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Original scientific paper 

Abstract: The Rat Swarm Optimizer (RSO) algorithm is examined in this paper 
as a potential remedy for the flow shop issue in manufacturing systems. The 
flow shop problem involves allocating jobs to different machines or 
workstations in a certain order to reduce execution time or resource use. The 
objective function is used by the RSO method to optimize the results after 
mapping the rat locations to task-processing sequences. The RSO method 
successfully locates high-quality solutions to the flow shop problem when 
compared to other metaheuristic algorithms on diverse test situations. This 
research helps to improve the flexibility, lead times, quality, and efficiency of 
the production system. The paper introduces the RSO algorithm, creates a 
mapping strategy, redefines mathematical operators, suggests a method to 
enhance the quality of solutions, shows how successful the algorithm is 
through simulations and comparisons, and then uses statistical analysis to 
confirm the algorithm's performance. 

Keywords: Artificial Rat Swarm Optimization, flow shop problem, scheduling, 
manufacturing systems, machine processing, job sequence, optimization, 
metaheuristic algorithms, solution quality, computational efficiency. 

1. Introduction 

The manufacturing systems (Zheng et al., 2022) are complex systems (Wang & 
Magron, 2022) that involve the production and creation of materials with machines, 
tools, and labor. Ensuring the efficient operation of these systems is crucial to the 
success and profitability of a business. One of the main challenges facing 
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manufacturing systems is the scheduling of tasks on machines, also known as the flow 
shop problem (Reza & Saghafian, 2005). 

This problem involves finding the optimal sequence of operations to process a set 
of tasks on a set of machines. It arises in manufacturing systems where multiple 
machines or workstations are used to process a set of tasks, and the tasks must be 
processed in a specific order and cannot be processed simultaneously on different 
machines. The objective of the flow shop problem is to find the optimal sequence of 
operations to process the tasks to minimize the total execution time or to use 
resources efficiently. 

Solving the flow shop problem is a complex optimization (Wang & Magron, 2022) 
task that requires consideration of multiple variables and constraints. Traditional 
optimization algorithms may not be sufficient to solve this problem, especially when 
dealing with large-scale, real-time systems. To address this challenge, researchers 
have turned to swarm intelligence optimization algorithms. 

Swarm intelligence optimization algorithms(Ab Wahab et al., 2015) are a class of 
optimization algorithms inspired by the self-organizing and decentralized behavior of 
natural systems, such as flocks of birds (Alaliyat et al., 2014), ant colonies (Blum, 
2005), and schools of fish. These algorithms have been widely studied and applied in 
various fields, including operations research, computer science, and engineering, due 
to their ability to find good solutions to complex optimization problems in a burnt and 
efficient manner. 

In recent years, swarm intelligence optimization algorithms have received 
increasing attention as a means of solving the flow shop-scheduling problem, which is 
a well-known problem in manufacturing systems. The flow shop problem involves 
scheduling a set of tasks on a set of machines to minimize the completion time of all 
tasks. Optimizing task scheduling can improve the effectiveness and efficiency of the 
manufacturing process, thereby reducing costs and increasing competitiveness. 

In the continuous flow-scheduling problem, a set of tasks must be processed on a 
set of machines in a specific order. Each task consists of a sequence of operations, and 
each operation must be performed on a specific machine. The objective of the 
scheduling problem is to find a schedule that minimizes the execution time of all tasks. 
By finding the optimal schedule, manufacturing systems can improve their 
effectiveness, efficiency, and competitiveness. 

There are several variations of the flow shop problem, depending on the specific 
constraints and objective function. Some common variations include: 
− Flow shop with no wait: In this variation (Smutnicki et al., 2022), the machines are 

assumed to be available for processing at all times, and there is no waiting time 
between the processing of different jobs. 

− Flow shop with total flow time minimization: In this variation (Marichelvam et al., 
2017), the objective is to minimize the total processing time of all the jobs. 

− Flow shop with makespan minimization: In this variation, the objective is to 
minimize the time it takes to complete all the jobs, also known as the makespan. 

− Flow shop with machine availability constraints: In this variation (Smutnicki et al., 
2022), the availability of the machines is taken into account, and the schedule 
must respect any constraints on the use of the machines. 

− Flow shop with job release times: In this variation (Wu et al., 2022), the jobs are 
released at different times, and the schedule must consider the release times of 
the jobs. 

Solving the flow shop problem requires finding an optimal schedule for the jobs 
that satisfy the specific constraints and objective function of the problem. This can be 
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a challenging problem due to the complexity of the problem space and the large 
number of possible schedules that must be evaluated. 

There are several reasons why it is important to solve the flow shop problem: 
− Improved efficiency: By finding the optimal schedule for the jobs, the flow shop 

problem can help improve the efficiency of the manufacturing process. This can 
lead to cost savings and increased profitability. 

− Reduced lead times: Scheduling job optimally helps reduce lead times, which is 
the time it takes for a product to be manufactured and delivered to the customer. 
Reducing lead times can lead to increased customer satisfaction and 
competitiveness. 

− Improved quality: An optimal schedule can help reduce the risk of errors and 
defects in the manufacturing process, leading to improved product quality. 

− Increased flexibility: Solving the flow shop problem can also help increase the 
flexibility of the manufacturing system, allowing it to adapt to changing demands 
and market conditions. 

Additionally, the flow shop scheduling problem is of particular importance to 
businesses because it can help them make informed decisions about their operations. 
By analyzing and optimizing their production processes, businesses can identify 
opportunities for improvement and implement strategies to increase efficiency and 
reduce costs. This can ultimately lead to increased competitiveness and profitability 
for the business. 

In this article, we will review the current state of the art in the application of swarm 
intelligence optimization algorithms, including the discrete rat swarm optimization 
algorithm, to solve the flow shop problem. We will discuss the key features of these 
algorithms and their performance in solving the flow shop problem, as well as the 
challenges and opportunities for future research in this area. We aim to provide a 
comprehensive overview of the use of swarm intelligence optimization algorithms, 
including the discrete rat swarm optimization algorithm, for the flow shop problem 
and to highlight their potential as a powerful tool for improving the performance of 
manufacturing systems. 

The main contributions of this work concerning production shop scheduling are as 
follows: 
− The introduction of the DRSO algorithm as a solution to the flow shop scheduling 

problem. 
− The development of a mapping strategy to convert real values to discrete values 

to address the combinatorial nature of flow shop scheduling. 
− Redefinition of mathematical operators to solve combinatorial and discrete 

optimization problems in shop floor scheduling. 
− The extension and adaptation of the 2-opt local search heuristic, traditionally used 

for TSP (Mzili et al., 2022), to solve FSSP. 
− Demonstrating the effectiveness of the proposed algorithm through simulations 

and comparisons with test instances from the OR library. 
− The proposal of a statistical analysis using Friedman's test and Holm-Šídák's 

multiple comparison tests to validate the performance of the proposed algorithm 
in production shop scheduling. 

The organization of this article is as follows: Section 2 presents related work, 
Section 3 introduces the flow shop problem, Section 4 presents the proposed rat 
swarm optimization algorithm, Section 5 presents the experimental results, and 
Section 6 provides a comparison and analysis using the Friedman test, followed by the 
conclusion and future works. 
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2. Related works 

The flow shop problem is a scheduling problem that involves finding the optimal 
order of processing a set of tasks on a set of machines to minimize the total processing 
time. This problem is NP-hard (Tanaev et al., 1994), which means that it is difficult to 
solve using traditional optimization methods. However, metaheuristics and swarm 
intelligence algorithms can be used to develop more efficient solutions to the flow 
shop problem. 

Swarm intelligence algorithms are a type of optimization algorithm that is inspired 
by the self-organizing and decentralized behavior of natural systems, such as flocks of 
birds, colonies of ants, and schools of fish. These algorithms have been widely studied 
and applied in various fields, including operations research, computer science, and 
engineering, due to their ability to find good solutions to complex optimization 
problems robustly and efficiently. 

