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Original scientific paper 

Abstract: This article describes how to solve the game problem of assigning 
staff to work on projects based on the ontological approach. The stochastic 
game algorithm for colouring an undirected random graph has been used to 
plan project implementation. The stochastic game mathematical model has 
been described, and the self-learning Markov method has been used for its 
solution. It is highlighted that the goal of the players is to minimize the 
functions of average losses. The Markov recurrent method that provides the 
adaptive choice of colours for the vertices of the random graph based on 
dynamic vectors of mixed strategies, the values of which depend on the current 
losses of players has been used. A computer experiment was carried out, which 
confirmed the convergence of the stochastic game for the problem of colouring 
the random graph. In conclusion. the possibility of defining the procedure for 
appointing staff to implement projects has been justified. 

Key words: Random graph colouring, stochastic game, project 
implementation, Markov recurrent method, adaptation, self-learning. 

1. Introduction 

Nowadays, in the modern information space with developed computer networks 
and means of telecommunications, the formation issues of virtual professional teams 
are essential for the development of the project, especially, in conditions of remote 
work (Charteris et al., 2021; Chen & Wang, 2011; Lawrence, 2022; Maynard et al., 
2019; Medeni et al., 2011; Umoren et al., 2017; Whillans et al., 2021; Yang & Chen, 
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2020). Appropriate teamwork of qualified staff is the key point to fast and effective 
project implementation (Heagney, 2012). 

The assignment of staff to carry out projects is similar to the classic task of 
resources (equipment or people) assignment to jobs implementation.  

However, there is a significant limitation in the such formulation of the task. As a 
general rule, every worker must be assigned exclusively to one job and all workers are 
interchangeable and completely reliable. In the practice of creating project teams, it is 
possible to deal with a more complicated situation. The project implementation 
requires various specialists and the staff can be partially interchangeable and 
unreliable. Then each project executor can be characterized by the probability of 
refusal. Refusals may exist due to the lack of experience, uncoordinated work, changes 
in contractors’ health, or other unforeseen factors that affect project quality and 
timing. 

Considering identified differences, the method of colouring graphs can be used to 
solve the problem of allocating staff to projects implementation. The schedule will be 
planned so that the vertices will define the projects, and the edges will cooperate only 
with that project’s vertices for the implementation in which individual executors are 
involved. The vertices on opposite edges should be painted in different colours. Then, 
projects with vertices of the same colour can be executed in parallel, and those with 
different colours can be conducted sequentially over time. 

Renewable refusals of project executors form a dynamic structure of links between 
the graph vertices. Therefore, it is necessary to consider a random graph of projects 
instead of the deterministic one. The random graph colouring task belongs to the NP-
complex class (Asdre et al., 2007; Li et al., 2018). To solve it, it is necessary to use or 
develop self-learning or adaptive methods that can provide colouring, which is close 
to the optimal one in the allowable polynomial time. 

Considering that the graph is a structural model of a distributed system and that 
the random graph colouring task has aspects of local competing and global consistency 
of goals, there is a need to use an adaptive stochastic game method to solve it. Adaptive 
methods can directly or indirectly control random processes and form selective 
solutions, which optimize the mean values of random variables or their stochastic 
moments. 

The research aim is to solve the staff assignment problem to carry out projects 
based on the stochastic game model for random graph colouring. In this article, the 
mathematical model and the algorithm of the stochastic game were therefore 
developed, a computer simulation was performed, the results were analysed and 
recommendations for their practical application were formulated. 

The scientific novelty of the work lies in the application of the stochastic game 
model to solve the problem of assigning staff to perform projects in conditions of 
uncertainty based on the ontological coverage of projects by colouring a stochastic 
graph. 

2. An overview of problem-solving methods  

The task of staff assignment to carry out projects is formulated similarly to the 
problem of equipment matching, resources, tasks, programs, scheduling, classification 
and other similar tasks (Liu, 2020; Makris, 2021, 2021a; Panik, 2017; Torabi Yeganeh 
& Zegordi, 2020; Wang & Man, 2021; Yang & Chen, 2020). 

The classic definition of a general assignment problem is the following. There are 
L types of work or tasks and K L  resources that can be used for their implementation 
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(machines, devices, robots, software agents, people). The costs 
,i jc  of using the j-th 

resource (j=1..K) to perform the i-th (i=1..L) work are given. Each resource can be used 
for only one type of work (it is considered that resources are interchangeable). So, 

there is a need to find such a plan 
,

{0,1} | 1.. , 1..
i j

u u i L j K =  = =  , where the work 

, {0,1}i ju   is performed (means to distribute the resources between the works) so 

that the total costs ( )f u  are minimal. Variable 
, 1i ju =  if the resource j implements 

the work i, and 
, 0i ju =  in another case. 

The mathematical model with the formulated problem consists of the following 
issues: 

1) objective function, which determines the total cost of using the resource 

to perform work: 
, ,

1 1

( ) min
L K

i j i j
x

i j

f u c u
= =

= → ; 

2) constraints: 
,

1

1
K

i j

j

u
=

= , i=1..L – if only one j-th resource can be assigned to 

perform the i-th work; 
,

1

1
L

i j

i

u
=

 , j=1..K – if K L . 

The problem formulation may vary depending on the interpretation of the 
parameters, usually the cost or time of the projects. 

In a special case, if K L= , then 
,

1

1
L

i j

i

u
=

= , j=1..K. This task is called a basic or linear 

assignment problem. It is one of the fundamental combinatorial optimization 
problems. 

The following methods can be used to solve assignment problems: linear 
programming (Hungarian algorithm, simplex method), integer programming (Branch-
and-Bound method, Cutting-plane method) (Bowman et al., 2002; Flesch et al., 2003; 
Neogy et al., 2020; Torabi Yeganeh & Zegordi, 2020), ant colony (Dowsland & 
Thompson, 2008; Wang et al., 2009), genetic algorithm (Dey et al., 2019; Sahu & 
Tapadar, 2006), graphs colouring (Gozhyj et al., 2019; Monasson, 2004; Zais & Laguna, 
2016), artificial neural networks (Philipsen & Stok, 1991; Zhu & Yang, 2006), heuristic 
methods (Wu & Sweeting, 1994). 

The practical use of the assignment problem is limited. In practice, to perform a 
single work, as a rule, it is usually needed to use several different resources of various 

types at the same time, i.e. 
,

1

1
K

i j

j

u K
=

  . If the same resources are needed for other 

works, then 
,

1

0
L

i j

i

u L
=

   for K L . In this case, the matrix 
,i j

u u =    is considered 

to be given, and there is a need to proceed to the schedule formation of the same 
resources to perform different works. The solution to this problem is to determine the 
work schedule so that the same resources can be used only sequentially. As shown by 
different researchers (Chartrand & Zhang, 2008; Saoub, 2021), this task can be 
conveyed to the graph vertices colouring task. 

When having an undirected graph with vertices representing works (tasks) and 
edges representing resources to perform them, then the graph edges connect only 
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those works that require the same resource. For each resource j=1..K, there is a need 
to construct the graph clique, linking between the vertices, for which 

, 1i ju = , i=1..L. 

