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Abstract: In traditional scheduling, job processing times are assumed to be 
fixed. However, this assumption may not be applicable in many realistic 
industrial processes. Using the job processing time of real industrial processes 
instead of a fixed value converts the deterministic model to a stochastic one. 
This study provides three approaches to solving the problem of stochastic 
scheduling: stochastic linguistic, stochastic scenarios, and stochastic 
probabilistic. A combinatorial algorithm, Dispatching Rules and Community 
Evaluation Chromosomes (DRCEC) is developed to generate an optimal 
sequence to minimize the tardiness performance measure in the scheduling 
problem. Thirty-five datasets of scheduling problems are generated and tested 
with the model. The DRCEC is compared to the Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) in terms of total tardiness, the tendency of 
convergence, execution time, and accuracy. The DRCEC has been discovered to 
outperform the PSO and GA. The computational results show that the DRCEC 
approach gives the optimal response in 63 per cent of cases and the near-
optimal solution in the remaining 37 per cent of cases. Finally, a manufacturing 
company case study demonstrates DRCEC's acceptable performance. The use of 
DRCEC with realistic data from a manufacturing company reveals that the 
sequence acquired by the model gives the less tardiness value when equated to 
the company's first come first serve method. 

Key words: Scheduling, sequencing, tardiness, genetic algorithm, 
dispatching rules. 
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1. Introduction  

The scheduling process defines when a specific task can be completed. The 
scheduling problem's boundary can be described by specifying the resources, the 
task's time length, when it is expected to begin, and when it is scheduled to end. This 
decision-making procedure optimizes one or more objectives (Pinedo, 2004). The 
intention of the scheduling process is thus to reduce the task's end time and the 
expense associated with performing it. The scheduling idea initially appeared in the 
mid-twentieth century. Since then, the importance of this issue to industries has 
grown due to the layout of the shops, shops with multiple identical machines, 
operations requiring multiple resources at once, or operations utilizing multipurpose 
machines, all of which increase complexity (T’Kindt & Billaut, 2005). 

A scheduling problem requires decisions on work allocation and sequencing. 
Scheduling is mostly just allocation, and mathematical programming methods are 
employed to discover the best solution in such instances. On the other hand, very often, 
scheduling is purely sequencing. As a result, sequencing is a specialized scheduling 
problem where the job order governs the schedule. Furthermore, simple sequencing 
is a single-machine problem with deterministic processing times for each work on the 
machine. Thus, sequencing is used to determine the correct order for a fixed number 
of different jobs to be performed on a machine. This is useful in determining the 
appropriate ranking of the jobs so that the overall time spent completing the jobs is 
minimized and they are not delayed. 

Several jobs are waiting to be done on a machine. The problem becomes more 
challenging to solve as the number of jobs increases and becomes non-deterministic 
polynomial-time hard (NP-hard). Because the scheduling problem of minimizing 
tardiness is NP-hard, heuristic and meta-heuristic approaches have been frequently 
used to solve it, as accurate methods are unfeasible for medium and large cases (Gupta 
& Chauhan, 2015; Sayadi et al., 2010). These methods require less calculation but do 
not guarantee optimality; instead, they yield approximately ideal satisfactory answers 
for real-world applications. Jobs in job shops are thus processed on machines in a 
predetermined sequence specified by priority criteria, which are simplified heuristics 
guidelines. The experienced human dispatcher decides to use these guidelines. One of 
the various priority rules is used to schedule the jobs in the job shop that are due for 
dispensation. Shortest processing time (SPT) first - efficient for minimizing mean 
completion time, earliest due date (EDD) first - efficient for minimizing tardiness 
measures, and first come first served (FCFS) - efficient for minimizing the variance of 
completion time, are some of the frequently used priority rules for sequencing the 
jobs. Because the objective function determines which priority rules are used, it is 
often advantageous to explore the alternative option. 