Popular swarm intelligence metaheuristics that have been used to solve the flow 
shop problem include ant colony optimization (ACO) (Blum, 2005), particle swarm 
optimization (PSO)(Zhang et al., 2010), bee colony optimization (BCO) (Huang & Lin, 
2011), and the artificial fish swarm algorithm (AFSA) (Babaee et al., 2020). In addition 
to swarm intelligence algorithms, other types of metaheuristics have also been 
proposed and applied to solve the flow shop problem. 

Iterative improvement-based metaheuristics generate solutions through iterative 
improvements. The IIGA algorithm (Pan et al., 2008) uses a constructive heuristic and 
an acceptance criterion to generate and select the best solution for the next iteration. 
The DPSOVND algorithm (Pan et al., 2008)is designed to minimize both the makespan 
and total flow time for a shop floor scheduling problem. The TMIIG algorithm (Ding et 
al., 2015) is a modified version of the iterated greedy algorithm that incorporates a 
Tabu-based reconstruction strategy and a neighborhood search method involving 
insertion, permutation, and double-insertion moves to solve the no-wait job shop-
scheduling problem with a scope criterion. The NEH (Nawaz, Enscore, and Ham) 
algorithm (Liang et al., 2022) is a heuristic method for minimizing the execution time 
in a continuous flow shop with infinite storage at each stage. 

Hybrid metaheuristics combine several approaches to leverage individual 
strengths and overcome their weaknesses. The NEH-NGA algorithm (Liang et al., 
2022)combines the NEH heuristic and the niche genetic algorithm to create a hybrid 
optimization method to solve scheduling problems. The SSO algorithm (Kurdi, 2021)is 
based on the collaborative behavior of social spider colonies, which involves 
interactions between males and females performing various tasks. The SCE-OBL 
algorithm (Kurdi, 2021) combines the SCE algorithm with adversarial learning. The 
CLS-BFE algorithm (Kurdi, 2021) combines chaotic local search with bacterial 
foraging principles to search for optimal solutions. The CSO algorithm (Li & Yin, 2013) 
combines cuckoo search with Levy flights, a random search technique based on the 
probability distribution of Levy flights observed in nature. 

Nature has inspired many metaheuristic algorithms, such as the BAT algorithm 
(Bellabai et al., 2022), which is inspired by the echolocation system of bats to solve 
problems. The HMSA algorithm (Marichelvam et al., 2017) combines elements of the 
Monkey Search algorithm with other techniques to solve the flow shop problem. The 
DWWO algorithm (Ding et al., 2015) is designed to solve the NWFSP with a focus on 
minimizing the makespan, and it has five phases. Propagation and breaking operations 
are based on insertion. 

Evolution-inspired metaheuristics use the principles of natural selection and 
genetics to simulate the evolutionary process. The SGA algorithm (Liang et al., 2022) 
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uses the principles of natural evolution, such as reproduction, mutation, and selection, 
to search for the optimal solution to a given problem. The GA algorithm (Arik, 2021) 
is another type of optimization algorithm that draws on the principles of natural 
evolution and genetics. These algorithms are often used to solve optimization 
problems, including the flow shop problem. 

3. Flow shop problem 

Flow shop scheduling is a well-known problem in the field of operations research 
and manufacturing systems. It can be formalized as an optimization problem whose 
objective is to minimize the total processing time of a set of tasks on a set of machines. 
The problem can be formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ∑ 𝑃𝑖𝑗  𝑥𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

                                    , 𝑥𝑖𝑗  ∈  {0,1} , ∀𝑖, 𝑗                         (1) 

Subject to: 

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

  =  1         ∀𝑖                                                                                                                        (2) 

∑ 𝑥𝑖𝑗

𝑚

𝑗=1

  ≤  1            ∀𝑖                                                                                                                    (3) 

  Where: 

n is the number of jobs 

m is the number of machines 

𝑃𝑖𝑗  is the processing time for job j on machine i 

𝑥𝑖𝑗  is a binary decision variable that is 1 if job j is processed on machine i and 0 

otherwise 
The first constraint ensures that each job is assigned to exactly one machine, and 

the second constraint ensures that each machine can only process one job at a time. 
The third constraint indicates that the decision variables are binary. 

The objective of the optimization problem is to find the values of the decision 
variables (𝑥𝑖𝑗) that minimize the total processing time, subject to the constraints. This 

can be achieved using optimization algorithms, such as linear programming, mixed 
integer programming, or metaheuristics such as swarm intelligence algorithms. 

3.1. Importance of solving the flow shop problem in manufacturing systems 

The Flow shop problem is a major challenge in manufacturing systems. It involves 
planning a sequence of operations for a set of tasks in a specific order through a series 
of machines. This problem requires effective planning and optimization to minimize 
production time, reduce costs, and improve productivity. 

Solving the FSSP problem can have significant benefits for manufacturing systems, 
including: 

1) Improved efficiency: By optimizing the production schedule, manufacturing 
systems can operate more efficiently, reducing production time and increasing output. 
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2) Reduced costs: An optimized production schedule can reduce the need for 
overtime, excess inventory, and other expenses, resulting in significant savings. 

3) Increased competitiveness: Manufacturing systems that can produce goods more 
efficiently and cost-effectively are more competitive in the marketplace. 

4) Improved customer satisfaction: A well-optimized production program can help 
meet customer demand and ensure on-time delivery, which improves customer 
satisfaction. 

Therefore, solving the flow shop problem is of great importance in manufacturing 
systems and can have significant benefits for companies. 

Figure 1 shows the Gantt chart for 5 tasks and 4 machines. 

 

 

Figure 1. The Gantt Chart Example for 5 jobs and 4 machines 

4. Proposed Rat swarm algorithm 

Rat Swarm Optimization (RSO) (Mzili et al., 2022) is a metaheuristic algorithm 
inspired by the behavior of rat swarms and their ability to find food sources efficiently. 
In particular, the RSO algorithm is inspired by how rat swarms can adapt to changing 
environments and use their collective intelligence to locate and capture prey. 

In the RSO algorithm, a population of "rats" is used to represent potential solutions 
to the optimization problem. Each rat is associated with a set of decision variables that 
represent a potential solution to the problem. The rats move through the search space, 
exploring different solutions and updating their position according to the quality of 
the solutions found. 

4.1. Mathematical modeling of the RSO algorithm 

The rat swarm optimization (RSO) algorithm consists of two main phases: 
exploration and exploitation.  

To model the behavior of rats when they search for and capture prey, specific 
equations are used in the algorithm. These equations allow the rats to locate and 
capture prey effectively and efficiently while optimizing the position or solution of the 
prey in the search space. 

• Pursuit of prey (Exploration phase) 

The pursuit behavior of rats that update their position according to the best 
personal position found by the best searcher in the group. Parameters A and C provide 
a balance between exploration and exploitation, allowing rats to search for and 
capture prey efficiently. 
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This behavior is described by the following equation. 

𝑃 =  𝐴 ∗  𝑃(𝑡) +  𝐶 ∗  (𝑃𝑏𝑒𝑠𝑡(𝑡) −  𝑃(𝑡))                                                                            (4) 

Where P(t) represents the position of the rat at time t, P(t-1) represents the 
position of the rat at the previous time step, and Pbest(t) represents the best position 
of the rat at time t. 

𝐴 = 𝑅 − 𝜌 (
𝑅

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

)   .   1 ≤ 𝑅 ≤ 5                                                                                 (5) 

 
𝜌 = 1.2.3. … . 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛                                                                                                             (6) 

Therefore, parameters A and R are responsible for balancing exploration and 
exploitation during the iteration process. They are sensitive to finding a good balance 
between the two, and their values are randomly generated between 1 and 5 for A and 
0 and 2 for R. This helps the rats effectively search for and capture their prey while 
also optimizing the solution or position of the prey. 

• Fighting prey (exploitation phase) 

The rats attack the target prey detected in the previous phase. However. The prey 
often tries to escape from dangerous situations or to defend itself against this attack.  

In this case. A deadly battle ensues between the rats and the prey and. in some 
cases. Ends with the death of some rats. 