As a result, there is an undirected graph ( , )G V E=  with a finite set of vertices V 

and edges set E. If several identical resources are needed for two or more works, then 
there is a multigraph. 

Colouring is a display :g V X→ , where 
1 2( , ,..., )NX x x x=  ( N L ) is a colour 

palette. The colouring is correct if ( ) ( )g k g l  for each edge presented in the graph, i.e. 

,k le E  , ,k l V . From a coloured graph, a work schedule over time can be obtained. 

Works whose vertices are painted in the same colour can be done simultaneously and 
painted sequentially with different colours. 

A large-order graph colouring |V| with a limited number of colours N is considered 
as an NP-complex problem that cannot be solved by a complete search of options in a 
reasonable polynomial time. 

To speed up the search, the method of backtracking (search with return) can be 
used (Monasson, 2004). This method excludes from consideration a significant 
number of options in one test, building a decision tree and bypassing it in depth. 
Although this method is classified as a metaheuristic, it is guaranteed to find all 
solutions to a finite discrete problem in a limited time. 

It is proposed to denote the graph vertices with Latin letters and the colours with 
consecutive integers from 1 to n. First, the vertex ( )v a  is painted in colour 1. If the 

vertex ( )v b  is not adjacent to ( )v a , it is painted in colour 1; otherwise – in colour 2. 

Next it is suggested to consider the vertex ( )v c  for which an attempt is made to paint 

in the smallest number i of colours n. If this is not possible, then select the next number 
of permissible colours. When a vertex that cannot be coloured with any of n the colours 
is reached, the last coloured vertex is returned, change its colour to the next possible 
colour from the ordered colour list, and try to colour it. If this is not possible, then 
there is a return to the previous vertex. The process continues in the same way until 
the correct colouring of the graph is achieved, or it turns out that the graph cannot be 
coloured in n colours. 

The mathematical model for the graph colouring task can be formulated as a task 
of 0 - 1 integer programming (Kay & Christofides, 1976): 

• objective function, which indicates that the graph should be painted with 

a minimum number of colours: 
,

1 1

min
Q L

j i j
c

j i

z w c
= =

= → . 

• limitations system: 
,

1

1
Q

i j

j

c
=

=  1..i L =  – each vertex can be painted with 

only one colour, 
, , ,

1

(1 ) 0
L

i j i k k j

k

M c a c L
=

 − −   1..i L = , 1..j Q =  – each pair 

of adjacent vertices does not have the same colour.  
The matrix of adjacencies of the graph vertices has the following form: 

, ,
| {0,1}, 1.. , 1..

i j i j
a a i L j L  = =  , where L is the number of the graph vertices, Q is 

the number of colours; 
, ,

| {0,1}, 1.. , 1..
i j i j

c c i L j Q  = =   is the matrix of coloured 

vertices of the graph (where 
, 1i jc = , if the vertex 

iv  has a colour j); 
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( )1 1
| , 1, 1..

j j j
w w L w w j Q

+
  = =  is the vector of positive weights of colours; M is a 

large positive number and M L . 
For large orders of graphs (numbers of vertices) |V|, the determination of the 

optimal solution of the problem by integer programming methods may not give a 
satisfactory result due to the large dimension of the matrices. Therefore, it is 
recommended to use other methods with the polynomial time of solving task, for 
example, based on optimization of search options, “soft” calculations or heuristic 
assumptions. The graphs colouring methods overview can be found in the different 
articles (Denysenko, 2019; Hardy et al., 2018; Lim & Lee, 2020; Shimizu & Mori, 2022; 
Thevenin et al., 2017; Zhang et al., 2021). The following methods of graphs colouring 
are used to solve various practical problems: 

1) Dynamic programming (De Lima & Carmo, 2018); 
2) Greedy algorithm (Gupta & Singh, 2020); 
3) Genetic algorithm (Dey et al., 2019); 
4) Artificial neural networks (ANNs) (Philipsen & Stok, 1991); 
5) Swarm intelligence algorithms (SIAs) or the emergent collective 

behaviour of groups of animals based on Particle Swarm Optimization 
(PSO), for example, Artificial Bee Colony, Bat Swarm Optimization, 
Salp swarm algorithm (SSA) or Salp Swarm Optimization (SSO) 
algorithm (Meraihi et al., 2019); 

6) Ant colony optimization (ACO) algorithms (Dowsland & Thompson, 
2008); 

7) Multiagent Graph Colouring method (Blum & Rosenschein, 2008); 
8) Game theory (Kravets et al., 2019, 2021; Panagopoulou & Spirakis, 

2008). 
As researchers (Frieze & Karoński, 2015; Raigorodskii, 2016; Raigorodskii, 2017; 

Raigorodskii & Karas 2022; Zhukovskii & Raigorodskii, 2015) emphasize, the 
colouring problem is much more complicated for time random graphs 

( ) ( ( ), ( ))G t V t E t= , the edges are marked by the probabilities of their belonging to the 

graph. Then at each moment t=1,2,…, the graph appears as one of the possible 
realizations. 

The study of random graphs is mainly related to obtaining probabilistic asymptotic 
estimates of its parameters, including the chromatic number. Information on effective 
methods for random graph colouring is insufficiently covered in scientific papers. 

Deterministic methods for random graph colouring are unproductive. It is 
necessary to use or develop multi-step refinement methods with elements of self-
learning, built based on “soft” calculations or various heuristics. The work of such 
methods should be aimed at improving the chromatic picture to achieve the correct 
colouring of the graph in the asymptotic of time. Modifications of methods 1 – 8 can be 
used for random graph colouring. Special attention should be paid to the development 
of stochastic variants of the implementation of these methods. 

To solve the random graph colouring problem, that is built based on the model of 
the projects ontological support, we have proposed to use the stochastic game method, 
which has the properties of self-learning and adaptation in conditions of uncertainty. 

3. Game-Theoretical Formulation  

It is necessary to organize the implementation of L projects 
1 2{ , ,..., }L =    , 

and each of them is determined by the competencies necessary for its implementation 
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1 2{ , ,..., }i rO O O =  in the form of a set of ontologies. Each ontology formally 

describes the knowledge in a particular problem area required to complete the project 
(Keet, 2018).  

For ontological support of projects, it is necessary to involve qualified specialists 
in the necessary fields of knowledge. The information model of project executors will 
be referred to as agents using multi-agent terminology. It is also assumed that the 
labour market offers a variety of agents 

1 2{ , ,..., }KA A A A= , K L , who can be 

involved in the implementation of projects. Each agent 
kA  is defined by a set of 

ontologies 
,1 ,2 ,{ , ,..., }k k k k sA O O O= , k=1..K, which describe his abilities in one or more 

areas of knowledge. Agent ontologies can have a non-empty cross-section 

i jA A   , i.e. agents partially have the same abilities. It is assumed that the 

aggregate ontological knowledge of the agents is sufficient to perform all projects. 
To carry out projects, it is necessary to form a set of teams

1 2{ , ,..., }L =    , each 

of which is an organized group of agents
,1 ,2 ,{ , ,..., }i i i i gA A A = , i=1..L, where 

1..
i

i L
A

=
  = . 