The scheduling models can be classified by recognizing the resource arrangement 
and the type of jobs (Baker & Trietsch, 2009). Static and Dynamic scheduling are the 
two types of scheduling problems. In static problems, fixed jobs are available for 
scheduling, whereas new jobs emerge over time in dynamic problems. In most cases, 
studying static problems yields valuable insights, which are then applied in dynamic 
situations using heuristic methods. The shortest processing time rule gives an 
appropriate sequence for flow time problems in a static scheduling problem. On the 
other hand, the earliest due date rule generates a suitable sequence for tardiness 
problems (K. K. Kumar et al., 2017). If a job arrives for operation in a fixed set in a 
dynamic scheduling problem, it must be determined whether the arriving job should 
be processed before the following one. It is not required to resort to this set of jobs; 
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the newly arrived job needs to be compared to the present work with the maximum 
priority (Baker & Trietsch, 2009). The simplest model for the machine environment is 
a single machine. There are also multi-machine models, in which machines are either 
parallel, performing the same functions, or specialized, conducting specific tasks. 

Another classification is that the model may be deterministic (where certain 
assumptions are made with certainty) or stochastic (where uncertainty is known with 
explicit probability distributions). The deterministic scheduling operation is done 
considering only the present scenario at hand. This type of scheduling requires merely 
the jobs' processing time and due date. The due date given by the client remains fixed. 
The processing time changes depending on the nature of the factors affecting the jobs. 
Deterministic scheduling does not consider these factors. Hence, deterministic 
scheduling can be referred to as an idealistic operation. Deterministic scheduling 
revolves around the seven assumptions (French, 1982). After relaxing one or more 
assumptions, the model becomes stochastic, considered to be more realistic. In this 
research, the assumptions that the processing time as a job descriptor is deterministic 
and the machine is continuously available are relaxed. Heuristic and metaheuristic 
methods have been frequently used to solve scheduling problems with the least 
amount of tardiness. The Genetic Algorithm (GA) is the most widely used 
metaheuristic for solving the scheduling problem to reduce tardiness (Li et al., 2015). 
GA has a high exploration capacity that allows it to search a wide variety of search 
spaces. It does not, however, offer a robust search mechanism for precisely looking 
like a near good solution. As a result, many researchers are enhancing GA's 
effectiveness by adding various search and heuristic strategies to solve the job shop 
scheduling problem (JSP). The manuscript is focused on ideas of minimizing the 
tardiness, application of metaheuristic approaches like GA and PSO on data and 
improvement in lowering the tardiness and minimizing randomness of GA with a new 
approach to population selection. An optimization for future improvement has always 
come with the development of engineering science technologies (Uniyal et al., 2022). 
In this research work, GA is combined with dispatching rules to find a near-optimal 
solution by community evaluation and injecting the optimal solution of antecedent 
iteration to successor iteration.  

2. Literature Review 

The JSP is a well-known type of production scheduling problem. The JSP seeks to 
find job sequences that best meet specific production goals. A good JSP solution can 
help manufacturers increase production efficiency while decreasing expenses (Dao et 
al., 2018; Gong et al., 2019). As a result, the JSP has been the subject of extensive study 
for decades. 

A dispatching rule was introduced in job shop scheduling, which uses a modified 
due date (MDD) to identify the performance measure of mean tardiness, taking into 
account the varying pattern of the problem and diverse measures based on flow time 
and tardiness of jobs (Raman et al., 1989). The authors demonstrated that the best 
dispatching rule is reversed modified due date (RMDD), whereas the worst is 
minimum slack time (MST), considering multiple objectives in a scheduling problem. 
They further stated that MDD, insertion, and greedy rules supported minimizing the 
total tardiness of jobs which helps in making decisions while scheduling the jobs (Bari 
& Karande, 2021). A. Kumar et al. (2022) considered a real-world decision-making 
issue and further explained the weighted sum model, weighted product model, and 