Therefore, the fight between the rats and their prey is mathematically described 
by the formula below: 

𝑃(𝑡 + 1) = |𝑃𝑏𝑒𝑠𝑡(𝑡) −  𝑃|                                                                                                         (7) 

This equation represents the exploitation phase of the rats, where they accept the 
position and evaluation of the prey that they have found and fought with. P(t+1) 
represents the updated position of the rat at the current time step, and Pbest 
represents the best position or solution found by the rats so far. The absolute value 
function ensures that the updated position of the rat is always a positive value, 
regardless of whether Pbest is greater or less than P(t). 

𝐹(𝑡) =  𝑓(𝑃(𝑡))                                                                                                                           (8) 

Where F(t) represents the evaluation or value of the prey at time t, and f(P(t)) 
represents the position of the prey at time t. 

The value of the prey, represented by F(t), can be determined using a suitable 
evaluation function, such as the fitness function in an optimization problem. The 
position of the prey, represented by f(P(t)), can be used to update the personal and 
global best positions of the rats in the swarm. 

4.2. Using the RSO algorithm to solve the flow shop problem 

Solving the flow shop-scheduling problem using the RSO algorithm requires the 
definition of a set of discrete operators that the rats can use to move through the 
search space. These operators can consist of swapping the position of two tasks in the 
calendar, inserting a new task into the calendar, or deleting a task from the calendar. 
The rats then use these operators to explore different scheduling configurations and 
update their positions based on the quality of the solutions found. 
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In RSO, a set of "virtual rats" search for an optimal solution by moving through the 
problem space and adjusting their movement according to the positions of other rats. 
The rats are guided by a "rat king", who is a virtual leader who guides the movement 
of the rats toward the optimal solution. 

To use RSO to solve the flow shop problem, the following steps can be taken: 
1) Define the problem: Clearly define the problem to be solved, including the 

number of tasks, the number of shops, and any constraints or requirements that need 
to be addressed. 

2) Initialize the population: Create a population of rats that will represent 
potential solutions to the problem. Each rat will be assigned a set of tasks to perform 
in a specific order. 

3) Evaluate the fitness of each rat: Calculate the fitness of each rat in the 
population by evaluating the effectiveness of the order of the tasks they have been 
assigned. The fitness of each rat will be based on measures such as total processing 
time, number of delays, and overall system efficiency. 

4) Selection of the fittest rats: Select the fittest rats from the population using the 
objective function. These fittest rats will be used to create the next generation of rats. 

5) Generate new rats: Generate new rats from the fittest rats using equation (8) 
by replacing the mathematical operators with other discrete operators such as 
crossover and mutation. Since this optimizer is designed to solve continuous and 
linear optimization problems, it cannot be used directly to solve discrete optimization 
problems. Therefore, several modifications must be made. 

For this equation, 𝑃 =  𝐴 ∗  𝑃(𝑡) +  𝐶 ∗  (𝑃𝑏𝑒𝑠𝑡(𝑡) −  𝑃(𝑡)) , the mathematical 

operators will be redefined for the flow shop problem. 
• 𝑃𝑏𝑒𝑠𝑡(𝑡) −  𝑃(𝑡):  The operator of subtraction between two rat positions will 

be changed in our case to a list of swaps to be performed on a sequence of jobs 
𝑃(𝑡) to obtain the first sequence list 𝑃𝑏𝑒𝑠𝑡(𝑡). 

• 𝐶 ∗  (𝑃𝑏𝑒𝑠𝑡(𝑡) −  𝑃(𝑡)): This operation between a real [0,1] and a list of swaps 

will be defined to manipulate and reduce the number of swaps generated by 
the previous equation. 

• 𝑃(𝑡 − 1) +  𝐶 ∗  (𝑃𝑏𝑒𝑠𝑡(𝑡) −  𝑃(𝑡)): The addition operation allows for the 

final number of possible swaps to be applied to a sequence of jobs.  
These changes will be clarified in the example below in the following Figure 2: 
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Figure 2. Example of Discrete Operators for Flow Shop Problem 

6) The new rats will represent potential new solutions to the virtual workshop 
problem. 

7) Apply the 2-opt local search algorithm to improve each solution: The 2-opt 
algorithm is primarily used to solve the traveling salesman problem (TSP); however, 
it can be adapted and extended to address the flow shop (FSSP). The algorithm 
consists of selecting two non-adjacent edges in the schedule and swapping the order 
of the tasks between them. After the swap, calculate the new makespan and, if it is 
greater than the current solution, keep the updated solution. Run this process 
iteratively several times to gradually refine the quality of the solution. 
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8) Evaluate the fitness of the new rats: Calculate the fitness of the new rats and 
add them to the population. 

9) Repeat the process: Continue to repeat the process of selecting the fittest rats, 
generating new rats, and evaluating their fitness until the optimal solution is found or 
a predetermined number of iterations has been reached. 

The following is the description of the final algorithm. 

 

5. Experimental results 

The DRSO algorithm has been applied to more than 150 instances of the OR library 
and the results are presented in Tables (2-7). These tables indicate the instance name 
("Instance"), the number of tasks (n) and machines (m) for each instance ("n×m"), the 
best result proposed by other algorithms ("BKS"), the best results obtained by the 
different methods ("Best"), and the average results ("Average"). The column 
"PDav(%)" indicates the percentage deviation of the average solution length from the 
optimal solution length, calculated using equation 9: 

𝑃𝐷𝑎𝑣(%) =   
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒−𝐵𝐾𝑆 )× 100%

 𝐵𝐾𝑆
                                                                                         (9) 

In the "PDav(%)" column, values of 0.00 are highlighted in bold when all solutions 
found in the 20 trials are equal to the length of the best-known solution. Values less 
than 0.00 are highlighted in bold and blue if the average of the solutions found in all 
trials is less than the length of the best-known solution. Table 1 shows the initial 
discrete RSO parameters. 
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Table 1. Parameters of Discrete RSO 

PARAMETER VALUE 

THE POPULATION OF RAT SIZE: N 100 

A A random value between [1, 5] 

R A random value between   [0, 1] 

NB ITERATION 1000 

To conduct a comprehensive evaluation of DRSO, it is necessary to compare it with 
other problem-solving algorithms or methods. A wide range of metaheuristics must 
be selected to ensure a thorough and detailed analysis of DRSO's strengths and 
weaknesses compared to other algorithms and to identify the situations in which 
DRSO performs best. The metaheuristics chosen for comparison include IIGA, 
DPSOVND, TMIIG, DWWO, BAT, TLBO, SGA, HMSA, NEH, NEH-NGA, SSO, SCE-OBL, CLS-
BFE, ACGA, and CSO. This diverse set of metaheuristics will provide a comprehensive 
basis for comparison and will help to assess the effectiveness of DRSO relative to other 
optimization methods. 

 Figure 3 shows the convergence curves of several different algorithms on four 
instances of Ta001, Ta002, Ta021, and Ta031 in the context of the production-
scheduling problem. The curves represent the performance of each algorithm in the 
four different instances. 

The horizontal axis in the Figure represents the number of iterations required to 
reach the optimal value of the objective function, while the vertical axis represents the 
value of the objective function. 

Examination of the curves shows that the DRSO algorithm converges quickly 
compared to the other algorithms. 

