances to cluster, using k-means is seemingly redundant,  
but the other half really needs the random centroid initialization for improving 
centroid-based clustering. It is worth remembering that the clustering result score is 
a value of a random variable, so the improved performance can be guaranteed only 
as an expectance. Such an improvement makes sense for applications in management 
and engineering featuring repeatability of decision-making events (Romanuke, 
2018a; Fränti & Sieranoja, 2019; Romanuke, 2021). Non-repeatable decision-making 
problems will nonetheless benefit from the improved centroid-based clustering 
while, e. g., subproblems of measuring similarity are solved (Jafar et al., 2020b; Jafar 
et al., 2021; Romanuke, 2018b; Romanuke, 2019). 

After all, why does k-means++ underperform? The answer is quite simple: the  
k-means++ sometimes underperforms because the first centroid is chosen at 
random, so it is likely that a poor choice of the first centroid leads to poorer accuracy. 

Obviously, equal running times of k-means and k-means++ are very unlikely, but 
the occurrence when k-means++ converges faster than k-means (by the same 
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number of the algorithm runs and the same pseudorandom number generator state) 
is not excluded. Due to the k-means++ centroid initialization is a sequential process, 
the k-means++ slowdown deepens as the problem size increases. 

Based on a series of computational simulations, it must be concluded that, by 
incorporating the seeding method of random centroid initialization, the k-means++ 
algorithm gains about 0.05 % accuracy in every second instance to cluster. In its best 
non-sequential way to maintain the same running time, the incorporation is 
practically done by running the k-means algorithm on a separate processor core in 
parallel to running the k-means++ algorithm, whereupon the better result is selected. 
The impact of the random centroid initialization solidifies as both the dataset size 
and the number of features increase. The approach can be developed further by 
substituting the sequential process of centroid initialization in the k-means++ 
algorithm with the random centroid initialization as an alternative choice of the first 
centroid. 
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