A necessary condition for the successful implementation of the project is its full 
ontological support by a team of agents. The agent team capabilities should cover the 
competencies required to carry out the project: 

i
k i

i

k i
A

A
 

  , i=1..L. 

The game approach to covering the necessary ontologies of projects with existing 
ontologies of agents is considered in the work of (Burov et al., 2019; Kravets et al., 
2019, 2021). 

The selection of agent teams is performed by project managers independently of 
each other. Then, in a limited number of qualified professionals, some agents may be 
involved in various projects, i.e. 

i j    . 

It is suggested to assume that the execution of each project cannot be interrupted, 
and the executors cannot move from one project to another until it is fully completed. 
It raises the task of determining the timing of projects in time. Similar to the task 
formulation of the equipment matching to perform certain works, it is assumed that 
the execution time of each project is the same. Then the problem of planning the 
sequence of projects can be reduced to an undirected graph colouring problem 

( , )G E=  , where   is a finite set of vertices, E is the edges set. In this graph, the 

vertices are marked by sets of agent commands involved in the implementation of the 
project 

i , i=1..L, and the edges connect those vertices of the project graph that 

contain the same agents: 

( ) , |i i j i jE e =     , 

where ( ) {0,1}   is the event indicator function. The value ( ) 1 =  indicates the 

presence of the corresponding edge 
,i je  in the graph. If the cardinality of the agents’ 

sets intersection is greater than 1, i.e. | | 1i j   , then a multigraph is considered. 

Then the vertices of the project graph should be coloured so that the vertices 
connected by the edges 

,i je , i,j=1..L, should have different colours. Then by such 

colouring, it is possible to define the sequence of projects performance. Those whose 
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vertices have the same colours can be done simultaneously and those with various 
colours - sequentially. 

However, at the time of team formation, there is some uncertainty about agents’ 
involvement in project implementation. This uncertainty is defined by the 
probabilities 

,i kq  of agreements between the manager of i-th project and the k-th 

agent. These probabilities include several risk factors for non-implementation of the 
project, such as refusal to cover the project with the necessary ontologies due to 
insufficient capabilities of agents, inability to implement the project due to the 
contractors’ health, and unpredictable external factors and more. Project managers 
can define values 

,i kq  as the confidence degree that the agent will participate in the 

project, or by the agent as his propensity to implement a project, or comprehensively 
- by both parties. Simplified, it can be assumed that 

,i k kq q=  – is the probability of 

participation of the k-th agent in the implementation of any project. Then 1 kq−  – is 

the probability of refusal of the k-th agent. It is considered that agent refusals are 
renewable. 

Taking into consideration the stochastic nature of agents, a random graph of 
relationships between projects should be considered instead of a deterministic one. 
The renewable refusal of one of the agents, due to which there is an edge in the graph 
between the vertices-projects, leads to a temporary loss of this edge. Therefore, 
instead of a given deterministic graph at certain intervals, its random realizations in 
the form of all possible subgraphs will be observed. 

Determining methods cannot be used for random graph colouring because, at each 
step of the game, the implementations of the graph change and the values of the 
current losses are random variables. Adaptive stochastic methods that can be adapted 
to random changes in the structure of the graph should therefore be used. To do this, 
we have proposed to use a method of the multistage stochastic game.  

Stochastic games, presented by works (Flesch et al., 2003; Hartley & Thuijsman, 
1994; Huang & Ma, 2016; Neyman & Sorin, 2003; Thuijsman et al., 1991; Thuijsman & 
Vrieze, 1991, 1993, 1999), model the dynamic interactions in which the environment 
is changing in response to player’s behaviour. 

In the stochastic game the agents choose actions simultaneously. The state space, 
the action space, and the time instants of action selection are considered as discrete.  

The formal model of Markov stochastic game (Chen, 2019; Huang & Ma, 2016; 
Puterman, 2008; Thuijsman et al., 1991; Thuijsman & Vrieze, 1987) is given by the 
tuple:  

, , , ,I S A P R = , 

where I is the finite set of players; the number of players is equal to the cardinal 
number of this set: | |L I= ; S is the set of possible game states; ( ) ( )i

i I
A s A s


=   is the set 

of combined actions of players in state s, which is determined by the L-ary Cartesian 
(direct) product of possible actions ( )iA s  of players i I  ; ( ) ( , )P s P s a =  is the 

function of transition probabilities between game states, which reflects the probability 
of transition from state s S  to state s S  when performing the action ( )a A s ; 

( , ) ( , , )R i s R i s a i I =    is the reward function that specifies the expected reward of 

each player when transitioning from state s S  to state s S  when performing the 

action ( )a A s . 



 Kowalska-Styczeń et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 691-721 

698 

When defining the stochastic game, the discount factor [0,1]   can be additionally 

set, which indicates how much players take future rewards into account in their 
strategies. 

If the sets S or ( )iA s  are uncountable, then they are supplemented by the σ-algebra 

of measurable sets (Huang & Ma, 2016; Shiryaev, 1996, 1996a). 
Next, we have considered  the simplified formulation of the stochastic game, when 

there is only one game state | | 1S = , and the sets of actions 
iA  i I   of all players are 

finite (Fudenberg & Tirole, 1991, 1991a; Shoham & Leyton-Brown, 2008). Then such 
a stochastic game can be described by the tuple: 

, , ,I A P R = , 

where I still denotes the finite set of players; 
i

i I
A A


=   is the set of joint actions of 

players combined on the L-ary Cartesian product of actions (pure strategies) of 
players; ( )P P A=   is the distribution of probabilities in the set A, the elements of which 

determine the probability that in the result of the independent choice of actions 

i ia A  i I   of players will form a combined action ( )1 2, ,..., La a a a A=  . So, if 

 ( )i i j j ip p a a A=    is the set of probabilities of choosing pure strategies (or, 

otherwise, the mixed strategy) of i-th player i I  , where ( ) 1

j i

i j

a A

p a


= , then 

( ) i
i I

P A p


=  ;  ( , )R R i A i I=    is the reward function that gives each player's 

expected reward in conditions when all players have taken the combined action a A . 
To formulate the game problem of the stochastic colouring of the graph as the main 

problem of assigning the staff to the project implementation, with each vertex 
(project) of the graph, there is a need to assign the player, whose pure strategies 
determine the numbered colours palette 

,1 ,2 ,{ , ,..., }i i i i NX x x x= , where 
,i jx  is the 

colour number; N is the number of elements in the colour palette, which is limited to 
the value N L=  required for a fully connected graph colouring. 

Each vertex of the graph represents one of the projects, and each project contains 
the set of agents whose set of ontologies (capabilities) cover the set of ontologies 
required for the implementation of this project (competencies). The correctly 
coloured graph will allow to determine the sequence of project execution. 