 

Figure 3. Convergence curve for four instance. 
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Table 2. Comparison of DRSO, IIGA, DPSOVND, TMIIG, and DWWO 

Metaheuristics 

 DRSO IIGA DPSOVND TMIIG DWWO 

Instance Best Average Best Average Best Average Best Average Best Average 

Ta001 1278 1278 1486 1486 14 86 1 486 1486 1486 1486 1486 

Ta002 1359 1359 1528 1528 1528 1528.6 1528 1528 1528 1528 

Ta003 1081 1081 1460 1460 14 60 1 460 1460 1460 1460 1460 

Ta004 1293 1293 1588 1588 15 88 1 588 1588 1588 1588 1588 

Ta005 1235 1235 1449 1449 14 49 1 449 1449 1449 1449 1449 

Ta006 1195 1195 1481 1481 14 81 1 481 1481 1481 1481 1481 

Ta007 1239 1239 1483 1483 14 83 1 483 1483 1483 1483 1483 

Ta008 1206 1206 1482 1482 1482 1483.2 1482 1482 1482 1482 

Ta009 1230 1230 1469 1469 14 69 1 469 1469 1469 1469 1469 

Ta010 1108 1108 1377 1377 13 77 1 377 1377 1377 1377 1377 

Ta011 1582 1582 2044 2044 20 45 2 045 2044 2044 2044 2044 

Ta012 1659 1659 2166 2166 21 66 2 166 2166 2166 2166 2166 

Ta013 1496 1496 1940 1940 1940 1940.4 1940 1940.4 1940 1940 

Ta014 1377 1377 1811 1811 18 11 1 811 1811 1811 1811 1811 

Ta015 1419 1419 1933 1933 19 33 1 933 1933 1933 1933 1933 

Ta016 1397 1397 1892 1892 18 92 1 892 1892 1892 1892 1892 

Ta017 1484 1484 1963 1963 19 63 1 963 1963 1963 1963 1963 

Ta018 1538 1538 2057 2058.6 20 57 2 057 2057 2057 2057 2057 

Ta019 1593 1593 1973 1973 19 73 1 973 1973 1973 1973 1973 

Ta020 1591 1591 2051 2051 20 51 2 051 2051 2051 2051 2051 

Ta021 2297 2298,33 2973 2973 2973 2973.8 2973 2973 2973 2973 

Ta022 2100 2100 2852 2852 28 52 2 852 2852 2852 2852 2852 

Ta023 2326 2326 3013 3019.4 30 13 3 013 3013 3019.4 3013 3014.3 

Ta024 2223 2223 3001 3001 3001 3003.4 3001 3001 3001 3001 

Ta025 2291 2291 3003 3003 30 03 3 003 3003 3003 3003 3003 

Ta026 2226 2227,20 2998 2998 29 98 2 998 2998 2998 2998 2998 

Ta027 2273 2275,27 3052 3052 30 52 3 052 3052 3052 3052 3052 

Ta028 2200 2200,83 2839 2839 2839 2849.4 2839 2839 2839 2839 

Ta029 2237 2237,26 3009 3009 30 09 3 009 3009 3009 3009 3009 

Ta030 2178 2180,24 2979 2979 29 79 2 979 2979 2979 2979 2979 

Ta031 2724 2726,75 3209 3222 3169 3178.4 3161 3162.4 3170 3171.8 

Ta032 2834 2837,25 3469 3474.4 3444 3450.4 3440 3441 3441 3444.5 

Ta033 2621 2621,52 3254 3262.8 3226 3234.4 3213 3216 3218 3231.8 

Ta034 2751 2752,84 3366 3374.8 3348 3351.8 3343 3346.6 3349 3350.8 

Ta035 2863 2865,97 3398 3406 3370 3374.8 3361 3364.6 3376 3376.7 

Ta036 2829 2831,12 3371 3382.2 3354 3362.8 3346 3347.6 3352 3356.2 

Ta037 2725 2726,77 3257 3267.6 3244 3250.8 3234 3235.8 3243 3245.3 

Ta038 2683 2685,97 3266 3275.2 3247 3257.8 3241 3242.4 3239 3240.3 

Ta039 2552 2552 3115 3123.2 30 87 3 092 3075 3078.8 3078 3086.8 

Ta040 2782 2782 3373 3377.2 3336 3344.8 3322 3327.2 3330 3336.5 

Ta041 2991 2991 4303 4311.2 4284 4298.6 4274 4276.8 4274 4281.5 

Ta042 2867 2867 4197 4201 4193 4212.2 4179 4185 4180 4184.5 

Ta043 2839 2839 4110 4124 41 19 4 128 4099 4107.6 4099 4105.5 
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 DRSO IIGA DPSOVND TMIIG DWWO 

Instance Best Average Best Average Best Average Best Average Best Average 

Ta044 3063 3063 4432 4439.2 4411 4422.8 4399 4405 4407 4405.7 

Ta045 2976 2976 4336 4347 4334 4342.8 4324 4330.4 4324 4324.7 

Ta046 3006 3006 4312 4330 4311 4316.4 4290 4297.2 4294 4295.2 

Ta047 3093 3093 4433 4441.4 4435 4447.6 4420 4429.6 4420 4420 

Ta048 3037 3037 4353 4357.6 43 31 4 341 4321 4327 4323 4323.3 

Ta049 2897 2897 4190 4194.8 4162 4169.2 4158 4164.2 4155 4161.7 

Ta050 3065 3065 4299 4301 42 87 4 290 4286 4286.2 4286 4286.2 

Ta051 3875 3875 6144 6154.6 6165 6178.8 6129 6139.6 6129 6138.5 

Ta052 3715 3715 5748 5762.2 5730 5751.8 5725 5741 5725 5733.5 

Ta053 3668 3668 5879 5907 5881 5898.6 5873 5882.4 5862 5865.5 

Ta054 3752 3752 5797 5802.6 5802 5813.4 5789 5791.4 5789 5790.7 

Ta055 3635 3635 5924 5930.6 59 08 5 923 5886 5899.4 5886 5893.5 

Ta056 3698 3698 5904 5912.6 5886 5901.4 5874 5883.4 5871 5874.3 

Ta057 3716 3716 6004 6012 5968 5991.4 5968 5974 5969 5974 

Ta058 3709 3709 5947 5970.2 5937 5977.2 5940 5945.4 5926 5930.5 

Ta059 3765 3765,602 5881 5900.6 5889 5908.6 5876 5883.2 5876 5876 

Ta060 3777 3779,266 5970 5982 5959 5971.6 5959 5959 5958 5958.8 

Ta061 5493 5493 6563 6586.4 6458 6464.6 6397 6413.4 6433 6438.3 

Ta062 5268 5268,79 6409 6428.2 6268 6292.4 6246 6252.2 6268 6285.5 

Ta063 5175 5176,656 6254 6292.8 61 72 6 185 6133 6135.8 6162 6164.2 

Ta064 5014 5014,401 6173 6184.8 6071 6085.8 6028 6031.4 6055 6050.7 

Ta065 5250 5253,36 6319 6358.4 6244 6261.2 6206 6217.8 6221 6223.3 

 Table 3. Comparison of DRSO, BAT, and TLBO for FSSP Test Problems: 

Computational Results 

  

 DRSO BAT          TLBO 

INSTANCES BKS Best Average PDav Best Average PDav Best Average PDav 

Ta 001 1278 1278 1279,022 0.08 1278 1284.9 0.5399 1278 1287.2 0.7199 

Ta 011 1582 1582 1584,057 0.13 1609 1623.3 2.6106 1586 1606 1.5171 

Ta 021 2297 2297 2301,364 0.19 2323 2355.4 2.5424 2325 2344.7 2.0766 

Ta 031 2724 2724 2726,452 0.09 2724 2725.6 0.0587 2724 2729.4 0.1982 

Ta 041 2991 2991 2998,178 0.24 3119 3110.6 3.8449 3120 3141.4 5.0284 

Ta 051 3771 3771 3772,886 0.05 4001 4021.9 6.6534 3986 4029.7 6.8602 

Ta 061 5493 5493 5507,831 0.27 5493 5496.4 0.0619 5493 5499.4 0.1165 

Ta 071 5770 5770 5776,347 0.11 5808 5819.6 0.8596 5887 5928.7 2.7504 

Ta 081 6286 6286 6286,629 0.01 6485 6527.2 3.8371 6549 6617.8 5.2784 

Ta 091 10868 10868 10887,56 0.18 10942 10942 0.6809 10979 11033 1.5182 

Ta 101 11294 11294 11319,98 0.23 11600 11622.5 2.9086 11855 11940 5.7199 

Ta 111 26189 26189 26264,95 0.29 26612 26622.6 1.6557 27377 27492 4.9754 
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Table 4. Comparison of DRSO, SGA, and HMSA on FSSP Test Problems: 

