
Decision Making: Applications in Management and Engineering
Vol. 6, Issue 2, 2023, pp. 734-746.
ISSN: 2560-6018
eISSN: 2620-0104

 DOI: https://doi.org/10.31181/dmame622023742

* Corresponding author
 E-mail address: v.romanuke@amw.gdynia.pl (V. Romanuke)

RANDOM CENTROID INITIALIZATION FOR IMPROVING
CENTROID-BASED CLUSTERING

Vadim V. Romanuke 1*

1Polish Naval Academy, 69 Śmidowicza Street, Gdynia, Poland

Received: 3 April 2023;
Accepted: 9 July 2023;
Available online: 4 August 2023.

Original scientific paper

Abstract: A method for improving centroid-based clustering is suggested.
The improvement is built on diversification of the k-means++ initialization.
The k-means++ algorithm claimed to be a better version of k-means is tested
by a computational set-up, where the dataset size, the number of features,
and the number of clusters are varied. The statistics obtained on the testing
have shown that, in roughly 50 % of instances to cluster, k-means++ outputs
worse results than k-means with random centroid initialization. The impact
of the random centroid initialization solidifies as both the dataset size and
the number of features increase. In order to reduce the possible
underperformance of k-means++, the k-means algorithm is run on a separate
processor core in parallel to running the k-means++ algorithm, whereupon
the better result is selected. The number of k-means++ algorithm runs is set
not less than that of k-means. By incorporating the seeding method of
random centroid initialization, the k-means++ algorithm gains about 0.05 %
accuracy in every second instance to cluster.

Key words: centroid-based clustering, k-means++, centroid initialization,
random initialization, algorithm multiple runs.

1. Initialization in centroid-based clustering

The centroid-based clustering problem is to partition N data points (observations,
objects) into k clusters (groups) by minimizing the sum of within-cluster squared
Euclidean distances (Gonzalez, 1985; Hartigan & Wong, 1979; Ikotun et al., 2023).
Centroid-based clustering, although being a specific field in cluster analysis, has
many practical implementations (Ostrovsky et al., 2006; Phillips, 2002; Mahajan,
Nimbhorkar, & Varadarajan, 2009). Clustering flat objects (which have two features)
is often perceived as a metric facility location problem (Li, 2011; Megiddo & Tamir,
1982). The task of this problem is to find the best warehouse locations to optimally
service a given set of consumers whose locations are taken as the data to be
clustered, and warehouses are seen as cluster centers (centroids) (MacQueen, 1967;

mailto:v.romanuke@amw.gdynia.pl

Random centroid initialization for improving centroid-based clustering

735

Romanuke, 2018b; Mahajan, Nimbhorkar, & Varadarajan, 2009; Jafar et al., 2021).
For instance, centroid-based clustering is used to rationally assign mobiles
(consumers) to base stations (that, in a more rigorous manner, are referred to as
centroids) of a wireless communication network (Romanuke, 2019). Mounting
locations of base stations also can be determined by centroid-based clustering. It is
also invoked to build complex models of decision-making (Jafar & Saeed, 2022).

In practice, the fastest method for centroid-based clustering is the k-means
algorithm that is an efficient heuristic (Lloyd, 1982; Bottou & Bengio, 1994; Hamerly,
2010; Kanungo et al., 2002). The algorithm quickly converges to a local optimum (an
approximate minimum), so it is usually run multiple times and the best approximate
minimum is selected (Fränti & Sieranoja, 2019; Celebi et al., 2013; Kanungo et al.,
2004). The k-means problem is solved using either the Lloyd’s or Elkan’s algorithm,
where the latter is more efficient by using the triangle inequality for dense data
(Ostrovsky et al., 2006; Vattani, 2011; Press et al., 2007).