The choice of pure strategies ( )i ix t X  is made by players randomly and 

independently at times t=1,2,… . Due to player refusals, a random graph 
implementation ( ) ( ( ), ( ))G t t E t G=    is determined at each step of the game, in which 

only the mark-up of vertices ( ) { ( ) | 1.. }it t i L =  =  by sets of agents 

,1 ,2 , ,( ) { , ,..., } \{ ( ) | 1.. , }i i i i g i kt A A A A t k l l g = =   and the corresponding connections 

between vertices ( )E t  change. The expression 
,{ ( )}i kA t  denotes the set of agents that 

refused at the moment t. The number of vertices L and the corresponding projects 
i  

remains unchanged. Players do not have information about the current 
implementation of the graph as a whole. Each player knows only their local subgraph 
– a set of adjacent vertices connected by edges to the player-controlled vertex of the 
graph. 
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Let ( ) | ( ) |
loc

i iK t E t=  be the number of edges of the i-th vertex of a random graph at 

a time t. Then the i-th player takes part in the game if it corresponds to an uninsulated 

vertex, i.e. ( ) 1
loc

iK t  . 

When all players choose pure strategies, each of them calculates the value of the 
current loss as the average number of identical colours of adjacent vertices of the 
graph: 

( ) ( )
1

( )

( ) ( ) ( ) ( )

i

loc

i i i j

j D t

t K t x t x t 
−



= = , (1) 

where ( ) {0,1}   is the indicator function of the event; 
,( ) { ( ( ))}i i j

j
D t index e t=  is the set 

of numbers of adjacent vertices for the i-th vertex of a random graph. Adjacent to the 
vertex i is the vertices of a random graph directly related to it at a time t, 

| ( ) | ( )
loc

i iD t K t= . 

Players evaluate their actions during the game using the current values of the 
functions of average losses (or losses): 

1

1

( ) ( )
n

i it t


 −

=

 =  , i=1..L. (2) 

The course of the stochastic game as a whole can be controlled using the system 
function of average losses: 

1

1

( ) ( )
L

i

i

t L t
−

=

 =  . (3) 

The behaviour strategy of each player should be aimed at minimizing their 
functions of average losses (to minimize the colour matches of adjacent vertices of the 
graph): 

{ ( )}
lim ( ) min

i

i
t x t

t
→

 → , i=1..L. (4) 

The multicriteria optimization problem solutions (4) should be sought in points 
sets of collective optimality such as Slater, Nash, Pareto or others (Nash, 1950; 
Romanuke, 2022, 2021; Ungureanu, 2018,2018a, 2018b, 2018c, 2018d, 2018f). Most 
often, tasks without the exchange of current information about the strategies, states 
and losses of players (or with the minimum required exchange) use the Nash 
equilibrium criterion (Romanuke, 2022, 2021). At the Nash equilibrium point, it is not 
beneficial for each player to change their strategy if all other players adhere to the 
equilibrium point: 

lim ( ,{ ( )}) ( ,{ ( )}) 0i iD D

i i
t

t x t t y t
→

  −   
, i=1..L. (5) 

The following notation in (5) is used: 
iD  is the local set of neighboring players whose 

strategies affect the amount of current losses (1) of the i-th player (the composition of this 

set is determined by the numbers of the vertices of the graph, which are adjacent to the 

vertex i, which is controlled by the i-th player); i

i

D

j
j D

X X


=   is the space of combined pure 

strategies of players from the local set 
iD ; iD

X X ; 
1..

i
i L

X X
=

=   is the space of combined 

pure strategies of the whole set of players; the symbol   is the Cartesian product operation; 
i iD D

x X ; \i i iD D D

i iy x x y X= +   is the combined pure strategy of neighbouring players 
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from the subset 
iD  after replacing the pure strategy of the i-th player; 

iy  is the pure strategy 

of the i-th player deviated from the equilibrium point; ,i i ix y X . 

Therefore, observing random current losses (1), players must learn to choose 

colours ( )i ix t X  from the colour palette i
X . The formed sequence of options { ( )}ix t  

ensures the fulfilment of goal (4) in the asymptotic of time t → . In practice, the 

number of steps of a stochastic game is limited by some maximum value or the graph 
colouring correct achievement. 

4. Methods of solving the stochastic game 

Exact methods for solving stochastic game problems cannot be applied due to the 
randomness of players' actions and a priori uncertainty of payment functions. Since in 
stochastic games the players make decisions under conditions of randomness and 
uncertainty, there is a need to find an optimal strategy based on statistical data 
processing. 

To solve the stochastic game, there is a need to apply approximate (recurrent) 
methods, which are used when exact methods of solving are unacceptable due to great 
complexity or insufficient data. Recurrent methods make it possible to solve stochastic 
games approximately, optimizing various parameters and strategies of players. 

To generate sequences of strategies { ( ) | 1.. }ix t i L= , t=1,2,… that ensure the 

fulfilment of criteria (4), there is a need to construct a probabilistic mechanism based 
on mixed strategies of players { ( ) | 1.. }ip t i L= . The mixed strategy 

( ),1 ,2 ,
( ) ( ), ( ),..., ( )

i i i i N
p t p t p t p t=  consists of conditional probabilities of choosing 

pure strategies: 

 , ,
( ) ( ) ( ), ( ), 1, 2,..., 1

i j i i j i i
p t x t x u t   = = = −P , j=1..N, 

where { ( )}ix   is the history of pure strategies selected by the player with the number 

i; { ( )}i   is the background of the losses received. 

To form sequences with the desired properties, mixed strategies at each step of the 
game are changed by a recurrent method (Nazin & Poznyak, 1986, 1987): 

 ( 1)( 1) ( ) ( ) ( ( ), ( ), ( ))
N

i t i i i ip t p t t R p t x t t  ++ = − , (6) 

where 
1t

N

 +

 is the projector on a single  -simplex N N N
S S R    (here the superscript 

is not an indicator of degree, but indicates the number of measurements of the space 
of real numbers); ( )t  is a monotonically decreasing sequence of non-negative values, 

which regulates the step size of the method; R is step method; ( )t  is monotonically 

decreasing sequence of non-negative quantities, which regulates the rate of expansion 
of the  -simplex. 

The coordinates of the points of a unit simplex are normalized so that their sum is 
equal to 1: 

1

1;  0  ( 1.. )
N

N

j j

j

S p p p j N
=

  
= =  = 
  
 . 

A single  -simplex is a compact subset of a unit simplex: 
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 ,| ;    ( 1.. )
N N

i i i jS p p S p j N =   = , (0,1/ )N  , ( )
N

ip t S . 

The recurrent method (6) should be constructed so that when choosing a strategy 

, ( )i jx t , the corresponding probability 
, ( )i jp t  decreases in proportion to the magnitude 

of the current loss ( )i t . The other elements of the mixed strategy do not change or 

increase proportionally ( )i t . The method should increase the probability of choosing 

more successful strategies that are useful for meeting the criteria for minimizing the 
average losses of players (4). A technique with such properties is called adaptive or 
self-learning. 

After calculating the new values of the vectors of mixed strategies is their design 
on  -simplex N

S
. The design operator 

1t

N

 +

 satisfies the conditions: 

{ }
N

i i i ip q p q−  − ; { }
N N

iq S   , 1.. ,  ,
N N

i ii L p S q R=     . 