Computational Results 

Instance (nxm) BKS 
DRSO SGA HMSA 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Ta021 20 × 20 2297 2297 0.058 2336 1.70 2324 1.18 
Ta022 20 × 20 2100 2100 0.00 2144 2.10 2112 0.57 
Ta023 20 × 20 2326 2326 0.00 2364 1.63 2348 0.95 
Ta024 20 × 20 2223 2223 0.00 2264 1.84 2242 0.85 
Ta025 20 × 20 2291 2291 0.00 2330 1.70 2320 1.27 
Ta026 20 × 20 2226 2226 0.054 2255 1.30 2249 1.03 
Ta027 20 × 20 2273 2273 0.100 2303 1.32 2290 0.75 
Ta028 20 × 20 2200 2200 0.038 2249 2.23 2224 1.09 
Ta029 20 × 20 2237 2237 0.012 2279 1.88 2246 0.40 
Ta030 20 × 20 2178 2178 0.103 2234 2.57 2192 0.64 
Ta031 50 × 5 2724 2724 0.101 2735 0.40 2728 0.15 
Ta032 50 × 5 2834 2834 0.115 2864 1.06 2846 0.42 
Ta033 50 × 5 2621 2621 0.020 2650 1.11 2642 0.80 
Ta034 50 × 5 2751 2751 0.067 2778 0.98 2762 0.40 
Ta035 50 × 5 2863 2863 0.104 2887 0.84 2866 0.10 
Ta036 50 × 5 2829 2829 0.075 2852 0.81 2832 0.11 
Ta037 50 × 5 2725 2725 0.065 2746 0.77 2748 0.84 
Ta038 50 × 5 2683 2683 0.111 2704 0.78 2690 0.26 
Ta039 50 × 5 2552 2552 0.00 2586 1.33 2564 0.47 
Ta040 50 × 5 2782 2782 0.00 2782 0.00 2796 0.50 
Ta051 50 × 20 3875 3875 0.00 4093 5.63 3896 0.54 
Ta052 50 × 20 3715 3715 0.00 3983 7.21 3746 0.83 
Ta053 50 × 20 3668 3668 0.00 3911 6.62 3694 0.71 
Ta054 50 × 20 3752 3752 0.00 3966 5.70 3814 1.65 
Ta055 50 × 20 3635 3635 0.00 3911 7.59 3686 1.40 
Ta056 50 × 20 3698 3698 0.00 3896 5.35 3722 0.65 
Ta057 50 × 20 3716 3716 0.00 3998 7.59 3766 1.35 
Ta058 50 × 20 3709 3709 0.00 3979 7.28 3768 1.59 
Ta059 50 × 20 3765 3765 0.016 4000 6.24 3812 1.25 
Ta060 50 × 20 3777 3777 0.060 4020 6.43 3826 1.30 
Ta061 100 × 5 5493 5493 0.000 5505 0.22 5502 0.16 
Ta062 100 × 5 5268 5268 0.015 5290 0.42 5272 0.08 
Ta063 100 × 5 5175 5175 0.032 5221 0.89 5192 0.33 
Ta064 100 × 5 5014 5014 0.008 5035 0.42 5020 0.12 
Ta065 100 × 5 5250 5250 0.064 5280 0.57 5254 0.08 
Ta066 100 × 5 5135 5135 0.044 5164 0.56 5144 0.18 
Ta067 100 × 5 5246 5246 0.019 5292 0.88 5264 0.34 
Ta068 100 × 5 5106 5106 0.053 5137 0.61 5114 0.16 
Ta069 100 × 5 5454 5454 0.067 5506 0.95 5466 0.22 
Ta070 100 × 5 5328 5328 0.066 5353 0.47 5332 0.08 
Ta071 100 × 10 5770 5770 0.002 5955 3.21 5792 0.38 
Ta072 100 × 10 5349 5349 0.011 5543 3.63 5368 0.36 
Ta073 100 × 10 5677 5677 0.003 5823 2.57 5694 0.30 
Ta074 100 × 10 5791 5791 0.013 6056 4.58 5826 0.60 
Ta075 100 × 10 5468 5468 0.00 5750 5.16 5514 0.84 
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Instance (nxm) BKS 
DRSO SGA HMSA 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Ta076 100 × 10 5303 5303 0.00 5447 2.72 5324 0.40 
Ta077 100 × 10 5599 5599 0.00 5747 2.64 5628 0.52 
Ta078 100 × 10 5623 5623 0.00 5816 3.43 5664 0.73 
Ta079 100 × 10 5875 5875 0.00 6053 3.03 5912 0.63 
Ta080 100 × 10 5845 5845 0.016 5978 2.28 5892 0.80 
Ta091 200 × 10 10,868 10,868 0.060 11,066 1.82 10,932 0.59 
Ta092 200 × 10 10,494 10,494 0.000 10,885 3.73 10,624 1.24 
Ta093 200 × 10 10,922 10,922 0.015 11,203 2.57 11,006 0.77 
Ta094 200 × 10 10,889 10,889 0.032 11,036 1.35 11,024 1.24 

 Table 5. Comparison of Computational Results for FSSP Test Problems Using 

DRSO, NEH, and NEH-NGA Algorithms  

Instance (nxm) BKS 
DRSO NEH NEH-NGA 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Ta021 20 × 20 2297 2297 0.058 2410 4.92 2297 0.00 

Ta022 20 × 20 2100 2100 0.00 2150 2.38 2112 0.57 

Ta023 20 × 20 2326 2326 0.00 2411 3.65 2326 0.00 

Ta024 20 × 20 2223 2223 0.00 2264 1.84 2264 1.84 

Ta025 20 × 20 2291 2291 0.00 2397 4.63 2305 0.61 

Ta026 20 × 20 2226 2226 0.054 2349 5.53 2245 0.85 

Ta027 20 × 20 2273 2273 0.100 2383 4.84 2290 0.75 

Ta028 20 × 20 2200 2200 0.038 2249 2.23 2215 0.68 

Ta029 20 × 20 2237 2237 0.012 2313 3.40 2248 0.49 

Ta030 20 × 20 2178 2178 0.103 2277 4.55 2178 0.00 

Ta031 50 × 5 2724 2724 0.101 2733 0.33 2724 0.00 

Ta032 50 × 5 2834 2834 0.115 2882 1.69 2834 0.00 

Ta033 50 × 5 2621 2621 0.020 2640 0.72 2630 0.34 

Ta034 50 × 5 2751 2751 0.067 2787 1.31 2755 0.15 

Ta035 50 × 5 2863 2863 0.104 2868 0.17 2866 0.10 

Ta036 50 × 5 2829 2829 0.075 2840 0.39 2829 0.00 

Ta037 50 × 5 2725 2725 0.065 2769 1.61 2736 0.40 

Ta038 50 × 5 2683 2683 0.111 2707 0.89 2694 0.41 

Ta039 50 × 5 2552 2552 0.00 2617 2.55 2558 0.24 

Ta040 50 × 5 2782 2782 0.00 2786 0.14 2794 0.43 

Ta051 50 × 20 3875 3875 0.00 4082 5.34 3880 0.13 

Ta052 50 × 20 3715 3715 0.00 3921 5.55 3738 0.62 

Ta053 50 × 20 3668 3668 0.00 3888 6.00 3690 0.60 

Ta054 50 × 20 3752 3752 0.00 3993 6.42 3776 0.64 

Ta055 50 × 20 3635 3635 0.00 3835 5.50 3673 1.05 

Ta056 50 × 20 3698 3698 0.00 3914 5.84 3713 0.41 

Ta057 50 × 20 3716 3716 0.00 3952 6.35 3754 1.02 
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Instance (nxm) BKS 
DRSO NEH NEH-NGA 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Best 
PDav 
(%) 