While k-means chooses k initial cluster centroids at random, the k-means++
algorithm specifically initializes the centroids. It uses an heuristic to find centroid
seeds for k-means clustering. According to Arthur & Vassilvitskii (2007), k-means++
improves both the running time of the Lloyd’s algorithm and the approximate
minimum of the sum of within-cluster squared Euclidean distances. Nevertheless, it
is easy to convince that the k-means++ advantage does not come true for every
centroid-based clustering problem. The advantage works on average. For example, at
some random state (determining pseudorandom number generation), a dataset of
2500 points scattered uniformly within a unit square with adding a half of standard
normal noise is partitioned into 24 clusters more accurately by initializing 24
centroids at random, where 50 multiples run are used. Indeed, an approximate
minimum of 119.0397 is obtained by the random initialization within 677.9
milliseconds on a dual-core processor Intel Core i5-7200U@2.50GHz, whereas the
k-means++ algorithm takes about 777.8 milliseconds to reach just an approximate
minimum of 120.947 (see Figure 1, where the centroids are marked with circles).
Thus, in this particular counterexample, k-means++ is 1.577% less accurate and
12.84 % slower. This is a quite huge loss in both accuracy and computational speed.

Therefore, the random centroid initialization (which essentially is the k-means
algorithm) in centroid-based clustering can significantly outperform k-means++. But
what is the random initialization performance on average? How does it relate to the
k-means++ performance, i. e. what is the relationship between these two
approaches? These questions are still open and need to be answered in order to
ascertain a realistic disadvantage of “careful seeding”.

2. Motivation and goal

An average advantage in performance has a general problem (that might be
punned as a disadvantage) — it does not guarantee that the advantage happens in
every single instance (Chakrabarty & Swagatam, 2022; Arthur & Vassilvitskii, 2006).
The k-means++ algorithm has been believed to have the outperformance with
respect to other approaches to centroid-based clustering including the k-means with
the random centroid initialization. The k-means++ underperformance in the
particular counterexample in Figure 1 may be just an occasional outlier instance, but
it nonetheless pushes to a suggestion that such outliers do exist. Does the
pseudorandom number generator state influence it? Maybe the counterexample is
just an occurrence appeared at 50 algorithm runs, and it disappears at other
numbers of runs? As a matter of fact, it does not.

 Romanuke/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 734-746

736

Figure 1. The particular counterexample, in which centroid-based clustering is done

by 1.577% more accurately and 12.84 % faster by using the random initialization

(the top subplot) than by using k-means++ (the bottom subplot)

Random centroid initialization for improving centroid-based clustering

737

Figure 2 presents a plot of how the sum of within-cluster squared Euclidean
distances changes versus the number of algorithms runs for the particular
pseudorandom number generator state. It is clearly seen that as the algorithm is run
more times, k-means++ continues underperforming, finally reaching an approximate
minimum of 119.2911 after 78 runs. Meanwhile, the randomly initialized centroids
here make the sum of within-cluster squared Euclidean distances equal to 120.2943
in the very beginning. It is even better than 120.947 — the k-means++ performance
after 50 runs (Figure 1). An approximate minimum of 118.984 is reached after 56
runs followed the leap-down from the preceding value of 119.0397 related to
Figure 1.

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
118.5

119

119.5

120

120.5

121

121.5

122

122.5

123

123.5

Figure 2. The sum of within-cluster squared Euclidean distances versus the number

of algorithm runs for k-means++ (black dots) and random (red dotted squares)

centroid initialization

By starting with some different pseudorandom number generator state, the same
dataset is clustered differently. Unlike the previous state performance visualized in
Figure 2, this time the random centroid initialization starts worse than k-means++
(Figure 3), but eventually reaches an approximate minimum of 118.8904 after 146
runs. Despite a better start lasting until 69 runs, k-means++ still underperforms
reaching only an approximate minimum of 119.5583 after 38 runs (it is worse than
that in Figure 2). Therefore, this confirms that the starting relationship between the
performances can be broken as the algorithm is run more times.

Issuing from the possible underperformance of k-means++ in centroid-based
clustering, the goal is to suggest a method of how the underperformance could be
reduced by using the random centroid initialization. For meeting the goal, the
following five tasks are to be accomplished:

1. To formalize a computational set-up to gather statistics of the performance of
the k-means++ algorithm versus k-means with random centroid initialization.

2. To study the statistics and suggest a method of how the random centroid
initialization could improve centroid-based clustering to reduce the possible
underperformance of k-means++.

3. To show the suggested method performance versus k-means++.
4. To discuss practical applicability and scientific significance of the suggested

method for centroid-based clustering.