Projecting on the expandable  -simplex ensures the condition 

, ( ) ( ) , 1..i jp t t j N =  which is necessary for the statistical information completeness 

on the choice of pure strategies is met. 
The construction of recurrent methods of the type (6) will be performed using the 

method of stochastic approximation (Benveniste et al., 1990; Chung, 1954; Kushner & 
Yin, 1987, 1987a, 1999, 2003; Nazin & Poznyak, 1986, 1987). For this, the L-person (

2L  ) non-cooperative deterministic game with 2N   strategies (Fudenberg & 
Tirole, 1991, 1991a; Osborne, 2000, 2000a, 2000b, 2004, 2010; Osborne & Rubinstein, 
1994; Neumann & Morgenstern, 2007), closely related to the corresponding stochastic 

game has been considered. The asymptotic equivalence of the game the L -person 
deterministic and stochastic game is proved in the works (Nazin & Poznyak, 1986, 
1987). The formulation of the deterministic game is the auxiliary step for the 
construction of recurrent methods for solving the stochastic game. 

Assume that the mathematical expectations of random variables { ( , )} ( )i iM x t v x =  

are known for all combined strategies 
1..

i
i L

x X X
=

 =  . Then the deterministic L-person 

game is given by the tuple , , ( ) 1..iD

i i iX p v x i L  = = 
, where 

iX  is pure strategies 

(colour numbers of graph vertices), ( )[1], [2],... [ ]i i i ip p p p N=  is mixed strategies of 

players (conditional probabilities of choosing pure strategies), ( )iD

iv x 
 

 is the array of 

average losses, the elements of which are addressed by pure strategies of players from 
the set 

iD . 

In the deterministic game, the average losses of the 
iv  players are assumed to be 

given. In the stochastic game, the average losses of the players are not known a priori. 
Only their random realizations 

i are available for observation. 

For the deterministic L-person game there is a need to define polylinear functions 
of average losses, which are mathematical expectations of each players losses when 
implementing mixed strategies N

ip S , i=1..L: 

;

( ) ( ) ( )i i

D D Di i i
i j

D D

i i j j

x X j D x x

V p v x p x
  

=   , (7) 
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where 
iD  is the local set of neighbouring players; i

i

D

j
j D

X X


=   is space of combined 

pure strategies of players from the local set 
iD ; i iD D

x X  is one of the combined local 

strategies of players; i i

i

D D N

j
j D

p S S


 =  ; N

ip S . 

The goal of the players is to minimize their functions of average loss (7): 

( ) mini

i

D

i
p

V p → , i=1..L. (8) 

According to Nash theorem, for every L-person game there is at least one mixed 
strategy for each player such as none of the players can reduce the loss (in the case of 
minimizing the average loss functions) only by changing own strategy in the case when 
the other players' strategies are fixed (Nash, 1950; Nazin & Poznyak, 1986, 1987; 
Osborne, 2000, 2000a, 2000b, 2004, 2010; Osborne & Rubinstein, 1994).  

At the Nash equilibrium points in mixed strategies, the following condition is 
fulfilled: 

\{ }

* *( ) ( , ) 0i iD D i

i i iV p V p p−  , i=1..L, 

where 
*( )iD

iV p  is the function of average losses, defined at the Nash point 
*

i iD D
p S  on 

the local simplex i

i

D N

j
j D

S S


=   of combined mixed strategies of players from a set 
iD  of 

neighbouring players; \{ }

*( , )iD i

i iV p p  is the function of average losses, defined in simplex 
iD

S  for any deviation of the mixed strategy of the i-th player from the Nash point. 

If the mixed strategies of all players determine the Nash point 
*

iD
p , then no player 

can change his or her optimal strategy *

ip , to any other 
ip  in such a way as to get a 

smaller average loss 
iV , if the other players stay with their optimal strategies. 

According to the theory of stochastic approximation (Nazin & Poznyak, 1986, 
1987), to minimize the system of functions (8), the motion vector R of the recurrent 
method (6) is defined so that its mathematical expectation is the gradient of mean 
losses function (7): 

{ ( ( ), ( ), ( ))} ( )i

i

D

i i i p iM R p t x t t V p =  . 

Taking into account that 

( )
( ( )) ( )

( ( )) ( )i

i

p i i i i

i i

t
V M e x t p t p

e x t p t




  
 = = 

  

, 

where ( ( ))ie x t  is unit vector-indicator of the choice of pure strategy ( )i ix t X , 

( ( ))ie x t
  is transposed vector, then a recurrent gradient method for solving the game 

problem is obtained: 

( 1)

( ) ( ( ))
( 1) ( ) ( )

( ( )) ( )

N i i

i t i

i i

t e x t
p t p t t

e x t p t



 

+

 
+ = − 

 

. (9) 

Other recurrent methods can be obtained from the complementary slackness 
condition (Kravets et al., 2020, 2021; Neogy et al., 2018, 2020), which is performed for 
Nash equilibrium points in completely mixed strategies: 

ip i i NV V e = , i=1..L, (10) 
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where 
Ne  is a vector consisting of N units. The complementary slackness condition 

describes the independence of the average loss functions of players from their mixed 
strategies at the Nash point. No matter how the mixed strategy ( )ip t  of player with 

the number i (i=1..L) on a unit simplex can be changed, when all other players follow 
their strategies at the Nash point, the value of the win function 

iV  remains constant. 

Since 

( ( ))
( ) ( )

( ( )) ( )i

i

p i i N i N i i

i i

e x t
V V e M t e p t p

e x t p t




   
 − = − =  

   

, 

by the method of stochastic approximation, the following recurrent method 
constructed using the complementary slackness condition has been obtained: 

( 1)

( ( ))
( 1) ( ) ( ) ( )

( ( )) ( )

N i

i t i i N

i i

e x t
p t p t t t e

e x t p t
  

+

   
+ = − −  

   

. (11) 

Taking into account the solutions at the boundary of a unit simplex, there is a need 
to weigh the vector condition (10) by the elements of the vector 

ip : 

( )[ ] 0i i N idiag p V e V− = , (12) 

where ( )idiag p  is a square diagonal matrix of an order N composed of vector elements 

ip . 

Taking into consideration that 

  ( )( ) ( ) ( ) ( ( )) ( )
ii i N p i i i i i idiag p V e V M t p t e x t p t p− = − = , 

by using the method of stochastic approximation, the following recurrent method can 
be implemented based on weighted complementary slackness condition: 

  ( 1)( 1) ( ) ( ) ( ) ( ( )) ( ))
N

i t i i i ip t p t t t e x t p t  ++ = − − .  (13) 

Due to such a dynamic reorganization of mixed strategies based on the processing 
of current losses, methods (9), (11), and (13) provide an adaptive choice of pure 
strategies over time. 

The parameters ( )t  and ( )t  are monotonically descending sequences of non-

negative quantities and are used to control the convergence of recurrent methods. 
These parameters can be calculated as follows: 

( ) (0)t t
  −

= , ( ) (0)t t
  −

= , (14) 

where 0,,0  ; 1
(0) (0, )N −

 . 