Ta058 50 × 20 3709 3709 0.00 3938 6.17 3709 0.00 

Ta059 50 × 20 3765 3765 0.016 3952 4.97 3781 0.42 

Ta060 50 × 20 3777 3777 0.060 4079 8.00 3795 0.48 

Ta061 100 × 5 5493 5493 0.000 5519 0.47 5505 0.22 

Ta062 100 × 5 5268 5268 0.015 5284 0.30 5268 0.00 

Ta063 100 × 5 5175 5175 0.032 5219 0.85 5219 0.85 

Ta064 100 × 5 5014 5014 0.008 5037 0.46 5014 0.00 

Ta065 100 × 5 5250 5250 0.064 5261 0.21 5261 0.21 

Ta066 100 × 5 5135 5135 0.044 5141 0.12 5141 0.12 

Ta067 100 × 5 5246 5246 0.019 5266 0.38 5252 0.11 

Ta068 100 × 5 5106 5106 0.053 5107 0.02 5106 0.00 

Ta069 100 × 5 5454 5454 0.067 5500 0.84 5474 0.37 

Ta070 100 × 5 5328 5328 0.066 5346 0.34 5346 0.34 

Ta071 100 × 10 5770 5770 0.002 5846 1.32 5780 0.17 

Ta072 100 × 10 5349 5349 0.011 5453 1.94 5358 0.17 

Ta073 100 × 10 5677 5677 0.003 5781 1.83 5700 0.41 

Ta074 100 × 10 5791 5791 0.013 5942 2.61 5833 0.73 

Ta075 100 × 10 5468 5468 0.00 5679 3.86 5509 0.75 

Ta076 100 × 10 5303 5303 0.00 5375 1.36 5319 0.30 

Ta077 100 × 10 5599 5599 0.00 5723 2.21 5644 0.80 

Ta078 100 × 10 5623 5623 0.00 5737 2.03 5668 0.80 

Ta079 100 × 10 5875 5875 0.00 5983 1.84 5896 0.36 

Ta080 100 × 10 5845 5845 0.016 5903 0.99 5890 0.77 

Ta091 200 × 10 10,868 10,868 0.060 10,942 0.68 10,968 0.92 

Ta092 200 × 10 10,494 10,494 0.000 10,735 2.30 10,594 0.95 

Ta093 200 × 10 10,922 10,922 0.015 11,027 0.96 10,992 0.64 

Ta094 200 × 10 10,889 10,889 0.032 11,057 1.54 10,984 0.87 

Ta095 200 × 10 10,524 10,524 0.008 10,684 1.52 10,565 0.39 

Table 6. Comparison of Computational Results for FSSP Test Problems Using DRSO, 
SSO, SCE-OBL, CLS-BFO, and ACGA Algorithms 

Instance (n*m) BKS DRSO SSO SCE-OBL CLS-BFO ACGA 
Rec1 20x5 1245 1245 1247 1249 1249 1249 
Rec3 20x5 1109 1109 1109 1111 1111 1109 
Rec5 20x5 1242 1242 1245 1245 1245 1245 
Rec7 20x10 1566 1566 1566 1584 1584 1566 
Rec9 20x10 1537 1537 1537 1545 1545 1537 

Rec11 20x10 1431 1431 1431 1431 1449 1431 
Rec13 20x15 1930 1930 1935 1963 1968 1935 
Rec15 20x15 1950 1950 1968 1993 1993 1950 
Rec17 20x15 1902 1902 1923 1944 1954 1911 
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Table 7. Comparison of Computational Results for FSSP Test Problems Using DRSO 
and CSO Algorithms 

Instances 
DRSO CSO 

Best Average PDAV Best Average PDAV 

Ta001 1278 1279,02 0.08 1278 1278 0.00 

Ta011 1582 1584,05 0.13 1586 1603.8 1.37 

Ta015 1419 1419 0.00 1426 1443.9 1.75 

Ta021 2297 2301,36 0.19 2308 2319.9 0.99 

Ta025 2291 2291 0.00 2312 2318.8 1.21 

Ta031 2724 2726,75 0.101 2724 2725 0.04 

Ta035 2863 2865,98 0.104 2863 2863.8 0.03 

Ta040 2782 2782 0.00 2782 2782 0.00 

Ta041 2991 2991 0.00 3063 3074.9 2.81 

Ta045 2976 2976 0.00 3035 3065.7 3.01 

Ta051 3875 3875 0.00 3968 3978.6 3.42 

Ta055 3635 3635 0.00 3750 3772.5 6.17 

Ta061 5493 5493 0.000 5493 5493.8 0.037 

Ta065 5250 5253,36 0.064 5255 5255 0.09 

Ta071 5770 5770,11 0.002 5791 5802 0.55 

Ta075 5468 5468 0.00 5512 5548.8 1.49 

6. Comparison 
 
In this section, we will proceed to the comparison of the DRSO algorithm with other 

metaheuristics based on the data provided by the authors of the compared methods. 
The objective is to evaluate and analyze the performance of these algorithms to 
determine the relative efficiency of DRSO. 

The algorithms are evaluated according to three main criteria: the best solution 
found (Best), the average solution found (Average), and the percentage of deviation 
from the best-known solution (PDav). 

For each comparison, we will apply a parametric or non-parametric test, 
depending on the size of the samples studied and the data provided.  

The statistical tests used are the Holm-Šídák multiple comparison test and the 
Wilcoxon test.  

Instance (n*m) BKS DRSO SSO SCE-OBL CLS-BFO ACGA 
Rec19 30x10 2093 2093 2117 2156 2139 2099 
Rec21 30x10 2017 2017 2017 2064 2059 2046 
Rec23 30x10 2011 2011 2030 2067 2073 2021 
Rec25 30x15 2513 2513 2566 2584 2638 2545 
Rec27 30x15 2373 2373 2397 2445 2443 2396 
Rec29 30x15 2287 2287 2333 2364 2408 2304 
Rec31 50x10 3045 3045 3104 3179 3180 3105 
Rec33 50x10 3114 3114 3118 3154 3187 3140 
Rec35 50x10 3277 3277 3277 3281 3292 3277 
Rec37 75x20 4890 4890 5096 5327 5422 5193 
Rec39 75x20 5043 5043 5185 5391 5465 5276 
Rec41 75x20 4910 4910 5135 5334 5436 5208 
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The Holm-Šídák test is a multiple comparison method that controls the type I error 
rate when examining several hypotheses simultaneously.  

The Wilcoxon test is a non-parametric test that compares the medians of two 
samples to determine if they are from the same population. 

Each comparison will be illustrated by a graph showing the PDav comparison curve 
or the best value obtained, to justify the performance of the DRSO algorithm, as 
illustrated in the five Figures (4-9).  

6.1.1. Comparison between DRSO, IIGA, DPSOVND, TMIIG, and DWWO 

The results in Table 2 show that the DRSO algorithm reached the optimum for all 
instances (i.e. 100%) with an average close to or equal to the optimum in most cases. 
In contrast, the other algorithms such as IIGA, DPSOVND, TMIIG, and DWWO failed to 
find the optimum for all instances (0 out of 65). The average results of these algorithms 
were also very high compared to the optimum found. Thus, the performance of DRSO 
is significantly better than the other algorithms. 

In the Figure 4, it can be observed that the curve of DRSO is significantly smaller 
than the other curves, indicating that DRSO is more stable and has better overall 
performance than the other algorithms. 

 

Figure 4. Comparison of the best value obtained by DRSO, IIGA, DPSOVND, TMIIG, 
and DWWO 

In Table 8, the results of the Holm-Šídák multiple comparison test comparing the 
performance of the DRSO method with that of the IIGA, DPSOVND, TMIIG, and DWWO 
methods are displayed. The test results indicate that the differences in performance 
between the DRSO method and the other methods (IIGA, DPSOVND, TMIIG, and 
DWWO) are statistically significant. 