 Romanuke/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 734-746

738

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
118.5

119

119.5

120

120.5

121

121.5

122

122.5

123

123.5

Figure 3. The performance by a pseudorandom number generator state different

from that in Figure 2, where k-means++ still underperforms despite a better start

5. To make an appropriate conclusion and an outlook of how the research might
be developed further.

3. Computational set-up

To gather statistics of the performance of the k-means++ algorithm versus
k-means with random centroid initialization, a computational simulation is set up as
follows. The number of algorithms runs denoted by runsA is 200. The maximal

number of iterations (for every run) is set at 300. The number of the dataset points
to be clustered denoted by N is selected from a range

 =   3 4 4 4 5 5
Range 10 , 10 , 2.5 10 , 5 10 , 10 , 2 10N . (1)

The number of clusters denoted by k is selected from a range

 =Range 4, 8, 16, 32, 64K . (2)

The number of object features denoted by m is selected from a range

 =Range 2, 3, 4, 5M . (3)

For every  ,N m the dataset is generated as points

    
=  =
=

1 1 1

NN

i lii m i
xX , (4)

where the value of feature l is

=  + 0.5li li lix by =1,l m and =1,i N (5)

for a value  li of a random variable  li distributed uniformly on the open interval

()0; 1 , and a value  li of a random variable  li distributed normally with the zero

mean and unit variance. The dataset is partitioned into k clusters,  Rangek K . The

performance includes both accuracy and computational (running) time. The accuracy
is meant by the sum of within-cluster squared Euclidean distances: for centroids

Random centroid initialization for improving centroid-based clustering

739

   
=  =
=   1 1 1

kk

j ljj m j
cC (6)

belonging to respective clusters  
=1

k

j j
S the sum is

()
=  =

= −
2

1 1i j

k m

li li

j S l

D x c
X

. (7)

Denote sum (7), which can be referred to as a score, and the respective
computational time for k-means and k-means++ respectively by randD , randt , and ++D ,

++t . The relative tolerance regarding sum (7) is set at 0.0001 to declare convergence.

The relative difference between the k-means and k-means++ performances for
number runsA is calculated as a percentage

()
−

=  ++ rand
runs

++

100
D D

p A
D

. (8)

The relative difference between the k-means and k-means++ running times for
number runsA is calculated as a percentage

()
−

 =  ++ rand
runs

++

100
t t

A
t

. (9)

Meanwhile, both the algorithms can be run (in any order, but not in parallel) for
fewer runs *

runsA , whereupon the minimum

()  =* * * *
runs rand ++min ,D A D D (10)

is found for the respective solution (herein, both the algorithms are used in a mix),
where *

randD and *
++D are the respective “internal” values of sum (7). The relative

difference percentage

()
()−

= 
* *

++ runs* *
runs runs

++

, 100
D D A

p A A
D

 (11)

is calculated to see how much minimum (10) improves the solution with respect to
the k-means++ solution. In this set-up, =*

runs 80A and thus the mix algorithm is of

160 runs. This is done intentionally not to increase its running time with respect to
k-means++. The relative difference between the mix algorithm and k-means++
running times is calculated as a percentage

()
()−

 = 
* *

++ runs* *
runs runs

++

, 100
t t A

A A
t

, (12)

where ()* *
runst A is the computational time taken to find (10) by *

runsA runs for each of

k-means and k-means++.

4. Statistics of the performance

As every instance to cluster has been generated for a triple  , ,N m k by having

repeated it for five times, there are 10   6 4 5 5 arrays of the following data by

 Romanuke/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 734-746

740

(8) — (12): randD , randt , ++D , ++t , ()* 80D , ()* 80t , ()200p , () 200 , ()* 200, 80p ,

()* 200, 80 . These arrays are averaged over the last dimension. Then the resulting