The convergence of mixed strategies ( )ip t , i=1..L to the optimal values with 

probability 1 or root-mean-square is determined by the ratios of the parameters 
t  

and 
t  which must satisfy the fundamental conditions of stochastic approximation 

(Benveniste et al., 1990; Chung, 1954; Kiefer & Wolfowitz, 1952; Kushner & Yin, 1987, 
1987a, 1999, 2003; Nazin & Poznyak, 1986, 1987). 

The efficiency (in the sense of fulfilling criteria (4)) of recurrent algorithms is 
ensured by fulfilling the condition of pseudo-gradient of the vector R for the Lyapunov 
function ( )p  (Nazin & Poznyak, 1986, 1987): 
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{ { ( ), ( ), ( ) | ( ) }, ( ( )) 0
ii i i i i pM R x t p t t p t p p =    ,  

where ,   is the scalar product of vectors in Euclidean space; N

ip S ;
1..

N

i
i L

p S S
=

 =  . 

The Lyapunov function   must be differentiated by 
ip , i=1..L, must have zeros at 

the points of asymptotic optimality *
( ) 0p = ; be positive ( ) 0p   on a single 

combined simplex p S  ; *
p p . To optimize the function of average wins on a 

system of unit simplexes, it is assumed that 
2

*

1

( ) ( ) ( )
L

i i

i

t p t p t
=

 = − , where *
( )ip t  is 

the asymptotically optimal solution in mixed strategies for the i-th player. 
For the considered recurrent methods, the Lyapunov function ( )t  can be defined 

as the error of the complementary slackness condition (the square of the Euclidean 
norm of the mixed strategies difference): 

2

1

( ) ( ) ( )
L

i i

i

t p t w t
=

 = − , 

where 
( )( ) ( ( ))( ( )) ( ( ))

ii i p t i iw t diag p t V t V t=   is the weighted mixed strategy of the i-th 

player, calculated from the complementary slackness condition; ,
N

i ip w S . 

Mean squared convergence rate of recurrent methods can be estimated by the 
asymptotic method of Chung’s moments (Chung, 1954; Nazin & Poznyak, 1986, 1987): 

 lim ( )
n

n M t
 

→
  , (15) 

where   is order of the root-mean-square convergence rate,   is the value of the rate 

of convergence. Higher values   and lower   correspond to the higher rate of 

convergence of the game method. 
In sign-positive environments for which ( ) 0iD

iV p   on the system of unit 

simplexes, the theoretical order of the root-mean-square convergence rate of methods 
(9) and (11) is equal ),1min(  −−+=  with parameter constraints ]1,0( ; 

 0 . The theoretical order of the root-mean-square convergence rate of method 

(13) is equal ),1min(  −+=  with the constraints ]1,0( ; 0  (Kravets et 

al., 2020, 2021). 
The obtained values of the rate parameters of the recurrent methods convergence 

are approximate, since they are determined on the basis of upper estimates of random 
processes. It is recommended to specify these parameters during a computer 
experiment. 

The choice of pure strategies (colours of vertices) 
, ( )i kx t , i=1..L is carried out by 

players randomly based on mixed strategies ( ),1 ,2 ,
( ) ( ), ( ),..., ( )

i i i i N
p t p t p t p t= : 

,
1..

1

arg min ( ) {1.. },
k

i j
k N

j

k p t N
=

=

 
=   

 
  (16) 

where [0, 1]  is a uniformly distributed real random number. 

The stochastic game begins with untrained mixed strategies with element values 

, (0) 1/i jp N=  where j=1..N. During the next moments, the dynamics of the vectors of 

mixed strategies are determined by one of the Markov recurrent methods. Recurrent 
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methods (9), (11), (13) provide adaptation of players’ strategies both to changes of 
random graph realization and calculated (on their basis) in advance unknown current 
losses. 

Therefore, at times t=1,2,…, each player based on the mixed strategy ( )ip t  chooses 

a pure strategy ( )ix t  (16) and by the time 1t +  receives the current loss ( )i t  (1), and 

then calculates the mixed strategy ( 1)ip t +  according to one of the methods (9), (11), 

(13). 
The vertices colours of the random graph are defined as the mathematical 

expectation of the possible numbers of colours, rounded to an integer number, 
calculated for the last step of the stochastic game: 

1

( ) int ( ) ( )
N

i i i

i

x t p t x t
=

 
=  

 
 , i=1..L. (17) 

4.1. Stochastic game algorithm 

The stochastic game algorithm is described as following. Steps 1 – 2 determine the 
initialization of data and perform preparatory actions, and steps 3 – 11 implement a 
stochastic game for random graph vertices colouring. 

Step 1. Set the initial values of the parameters: 

• t=0 is the initial time; 

• L is the projects number (number of graph vertices, number of agent 
teams, number of players); 

• K is the total number of agents that can be involved in all projects. 
• N=L is the number of pure strategies of players (the number of colours 

of the paint palette); 
• 

1 2{ , ,..., }mO O O =  is the ontologies dictionary; 

• 
,1 ,2 ,{ , ,..., }i i i i rO O O =   , i=1..L is set of ontological knowledge or 

competencies required for project implementation; 
• 

,1 ,2 ,{ , ,..., }k k k k sA O O O=   , k=1..K is set of ontologies that determine 

the abilities of agents; 
• 

,i kq , i=1..L, k=1..K is the probabilities of agents’ participation in project 

implementation; 
• 

,1 ,2 ,{ , ,..., }i i i i NU u u u= , i=1..L is vectors of pure strategies of players; 

• ( )(0) (1/ ) 1..
i j

p N j N= = , i=1..L is the initial values of mixed player 

strategies; 
• 0   is the learning step parameter; 

• (0,1]   is the coefficient of the order of the learning step; 

•   is parameter  -simplex; 

• 0   is the coefficient of the order of expansion  -simplex; 

• [0,1]  is the weighting factor; 

• 
maxt  is the maximum number of method steps. 

Step 2. Perform preparatory actions: 
2.1. Cover projects with ontologies, involving relevant agents in the 

implementation of projects. 
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2.2. Construct a graph whose vertices denote projects (agent teams) and the edges 
connect those vertices (projects) for which the same agents are involved. Form the 
initial matrix of adjacencies of the vertices of the graph. 

2.3. Associate players with each vertex of the graph who choose the current colours 
of the graph vertices. 

Step 3. Determine the current composition of the agent teams involved in 
implementing projects with probability 

,i kq  and perform a new mark-up of the graph 

vertices. 
Step 4. Determine the current matrix of adjacencies of the vertices of the graph. 
Step 5. Choose pure strategies (colours of graph vertices) ( )i ix t X  of players 

i=1..L according to (16). 
Step 6. Calculate the value of current losses ( )i t , i=1..L according to (1). 

Step 7. Calculate the parameters ( )t  and ( )t  according to (14). 