Specifically, the negative mean difference for each comparison suggests that DRSO 
performs better than the other methods. Additionally, the adjusted P values for all 
comparisons are less than 0.0001, indicating a very high level of significance. 
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Table 8. Holm-Šídák Multiple Comparisons Test Results for DRSO and IIGA, DPSOVND, 
TMIIG, and DWWO 

  Test Mean DIFF, Below threshold? Summary Adjusted P value 

DRSO VS. IIGA -936,8 YES **** <0,0001 

DRSO VS. DPSOVND -922,5 YES **** <0,0001 

DRSO VS. TMIIG -914,6 YES **** <0,0001 

DRSO VS. DWWO -917,2 YES **** <0,0001 

 
In detail, the mean difference between DRSO and IIGA is -936.8, between DRSO and 

DPSOVND, is -922.5, between DRSO and TMIIG, is -914.6, and between DRSO and 
DWWO is -917.2. In all of these comparisons, the DRSO method shows superior 
performance, as indicated by the four stars (****) in the abstract, which indicate a very 
high level of significance. 

6.1.2. Comparison between DRSO, BAT, and TLBO 

From Table 3, the comparison of the performance of the DRSO, BAT, and TLBO 
methods in solving the instances of the problem Ta shows significant differences in 
the percentage of success in finding the best solution equal to the best-known solution 
(BKS) as well as in the percentage of average deviation (PDav). 

DRSO appears to be the best-performing method for finding the best solution equal 
to BKS for all instances. Conversely, BAT performs less well, reaching the best solution 
equal to BKS only 16.67% of the time. TLBO performs the worst of the three methods, 
with 8.33%. 

In terms of percent average deviation (PDav), DRSO generally has a low deviation, 
indicating that the performance of this method is close to the best-known solution. In 
the majority of cases, BAT exhibits a higher percentage of mean deviation than DRSO, 
suggesting lower accuracy for this method. Similarly, TLBO has a higher average 
deviation percentage than DRSO in many cases and sometimes even higher than BAT, 
indicating that its performance is less accurate than the other two methods. 

In addition, Figure 5 shows the comparison of the performance curves of the 
algorithms. The curve of DRSO is significantly smaller than those of BAT and TLBO, 
indicating better stability and overall superior performance for DRSO compared to the 
other algorithms. 

 

Figure 5. Comparison of the PDav(%) value obtained by DRSO, BAT, and TLBO 
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In Table 9, the results of the Holm-Šídák test indicate a significant difference in 
performance between DRSO and BAT, with a mean difference of -120.9 and an 
adjusted P value of 0.0240. The negative difference suggests that DRSO performs 
better than BAT. This comparison has a level of significance, as indicated by the (*) in 
the summary column. 

In contrast, the comparison between DRSO and TLBO does not show a significant 
difference in performance. The mean difference is -218.0 and the adjusted P value is 
0.0515, slightly above the 0.05 significance level. In this comparison, the summary 
indicates "ns" (not significant), which means that there is insufficient evidence to 
conclude that the performance of DRSO is significantly different from that of TLBO 

Table 9. Holm-Šídák Multiple Comparisons Test Results for DRSO and IIGA, DPSOVND, 
TMIIG, and DWWO 

Test Mean DIFF, Below threshold? Summary Adjusted P value 

DRSO VS. BAT -120,9 YES * 0,0240 

DRSO VS. TLBO -218,0 NO NS 0,0515 

6.1.3. Comparison between DRSO, SGA, and HMSA 

From Table 4, the comparison of the performance of the DRSO, SGA, and HMSA 
methods in solving the instances of the problem Ta shows significant differences in 
their ability to find the best solution equal to the best-known solution (BKS) as well as 
in the percentage of average deviation (PDav). 

DRSO appears to be the best-performing method for finding the best solution equal 
to BKS for all instances. SGA and HMSA, on the other hand, are less effective in 
obtaining the best solution equal to BKS, with HMSA generally outperforming SGA. 

In terms of percent average deviation (PDav), DRSO consistently shows a low 
deviation, indicating that the performance of this method is close to the best-known 
solution. In most cases, SGA exhibits a higher percentage of mean deviation than DRSO, 
suggesting lower accuracy for this method. Similarly, HMSA often has a higher average 
deviation percentage than DRSO, indicating that its performance is less accurate than 
DRSO, but it is generally more accurate than SGA. 

Figure 6 illustrates the consistency of DRSO's performance compared to SGA and 
HMSA using a graphical representation. The curve highlights the low deviation and 
higher accuracy of DRSO, while SGA and HMSA show higher average deviation 
percentages. Therefore, this Figure supports the claim that DRSO is a more reliable 
and accurate algorithm than SGA and HMSA. 

 

Figure 6. Comparison of the PDav(%) value obtained by DRSO, SGA, and HMSA 
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The results of the Holm-Šídák multiple comparison test in Table 10 show that the 
differences in performance between DRSO and the other two methods (SGA and 
HMSA) are statistically significant. The negative mean difference suggests that DRSO 
performs better than SGA and HMSA, with an adjusted P value of less than 0.0001. The 
four stars (****) in the abstract indicate a very high level of significance for these 
comparisons.  

Table 10. Holm-Šídák Multiple Comparisons Test Results for DRSO, SGA, and 
HMSA 

Test Mean DIFF, Below threshold? Summary Adjusted P value 

DRSO VS. SGA -116,2 YES **** <0,0001 

DRSO VS. HMSA -28,59 YES **** <0,0001 

6.1.4. Comparison between DRSO, NEH, and NEH-NGA 

Comparing the results of the three methods, DRSO, NEH, and NEH-NGA in Table 5, 
reveals that the DRSO method performs best in solving the scheduling. DRSO finds the 
best solution, equal to the best-known solution (BKS), for 42 out of 54 instances, 
resulting in a success rate of approximately 77.78%. In addition, this method has a 
very low percentage average deviation (PDav) of 0.037%, indicating higher accuracy 
than the other methods. 

In comparison, the NEH method fails to find the best solution for any of the 54 
instances, with a success percentage of 0%. Its average PDav is 2.82%, which shows a 
significant difference from BKS. 

The NEH-NGA method, on the other hand, succeeds in finding the best solution for 
12 of the 54 instances, with a success rate of about 22.22%. Its average PDav is 0.43%, 
which is a relatively small difference on average, but still higher than that of the DRSO 
method. 

Figure 7 shows a comparison of the PDav(%) values obtained by DRSO, NEH, and 
NEH-NGA. The Figure shows that the DRSO method has an exceptionally low percent 
mean deviation (PDav), which means higher accuracy than the other methods 
examined. 

      

 

Figure 7. Comparison of the PDav(%) value obtained by DRSO, NEH, NEH-NGA 
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The results of the Holm-Šídák multiple comparison tests, presented in Table 11, 
indicate statistically significant differences in performance between DRSO and the 
other two methods (NEH and NEH-NGA). The negative mean differences suggest that 
DRSO performs better than NEH and NEH-NGA. Adjusted P values less than 0.0001 for 
both comparisons, represented by the four stars (****), denote an exceptionally high 
level of significance. 

Table 11. Holm-Šídák Multiple Comparisons Test Results for DRSO, NEH, and NEH-
NGA 

Test 
Mean 
Diff, 

Below 
threshold? 

Summary 
Adjusted P 

Value 

DRSO vs. NEH -114,3 Yes **** <0,0001 

DRSO vs. NEH-NGA -32,43 Yes **** <0,0001 

 

6.1.5. Comparison between DRSO, SSO, SCE-OBL, CLS-BFO, and ACGA 

Table 6 compares the performance of the DRSO algorithm to four other 
optimization methods: SSO, SCE-OBL, CLS-BFO, and ACGA, on 21 instances of a 
problem characterized by “nxm” matrices. The evaluation criterion for these 
algorithms is their capacity to achieve the best-known solution (BKS) for each 
instance. Remarkably, DRSO consistently reaches the BKS in all 21 instances, boasting 
a 100% success rate. In contrast, the other algorithms exhibit varying success levels in 
attaining the BKS, with SSO accomplishing it in merely 7 out of 21 instances, while the 
other three methods also fall short of DRSO's performance. 

As indicated in Table 12, out of the 21 instances, DRSO surpasses the SSO algorithm 
in 11 instances (52.38%), SCE-OBL in 15 instances (71.43%), CLS-BFO in 17 instances 
(80.95%), and ACGA in 16 instances (76.19%). 