 6 4 5 averages can be averaged over the second dimension getting rid of the

number of features. So, the relative difference between the k-means and k-means++
performances by (8) becomes a 6 5 matrix (Table 1). So do the relative difference

between the k-means and k-means++ running times by (9) presented in Table 2, the
relative difference between the mix algorithm and k-means++ performances by (11)
presented in Table 3, and the relative difference between the mix algorithm and
k-means++ running times by (12) presented in Table 4. Positive percentage values
highlighted bold in Tables 1 — 4 imply that the k-means++ algorithm is worse. As the
number of points increases, k-means may perform even better, and the difference
becomes more solid (Table 1). However, there is no solid advantage in its running
time (Table 2). The only exception is the dataset of 1000 points, for which k-means
performs far faster as the number of clusters is increased. On average, k-means is
0.1248 % less accurate and 5.5815 % faster than k-means++. As the number of
features increases from 2 up to 5, the accuracy loss drops from 0.2897 down to
0.051 %, whereas the speedup grows from 1.9388 up to 6.536 %.

Table 1. The averaged relative difference ()200p

k

4 8 16 32 64

N,
thousand

points

1 0.0038 –0.0332 0.0499 –0.5858 –2.9195

10 0.0028 –0.0029 0.0194 –0.0093 –0.1851

25 –0.0032 –0.0044 0.0018 –0.0084 –0.071

50 –0.0017 0.0003 –0.0136 –0.011 –0.0422

100 0.003 0.002 0.0023 0.005 0.0301

200 –0.0026 0.0089 0 –0.012 0.0326

Table 2. The averaged relative difference () 200

k

4 8 16 32 64

N,
thousand

points

1 15.9466 20.2476 26.0419 40.4715 56.623

10 –11.7908 –5.8843 –2.2911 –0.8097 –2.1711

25 –10.2717 –2.9196 0.6984 2.4742 –2.7903

50 –1.514 6.0402 6.5657 2.6504 –4.1854

100 4.5527 6.7761 5.5678 1.7482 –3.7013

200 5.9929 7.0517 6.3528 2.5478 –2.574

On average, the mix does not outperform k-means++ (Table 3) by losing about

0.0265 % in accuracy. However, the loss drops down to 0.0037 % as the dataset
becomes larger (for instance, it is clearly seen by the column for 64 clusters).

Random centroid initialization for improving centroid-based clustering

741

Moreover, the mix is 22.2059 % faster (see Table 4, in which only cells are
highlighted bold which correspond to those in Table 3).

Table 3. The averaged relative difference ()* 200, 80p

k

4 8 16 32 64

N,
thousand

points

1 –0.0018 –0.0339 0.0444 –0.0898 –0.4169

10 –0.0015 –0.0119 –0.0037 –0.0171 –0.0753

25 –0.0057 –0.004 –0.0031 –0.0198 –0.0386

50 –0.009 0.001 –0.0148 –0.0131 –0.0432

100 0.0007 0.0011 –0.0042 –0.0073 –0.0097

200 –0.0062 –0.0005 –0.0003 –0.0161 0.0048

Table 4. The averaged relative difference ()* 200, 80

k

4 8 16 32 64

N,
thousand

points

1 26.5908 27.7943 29.0979 35.8353 41.6295

10 15.5539 17.9377 18.7276 18.7803 19.0342

25 15.4327 18.8305 20.167 21.3691 19.0413

50 21.136 22.0985 23.0131 21.1487 18.1065

100 22.4393 22.2942 22.8851 21.0932 18.6342

200 22.458 22.5046 22.7475 20.8289 18.9677

So, the main inference from the statistics is that, as both the number of points and

the number of features increase, the impact of the random centroid initialization
solidifies. As the number of clusters is increased, no such or other distinct pattern is
observed. However, there is another distinct property of the statistics that is as solid
as the mentioned inference is. This is about the rate of instances for which k-means
performs better than k-means++ (based on the data for Table 1). In fact, about a half
of 600 instances (this is the total number of instances) are clustered more accurately
by k-means (Table 5). The dependence on the number of features, on the dataset size,
and on the number of clusters is hardly perceivable. Nearly the same quality of the
performance is seen for the mix algorithm (Table 6), where the tie on the same
performance is broken by the shorter running time of the mix algorithm.