Step 8. Calculate the elements of the vectors of mixed strategies ( )ip t , i=1..L 

according to (13). 
Step 9. Calculate the current values of the functions of the average losses ( )i t  (2) 

of each player and, on their basis, calculate the system function of the average losses 

( )t  (3) of the stochastic game for the graph colouring. 

Step 10. Set the next time : 1t t= + . 

Step 11. If 
maxt t , then go to step 3, otherwise – to step 12. 

Step 12. Calculate the average colour values ( )ix t , i=1..L for the vertices of the graph 

according to (17). End of the game. 

4.2. Test example  

For the test example, the following values were adopted: 
1) library of ontologies 

1 2 3 4 5{ , , , , }O O O O O = ; 

2) competencies required for the implementation of projects 
1 1 3 4{ , , }O O O = , 

2 2 3 5{ , , }O O O = , 
3 1 4 5{ , , }O O O = , 

4 1 3 5{ , , }O O O = ; 

3) the ability of agents 
1 1 4{ , }A O O= , 

2 2 3{ , }A O O= , 
3 1 5{ , }A O O= , 

4 3 4{ , }A O O= , who can be involved in the implementation of projects. 

Based on these data, the following coverage of projects by agents is possible: 

1 1 2{ , }A A = , 
2 2 3{ , }A A = , 

3 1 3{ , }A A = , 
4 3 4{ , }A A = . Indeed, the following 

ontology coverage ratios are valid for given projects: 

1 1 2 1 2 3 4 1 3 4: { , , , } { , , }A A O O O O O O O  =  ; 

2 2 3 1 2 3 5 2 3 5: { , , , } { , , }A A O O O O O O O  =  ; 

3 1 3 1 4 5 1 4 5: { , , } { , , }A A O O O O O O  =  ; 

4 3 4 1 3 4 5 1 3 5: { , , , } { , , }A A O O O O O O O  =  . 

Figure 1 shows a graph whose vertices are projects 
i , and the edges are the 

connections between those projects for which it is planned to involve the same agents. 
At the graph vertex there is an agents list , 1..k iA k K=  involved in the implementation 
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of projects. Each vertex (project) is associated with a player who makes moves in the 
stochastic game to select the current vertex colour, depending on the colours 
connected by the edges of the graph adjacent vertices. 

 

Figure 1. Graph of projects dependencies on executors 

Agent refusals result in a change of the composition of project executives and a 
corresponding change in the relationships between the graph vertices. As a result, a 
random graph instead of a deterministic graph has been obtained. Several possible 
implementations are shown in Figure 2. 

Figure 2a shows the implementation of a random graph for the case when agent A1 
of project 1 failed. The same structure of the graph will be in case of refusal of agent 
A1 of project 3, or refusal of agent A1 for both projects 1 and 3. The result is a loss 
of connection between projects 1 and 3. 

The refusal of agent A2 of project 2 will implement the random graph shown in 
Figure 2b. A similar result is obtained in the case of the refusal of agent A2 of project 
1, or refusal of agent A2 of projects 1 and 2. 

The case of refusal of agent A3, involved in the implementation of projects 2, 3 
and 4, is shown in Figure 2c. This figure shows that agent refusals can disrupt the 
connectivity of the project graph. Players, controlling the states of isolated vertices, 
are temporarily out of the game. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 2. Implementation of a random graph 

The implementation of the graph shown in Figure 2d was obtained as a result of 
the refusal of agent A3 of project 3. For a given random graph, it is necessary to 
determine the sequence of projects implementation, for which the possible 
participation of each agent is consistent over time. 

4.3. Computer simulation results   

To solve the problem of developing a diagram of the project execution sequence, 
considering the executive agents ontologies, software tools for modelling a stochastic 
game for colouring a stochastic graph have been developed. The software 
implementation of the stochastic game is made in the C++ language in the Visual C++ 
programming environment.  

The problem is solved by the stochastic game method (13) for random graph 
colouring. The following values of the parameters of the stochastic game have been 

adopted: 4L = ; N L= ; 4K = ; 10 = ; 01.0= ; 1
0 999.0

−
= N ; 2= . 

The influence of probabilities 
kq q= , i=1..K of the agent participation in 

implementing projects on the convergence of the stochastic game for the problem of 
colouring random graphs on a logarithmic scale, is shown in Figure 3. 

The parameter   of the order of convergence rate (15) of the game method is 

determined by the tangent of the angle formed by the linear approximation of the 
graph of the system function of average losses and the time axis. As can be seen in 
Figure 3, the average order of the rate of convergence of the game method is close to 
1. It practically does not change for different probabilities of participation of agents in 
the implementation of projects. As the value of these probabilities decreases, the 
learning time of the stochastic game only increases. 
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Figure 3. Dependence of average losses system function on the 

probabilities of agents participation in the implementation of projects 

Figure 4 shows the approximate exponential dependence of the average number of 
steps t  required for a random graph colouring on the probabilities 

kq q= , i=1..K (the 

probabilities of the agent’s participation in the game). 

 

Figure 4. The average number of steps in learning a stochastic game 

The increase in the probability of agents involvement in the project 
implementation ( 1q → ) leads to the increase in the similarity of random graph ( )G t  

implementations to a given deterministic graph G: ( ) ( ( ), ) 0t G t G = →M , where 

( ) [0,1]t   is the degree of proximity of graphs at moments t=1,2,… (Belova & 

Pobizhenko, 2017). The result is a reduction in the number of steps in learning a 
stochastic game. For reliable agents (q=1) it is necessary 10 – 20 steps of the stochastic 
game for graph colouring correct formation with Fig. 1. 

The solution to the stochastic game is shown in Figure 5. This is a coloured graph 
obtained for the probabilities 0.8kq q= = , i=1..K of the agent’s participation in the 

project’s implementation. 

 

Figure 5. Painted graph of projects 

A1, 

A2

A2, 

A3

A1, 

A3

A3, 

A4

1 2

3 4

Green Blue

Yellow Green



 Kowalska-Styczeń et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 691-721 

710 

Projects corresponding to vertices of the same colour can be executed 
simultaneously (in parallel). Two sequences of projects from six possible are shown in 
Figure 6. 

 
a) 

 
b) 

Figure 6. Sequences of project implementation 

As shown in Figure 6a and Figure 6b, projects 1 and 4 can be executed 
simultaneously and projects 2 and 3 – in series with these parallel projects. The 
graph colouring algorithm used determines only the sequence of execution of projects 
without considering the different duration of the projects. 

In conditions of a priori uncertainty of the projects random graph, it is important 
to maximize the probabilities of project coverage. The probabilities of project 
coverage determine the chance of its implementation, taking into account the refusals 
of executing agents. The scheme for calculating such probabilities is presented below. 

Let be 2 iK

i =  is the total space of the combined states of the agents involved in 

the execution of the i-th project (i=1..L), where 
iK  is the number of such agents. The 

value of the state 
, 1i js =  signals the participation of the j k -th agent, and the value 

, 0i js =  is of his refusal to participate in the project 
i . Here the operation   

performs a mutually unique display of sequential numbers 1.. ij K=  of project 
i  

agents 
jA  and real numbers of agents 

kA . The probability of project coverage 
cov ( )ip   

is then defined as the sum of the probabilities of those combined states 
,1 ,2 ,( ... )

ii i i Ks s s  

for which the individual states of the agents are equal to 1, and whose united 
ontologies cover the given project. 