Table 12. The percentage of instances where DRSO outperformed other 
algorithms 

ALGORITHM DRSO OUTPERFORMS (%) 

SSO 52.38% 

SCE-OBL 71.43% 

CLS-BFO 80.95% 

ACGA 76.19% 

 
Figure 8 shows the comparison of the best value obtained by DRSO, SSO, SCE, CLS-

BFO, and ACGA. The curve for DRSO is significantly lower. This indicates that DRSO 
systematically obtains better results in terms of the best value obtained, which 
underlines its superior performance and efficiency compared to the other algorithms. 
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Figure 8. Comparison of the best value obtained by DRSO, SSO, SCE, CLS-BFO, and 
ACGA 

Holm-Šídák's multiple comparison analysis in Table 13 is used to compare the 
performance of DRSO against the other methods. The results show that DRSO 
performs significantly better than SSO, SCE-OBL, CLS-BFO, and ACGA in all cases 
studied, with mean differences of 40.52, 91.71, 112.1, and 50.38, respectively. Holm-
Šídák adjustments were applied to control for type I errors. Adjusted p values were 
calculated for each comparison and were all less than 0.05, indicating a significant 
difference between the performance of DRSO and the other methods. 

Table 13. The percentage of instances where DRSO outperformed other 
algorithms 

TEST 
MEAN 
DIFF, 

BELOW 
THRESHOLD? 

SUMMARY 
ADJUSTED P 

VALUE 
DRSO VS. SSO -40,52 YES * 0,0232 

DRSO VS. SCE-OBL -91,71 YES * 0,0219 
DRSO VS. CLS-BFO -112,1 YES * 0,0219 

DRSO VS. ACGA -50,38 YES * 0,0276 

6.1.6. Comparison between DRSO, and CSO 

Table 7 compares the computational results for the FSSP test problems using the 
DRSO and CSO algorithms, highlighting the performance of each algorithm in terms of 
Best, Average and PDAV values. 

For the DRSO algorithm, the Best and Average values are either identical or very 
close, indicating consistent and stable convergence to the BKS. The PDAV values for 
the DRSO algorithm are also very low, confirming its stability. 

In contrast, the performance of the CSO algorithm varies from instance to instance. 
In some instances, the best values are equal to those obtained by DRSO (e.g., Ta001, 
Ta031, Ta035, Ta040, Ta061), while in others, the best values are higher than those of 
DRSO (e.g., Ta011, Ta015, Ta021, Ta025, Ta041, Ta045, Ta051, Ta055, Ta065, Ta071, 
Ta075). The average values are generally higher than the optimal values, suggesting 
less stability in the convergence of the CSO algorithm. The PDAV values for CSO are 
also higher than those for DRSO, reflecting the more variable performance of the CSO 
algorithm. 

Figure 9 illustrates the stability of the DRSO algorithm, which consistently 
converges to the BKS. The low "PDAV" values presented in the Figure confirm the 
efficiency and stability of the algorithm. 
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Figure 9.  Comparison of the Pdav(%) value obtained by DRSO, and CSO 

  Based on the Wilcoxon test information provided in Table 13, to compare DRSO 
and CSO. The results of the test indicate a P value of 0.0010 and a summary P value of 
***, which means that the two groups are significantly different with a significance 
level of P < 0.05. 

Table 14. Wilcoxon signed rank Comparisons Test Results for DRSO and CSO 

Wilcoxon signed-rank test value 

P value 0,0010 

P value summary *** 

Significantly different (P < 0.05)? Yes 

 

6.2. Evaluating DRSO Performance Using Analysis and Friedman Test  

The Friedman test with an alpha of 0.05 and a 95% confidence interval can also be 
used to justify the performance of the DRSO optimization algorithm. The Friedman test 
is a statistical test that measures the significance of the difference between two data 
sets. By setting the alpha to 0.05 and the confidence interval to 95%, we can determine 
whether the difference in performance between DRSO and the other algorithms is 
statistically significant. 

If the Friedman test reveals that the difference in performance between DRSO and 
the other algorithms is statistically significant with a p-value less than 0.05, we can 
conclude that the performance of DRSO is significantly better than the other 
algorithms. This means that we can be 95% sure that the observed differences in 
performance are not due to chance or random variation, but rather to the inherent 
superiority of the DRSO algorithm. 

Based on the results of the Friedman test with an alpha of 0.05 and a 95% 
confidence interval, as presented in Table 9, it appears that DRSO outperforms the 
other optimization algorithms in terms of finding the optimal solution. The multiple 
comparisons test shows that DRSO has a significantly lower rank sum difference than 
BAT, TLBO, TMIIG, DWWO, BAT, TLBO, SGA, HMSA, NEH, NEH-NGA, CLS-BFO, and 
ACGA. This is indicated by "Yes" in the "Significant?" column, and the adjusted p-value 
is less than 0.0001 for all these comparisons. 

However, the results indicate that DRSO does not have a significantly lower rank 
sum difference than SSO or SCE-OBL. The "No" in the "Significant?" column and the 
adjusted p-value are greater than 0.9999 for SSO and 0.0873 for SCE-FBL. 
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These results, as shown in Table 9, suggest that DRSO is a highly efficient 
optimization algorithm compared to the other algorithms tested. It consistently 
outperformed the other algorithms in finding the optimal solution with accuracy. 

 
Table 9. The Friedman test for the difference between DRSO and the other 

algorithms 
Test Rank sum diff Significant? P-Value 

DRSO vs. IIGA -190 Yes <0,0001 

DRSO vs. DPSOVND -165,5 Yes <0,0001 

DRSO vs. TMIIG -77 Yes <0,0001 

DRSO vs. DWWO -92,5 Yes <0,0001 

DRSO vs. BAT -11 Yes 0,0495 

DRSO vs. TLBO -16 Yes 0,0022 

DRSO vs. SGA -107 Yes <0,0001 

DRSO vs. HMSA -56,5 Yes <0,0001 

DRSO vs. NEH -100,5 Yes <0,0001 

DRSO vs. NEH-NGA -49,5 Yes <0,0001 

DRSO vs. SSO 0 No >0,9999 

DRSO vs. SCE-OBL -23,5 No 0,0873 

DRSO vs. CLS-BFO -53 Yes <0,0001 

DRSO vs. ACGA -63,5 Yes <0,0001 

DRSO vs. CSO -83,5 Yes <0,0001 

7. Conclusion 

In summary, the utilization of discrete rat swarm optimization in manufacturing 
systems shows significant promise for improving efficiency and productivity. 
Implementing this approach could contribute to considerable advancements in 
manufacturing processes, resulting in more streamlined and cost-effective operations. 

The implementation of discrete rat swarm optimization has demonstrated its 
efficacy in addressing the flow shop-scheduling problem, indicating its potential to 
enhance the efficiency of manufacturing systems. The ability of this method to identify 
optimal solutions with a high degree of accuracy positions it as a valuable tool for 
boosting manufacturing process productivity. 

When compared to other optimization algorithms, such as BAT, TLBO, TMIIG, 
DWWO, SGA, HMSA, NEH, NEH-NGA, CLS-BFO, and ACGA, discrete rat swarm 
optimization consistently outperforms these techniques in obtaining the optimal 
solution. This evidence underscores the superiority of this approach for solving 
complex optimization challenges. 

  The integration of discrete rat swarm optimization within manufacturing systems 
offers immense potential for substantially enhancing efficiency and productivity. By 
adopting this approach, significant advancements in manufacturing processes can be 
realized, ultimately leading to more streamlined and cost-effective operations. 

In future work, we will focus on several key aspects to advance the current state of 
research. First, we will continue to refine the performance of discrete rat swarm 
optimization in the context of the shop floor scheduling problem to improve its 
efficiency and impact. In addition, we will explore the potential applications of this 
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optimization technique in other optimization tasks, thus expanding its scope and 
influence in various domains. In addition, we will develop hybrid optimization 
algorithms that combine the strengths of rat swarm optimization with those of other 
optimization techniques, which could lead to significant improvements in the overall 
efficiency of this method. 
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