On average, the k-means performance is better, the same, and worse in
49.8333 %, 0.5 %, and 49.6667 % of all instances generated. The respective averaged
rates of the mix performance are 36.6667 %, 13 %, and 50.3333 %. Obviously, the
mix algorithm configured for =*

runs 80A by 200 runs of k-means++ is always faster

(Table 4). Meanwhile, k-means does not always outrun k-means++ (Table 7), which
is also inferred from Table 2. An exception occurs when the dataset is of a medium to
small size, although there are two cells in Table 7 for 10000-point and 25000-point
datasets, where k-means++ is likelier to be faster. As the dataset size increases,

 Romanuke/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 734-746

742

k-means++ becomes slower, and the slowness builds up. On average, k-means is
faster at 68.3333 % rate.

Table 5. Percentage of instances on which the k-means performance
is better or worse

By the number of features
By the dataset size

(in thousands of points)
By the number of clusters

m better equal worse Size better equal worse k better equal worse

2 47.3333 2 50.6667 1 34 3 63 4 55 1.6667 43.3333

3 55.3333 0 44.6667 10 51 0 49 8 53.333 0.833 45.833

4 46 0 54 25 45 0 55 16 55.8333 0 44.1667

5 50.6667 0 49.3333 50 47 0 53 32 45.8333 0 54.1667

 100 63 0 37 64 39.1667 0 60.8333

 200 59 0 41

Table 6. Percentage of instances on which the mix performance is better or worse

By the number of features
By the dataset size

(in thousands of points)
By the number of clusters

m better equal worse Size better equal worse k better equal worse

2 42 8.6667 49.3333 1 27 22 51 4 35.833 15.833 48.333

3 42.667 13.333 44 10 44 10 46 8 39.167 14.167 46.667

4 34.6667 12 53.3333 25 32 11 57 16 35.833 14.167 50

5 27.3333 18 54.6667 50 32 11 57 32 39.1667 12.5 48.3333

 100 44 14 42 64 33.333 8.333 58.333

 200 41 10 49

The obtained data remain nearly the same if the computational simulation is

repeated (starting from different pseudorandom number generator states). In
general, the abovementioned main inference from the statistics remains the same.
Moreover, the advantage of the mix algorithm solidifies further if the number of
k-means and k-means++ runs (inside this algorithm) is increased from 80 up to 115.

Table 7. Percentage of instances on which k-means performs faster or slower

By the number of features
By the dataset size

(in thousands of points)
By the number of clusters

m faster equal slower Size faster equal slower k faster equal slower

2 53.3333 0 46.6667 1 100 0 0 4 55 0 45

3 73.3333 0 26.6667 10 43 0 57 8 73.3333 0 26.6667

4 71.3333 0 28.6667 25 42 0 58 16 80.8333 0 19.1667

5 75.3333 0 24.6667 50 69 0 31 32 73.3333 0 26.6667

 100 76 0 24 64 59.1667 0 40.8333

 200 80 0 20

Random centroid initialization for improving centroid-based clustering

743

5. The improved performance

Whichever number runsA is, number *
runsA cannot be selected such that k-means

would outperform k-means++. Nevertheless, by ignoring the seeding method of
random centroid initialization, k-means++ loses about 0.05 % accuracy in every
second instance to cluster. All the more that much higher accuracy losses are likely.
For instance, a 1000-point dataset with 4 features has been partitioned into 16
clusters by k-means++ with a score of 417.222, whereas k-means has performed on
the dataset with a score of 414.5155 (that is 0.6487 % more accurate). At the same
time, k-means may perform too poorly on smaller-sized problems. Thus, another
1000-point dataset with 2 features has been partitioned into 64 clusters by
k-means++ with a score of 13.6557, whereas the k-means score is 14.8535 (that is
8.7712 % less accurate).

To prevent potential accuracy losses, the random centroid initialization is
incorporated into k-means++. Inasmuch as k-means cannot be used standalone, the
mix algorithm is a simple solution. However, minimum (10) still can occasionally
exceed ++D if number *

runsA is a fraction of runsA (i. e., when *
runs runsA A). If both

k-means and k-means++ are initiated by the same pseudorandom number generator
state, then

 by =*
runs runsA A . (13)

If not, then inequality (13) does not always hold. Meanwhile, it is not about the
competition between the two approaches. It is rather about the diversity of scores
among which the minimum should be selected. It is similar to the hybridization and
fuzzification used for decision-making in multi-attributes and multi-objective
problems (Jafar et al., 2022; Jafar et al., 2020a; Romanuke, 2018a). The best solution
is to run both k-means and k-means++ on parallel cores, whichever number *

runsA is,

whereupon to conclude on minimization operation (10). Besides, inasmuch as
k-means++ is more robust, it can be run for more times than k-means. For example,
in overall 160 runs, k-means is run for 40 times and k-means++ is run for 120 times,
where four processor cores may be used to run the algorithms in parallel. This
improves the performance in every second instance to cluster.