For example, for the image shown in Figure 1 column each project 
i , i=1..L has 

the following state space for two agents involved in its implementation: 

,1 ,2 ,{( ) | {0,1}, 1,2} {00,01,10,11}i i i i jZ s s s j=  = = . 

Obviously, the probability of realization of all combined states is equal to 1: 

, , , , , , , ,(1 )(1 ) (1 ) (1 ) 1i l i m i l i m i l i m i l i mq q q q q q q q− − + − + − + = . Here, the first index indicates 

the project number, and the second – is the agent number. 
Given the composition of sets of ontologies, the probability of project coverage, for 

example, 
1  is determined as follows: 

cov 1 1,1 1,2( )p q q = , where 
1 1 2{ , }A A = . If 

1,kq q= , k=1,2, then there is a square dependence of the project coverage probability 

on the agents’ refusal probability 2

cov 1( )p q = . 

The probability of coverage can be increased by involving redundant agents in the 
project whose ontologies are partially included in many project ontologies. For 
example, there is a need to introduce an additional agent 

4A  in the project 
1 , which 
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will lead to the appearance in the column of a new connection between the vertices 

1  and 
4 . As a result, the agent’s state space will look like this: 

1 1,1 1,2 1,3 1,{( ) | {0,1}, 1..3} {000,001,010,011,100,101,110,111}jZ s s s s j=  = = . 

For a new set of ontologies
1 1 2 4{ , , }A A A = , the probability of project coverage 

will now be equal to: 
cov 1 1,1 1,2 1,4 1,1 1,2 1,4 1,1 1,2 1,4( ) (1 ) (1 )p q q q q q q q q q  = − + − + . It’s easy to 

check that 
cov 1 cov 1( ) ( )p p    . In a separate case for the same values of the 

probabilities of participation of agents in the project, there is 
2 3 2

cov 1( ) 2 (1 )p q q q q  = − +  . Probability graphs 
cov 1( )p   and 

cov 1( )p   of project 

coverage 
1  for 

1, [0,1]kq q=  , k=1..K are shown in Figure 7. 

Excessive project coverage affects the convergence of the stochastic game for the 
random graph colouring problem differently depending on the composition of the 
agent teams involved in the projects. Typical implementations of the time-averaged 
loss function for the project 

1  for different coverage probabilities are presented in 

Figure 8. Graph 1 is obtained for 
cov 1( ) 0.64p  = , and graph 2 – for 

cov 1( ) 0.768p  = , 

calculated for 
1, 0.8kq q= = , k=1..K. 

As shown in Figure 7, excessive coverage of projects due to the involvement of 
additional agents can increase the probability of coverage of the required project 
ontologies with existing agent ontologies. However, as shown in Figure 8, for random 
graphs, this may lead to a deterioration in the game method convergence due to the 
project’s dependence on the same agents. 

 

Figure 7. Probabilities of project coverage by ontologies of agents with 

refusals 

 

Figure 8. The effect of over-covering the project with agents’ ontologies on 

the convergence of the stochastic game 
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The result of involving the same additional agents is an increase in the connectivity 
of the graph of projects. In case of refusal of agents, the graph of projects splits into 
more subgraphs, and isolated vertices often appear, which weakens the convergence 
of the stochastic game with the colouring random graph. Increasing the order of graph 
(the number of graph vertices), which is equivalent to increasing the number of 
projects, also slows down the convergence of the stochastic game. 

The involvement of redundant agents in project implementation can be limited by 
an additional criterion of minimizing the cost of project implementation. 

5. Conclusions 

In this article, the problem of planning the sequence of projects implementation 
based on the self-learning method of the stochastic graph colouring game has been 
solved. It is highlighted that a random graph is a structural model for assigning staff 
based on the necessary ontological support for projects in conditions of uncertainty. 
Moreover, in such conditions, the well-known deterministic methods for solving this 
problem cannot be applied, since at each step of the game the implementation of a 
random graph is changed, the structure of which depicts the current coverage of a set 
of projects by ontologies of executive agents. The method of the multi-step stochastic 
game adaptively processes a random change in the structure of the graph. It has been 
shown that due to its adaptive properties, the stochastic game method can be used for 
random graph colouring, taking into account the probabilities of agents' participation 
in project implementation. The result of learning the stochastic game is the 
asymptotically correctly coloured random graph, which allows to determine the 
sequence of staff assignments to projects. According to the obtained results, it can be 
seen that the convergence of the stochastic game for the problem of colouring random 
graphs method is ensured by the balanced ratio of its parameters while observing the 
fundamental limitations of the stochastic approximation. In addition, increasing the 
graph order, the graph connectivity, and the probability of refusal of agents lead to the 
increase in the number of steps required for the convergence of the stochastic game 
of graph colouring. In our opinion, the stochastic game method for graph colouring can 
be used to solve similar problems formulated in terms of incomplete information, such 
as compiling various schedules, parallelization of algorithms, classification, data 
clustering and others. Moreover, the considered stochastic game has independent 
value as a model of global self-organization of states of the distributed system, which 
displays correct random graph colouring in conditions of uncertainty based on the 
locally collected data processing. 

The game problem of assigning staff has the significant impact on industrial and 
management decisions, providing new approaches to solving complex problems and 
helping to make more justified and effective decisions. So, it is possible to expect the 
decision-making improvement in conditions of uncertainty, the increase in the 
efficiency and competitiveness of projects, the reduce of the staff costs and the 
increase of staff motivation, the improvement of  the company management strategy, 
in particular, the staff selection and distribution, the stimulation for  the development 
of new innovative approaches to staff selection and management, what will allow the 
company to increase its competitiveness in the market. The proposed research 
method can be used in many other cases where it is necessary to solve complex 
problems of resource allocation. For example, it can be used in manufacturing 
enterprises to assign workers to different jobs based on their skills and experience. 
Also, it can be applied in the field of logistics to assign vehicles to transport goods 
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taking into account various factors such as the distance, time, carrying capacity, etc. 
The managerial game in logistics tasks may help managers to make decisions about 
the optimal use of resources such as workers, equipment, and materials. This can 
improve business efficiency and reduce costs. The conducted research has significant 
potential for further research and application in various areas related to staff 
management and organization. Some promising areas of research may include the 
model extension to more complex situations taking into account additional factors of 
project planning, such as the cost of staff labour, the project duration, technical 
constraints, etc., the research of the influence of changing conditions on the choice of 
strategies – changing priorities and goals or changing input data, development of new 
decision-making methods –  combining the game with other methods, such as multi-
agent systems, machine learning, information theory, and others. So, it can improve 
the accuracy and speed of decision-making, which, in turn, will increase the efficiency 
of enterprises and organizations. 

Therefore, the study of the game problem of assigning staff to the project 
implementation and other similar tasks has significant potential for improving 
production processes and optimizing the use of resources in various industries. 
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