6. Discussion and conclusion

In nearly a half of instances to cluster, using k-means is seemingly redundant,
but the other half really needs the random centroid initialization for improving
centroid-based clustering. It is worth remembering that the clustering result score is
a value of a random variable, so the improved performance can be guaranteed only
as an expectance. Such an improvement makes sense for applications in management
and engineering featuring repeatability of decision-making events (Romanuke,
2018a; Fränti & Sieranoja, 2019; Romanuke, 2021). Non-repeatable decision-making
problems will nonetheless benefit from the improved centroid-based clustering
while, e. g., subproblems of measuring similarity are solved (Jafar et al., 2020b; Jafar
et al., 2021; Romanuke, 2018b; Romanuke, 2019).

After all, why does k-means++ underperform? The answer is quite simple: the
k-means++ sometimes underperforms because the first centroid is chosen at
random, so it is likely that a poor choice of the first centroid leads to poorer accuracy.

Obviously, equal running times of k-means and k-means++ are very unlikely, but
the occurrence when k-means++ converges faster than k-means (by the same

 Romanuke/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 734-746

744

number of the algorithm runs and the same pseudorandom number generator state)
is not excluded. Due to the k-means++ centroid initialization is a sequential process,
the k-means++ slowdown deepens as the problem size increases.

Based on a series of computational simulations, it must be concluded that, by
incorporating the seeding method of random centroid initialization, the k-means++
algorithm gains about 0.05 % accuracy in every second instance to cluster. In its best
non-sequential way to maintain the same running time, the incorporation is
practically done by running the k-means algorithm on a separate processor core in
parallel to running the k-means++ algorithm, whereupon the better result is selected.
The impact of the random centroid initialization solidifies as both the dataset size
and the number of features increase. The approach can be developed further by
substituting the sequential process of centroid initialization in the k-means++
algorithm with the random centroid initialization as an alternative choice of the first
centroid.

Author Contributions: Conceptualization, methodology, validation, formal analysis,
writing—original draft preparation, writing—review and editing, visualization, V.R.

Funding: This research received no external funding.

Acknowledgments: This work was technically supported by the Faculty of
Mechanical and Electrical Engineering, Polish Naval Academy, Poland.

Conflicts of Interest: The author declares that he has no known competing financial
interests or personal relationships that could have appeared to influence the work
reported in this paper.

References

Arthur, D., & Vassilvitskii, S. (2006). How Slow is the k-means Method?, in:
Proceedings of the Twenty-Second Annual Symposium on Computational Geometry
(SCG’06), pp. 144–153.

Arthur, D., & Vassilvitskii, S. (2007). K-means++: The Advantages of Careful Seeding,
in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’07), pp. 1027–1035.

Bottou, L., & Bengio, Y. (1994). Convergence properties of the K-means algorithms,
in: Proceedings of the 7th International Conference on Neural Information
Processing Systems (NIPS’94), pp. 585–592.

Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Systems with
Applications, 40 (1), 200–210.

Chakrabarty, A., & Swagatam, D. (2022). On strong consistency of kernel k-means: A
Rademacher complexity approach. Statistics & Probability Letters, 182, Article ID
109291.

Fränti, P., & Sieranoja, S. (2019). How much can k-means be improved by using better
initialization and repeats? Pattern Recognition, 93, 95–112.

Random centroid initialization for improving centroid-based clustering

745

Gonzalez, T. (1985). Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38, 293–306.

Hamerly, G. (2010). Making k-means even faster, in: Proceedings of the 2010 SIAM
International Conference on Data Mining, pp. 130–140.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-Means Clustering
Algorithm. Journal of the Royal Statistical Society. Series C, 28 (1), 100–108.

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means
clustering algorithms: A comprehensive review, variants analysis, and advances in
the era of big data. Information Sciences, 622, 178–210.

Jafar, M. N., Khan, M. R., Sultan, H., & Ahmed, N. (2020a). Interval valued fuzzy soft
sets and algorithm of IVFSS applied to the risk analysis of prostate cancer.
International Journal of Computer Applications, 177 (38), 18–26.

Jafar, M. N., Farooq, A., Javed, K., & Nawaz, N. (2020b). Similarity measures of tangent,
cotangent and cosines in neutrosophic environment and their application in
selection of academic programs. International Journal of Computer Applications,
177 (46), 17–24.

Jafar, M. N., Saeed, M., Saqlain, M., & Yang, M.-S. (2021). Trigonometric similarity
measures for neutrosophic hypersoft sets with application to renewable energy
source selection. IEEE Access, 9, 129178–129187.

Jafar, M. N., Saeed, M. H., Khan, K. M., Alamri, F. S., & Khalifa, H. A. E. W. (2022).
Distance and similarity measures using max-min operators of neutrosophic
hypersoft sets with application in site selection for solid waste management systems.
IEEE Access, 10.1109/ACCESS.2022.3144306.

Jafar, M. N., & Saeed, M. (2022). Matrix theory for neutrosophic hypersoft set and
applications in multiattributive multicriteria decision-making problems. Journal of
Mathematics, 2022, Article ID 6666408.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y.
(2002). An efficient k-means clustering algorithm: Analysis and implementation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (7), 881–892.

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., & Wu, A. (2004). A
local search approximation algorithm for k-means clustering. Computational
Geometry: Theory and Applications, 28 (2–3), 89–112.

Li, S. (2011). A 1.488 Approximation Algorithm for the Uncapacitated Facility
Location Problem, in: Automata, Languages and Programming. Lecture Notes in
Computer Science, vol. 6756. Springer, pp. 77–88.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28, 129–137.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematics,
Statistics and Probability, vol. 1, pp. 281–296.

Mahajan, M., Nimbhorkar, P., & Varadarajan, K. (2009). The Planar k-Means Problem
is NP-Hard, in: Lecture Notes in Computer Science, vol. 5431. Springer, pp. 274–285.

 Romanuke/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 734-746

746

Megiddo, N., & Tamir, A. (1982). On the complexity of locating linear facilities in the
plane. Operations Research Letters, 1 (5), 194–197.

Ostrovsky, R., Rabani, Y., Schulman, L. J., & Swamy, C. (2006). The effectiveness of
Lloyd-type methods for the k-means problem, in: Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 165–174.

Phillips, S. J. (2002). Acceleration of K-Means and Related Clustering Algorithms, in:
Mount, D. M., & Stein, C. (eds.), Lecture Notes in Computer Science, vol. 2409.
Springer, pp. 166–177.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Section 16.1.
Gaussian Mixture Models and k-Means Clustering, in: Numerical Recipes: The Art of
Scientific Computing (3rd edition). Cambridge, New York, NY: Cambridge University
Press.

Romanuke, V. V. (2018a). Decision making criteria hybridization for finding optimal
decisions’ subset regarding changes of the decision function. Journal of Uncertain
Systems, 12 (4), 279–291.

Romanuke, V. V. (2018b). Optimization of a dataset for a machine learning task by
clustering and selecting closest-to-the-centroid objects. Herald of Khmelnytskyi
national university. Technical sciences, 6 (1), 263–265.

Romanuke, V. V. (2019). Fast-and-smoother uplink power control algorithm based
on distance ratios for wireless data transfer systems. Studies in Informatics and
Control, 28 (2), 147–156.

Romanuke, V. V. (2021). Refinement of acyclic-and-asymmetric payoff aggregates of
pure strategy efficient Nash equilibria in finite noncooperative games by
maximultimin and superoptimality. Decision Making: Applications in Management
and Engineering, 4 (2), 178–199.

Vattani, A. (2011). k-means requires exponentially many iterations even in the plane.
Discrete and Computational Geometry, 45 (4), 596–616.

© 2023 by the authors. Submitted for possible open access publication under

the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