Bari and Karande/Decis. Mak. Appl. Manag. Eng. 6(2) (2023) 201-250 

204 

weighted aggregated sum-product assessment to help in decision-making. Other than 
dispatching rules, exact solution methods such as branch and bound algorithm (Carlier 
& Pinson, 1989) is used to handle the problem. A model built on mixed-integer 
programming was developed by Yu & Lee (2018). They proposed an approach for 
reducing total family tardiness in job shop scheduling problems when jobs are 
organized into families using the branch and bound technique. Martínez et al.  (2019) 
used branch and check to find the best solutions to the production planning problem 
of the packaging industry. However, as an exact solution approaches, this approach 
becomes inefficient as the problem grows. The JSP has remained an NP-hard problem, 
meaning that an optimal solution cannot be found in a finite amount of time (He et al., 
2021). Nonetheless, the heuristic approach is preferable for larger problems since it 
finds near-optimal solutions in less computational time (Garey et al., 1976). The 

metaheuristic rollout technique was studied and it was observed that heuristics are more 
successful at directing the rollout algorithm to better options. But so far, in terms of 
the average quality of solutions found and in worst-case performance, the rollout 
strategy is significantly more stable than the single standalone heuristics (Meloni et 
al., 2004). 

A heuristic approach for sequencing production orders was applied and aimed to 
reduce overall tardiness with setup time (Cayo & Onal, 2020). A heuristic algorithm 
works better than the mathematical model for truck-to-door sequencing (Ardakani et 
al., 2020). Population-based meta-heuristic algorithms could get an approximate 
solution in an acceptable amount of time. Parallelism, diversity, robustness, and high 
compatibility are meta-heuristics features. As a result, meta-heuristic methods have 
been extensively used to address the JSP in current years. Meta-heuristic algorithms 
can be thought of as stand-alone approaches  (He et al., 2021). 

Sergienko et al. (2009) categorized optimization approaches into seven groups. 
These are 1) sequential algorithms, 2) deterministic local search, 3) stochastic local 
search (SLS), 4) swarm intelligence (SI), 5) evolutionary algorithm (EA), 6) scanning 
methods, and 7) other unique methods, comprising exact algorithms. Among these 
strategies, 3, 4, and 5 are often used in answering scheduling problems, as per the 
literature. Algorithms in the SLS group are simulated annealing (SA), iterated local 
search (ILS), greedy randomized adaptive search procedure (GRASP), and tabu search 
(TS). SI is a set of approaches established on the social activities of insects in resolving 
complex problems by interrelating with one another and their surroundings. These 
methods comprise ant colony optimization (ACO), particle swarm optimization (PSO), 
and bee colony optimization (BCO). EAs are a set of population-based algorithms 
which consists of a genetic algorithm (GA) and a memetic algorithm (MA) (Defersha & 
Rooyani, 2020).  

When the objective consists of minimizing tardiness, which also helps minimize a 
tardiness penalty cost and thus total cost in the industry, the job sequence is 
consequently found to minimize tardiness-associated objectives (Zammori et al., 
2014). Scheduling problems under proportional linear deterioration was considered 
to minimize total tardiness, applied branch and bound algorithm and showed that the 
algorithm could solve the problem in a reasonable time and the heuristic algorithm 
does it efficiently (Bank et al., 2012). PSO and SA algorithms for lesser job-sized 
problems were recommended, while SA is recommended for large job-sized problems 
to minimize total tardiness (Lee et al., 2014). Volgenant and Teerhuis (1999) 
suggested a technique for dealing with the multiple jobs and single-machine 
weighted tardiness problem. The authors investigated the relationship between due 
date allocation approaches and scheduling procedures in a dynamic job shop. The 
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system is evaluated using scheduling rules and performance criteria such as flow time 
and job tardiness (Vinod & Sridharan, 2011). To maximize job shop system 
performance, the authors used ACO. The GA constantly produces answers with lower 
total earliness and tardiness compared to SA techniques, a neighbourhood search, a 
variable greedy algorithm, and fast ant colony processes (Schaller & Valente, 2013). 

However, no single technique can address all JSP in a reasonable period and with a 
good answer (Hasan et al., 2009). Mixed-integer programming (MIP) model for the 
problem was proposed and solved by a hybrid method combining variable 
neighbourhood search and mixed-integer linear programming. It was revealed that 
the hybrid method reached the best solution to minimize earliness and tardiness in 
most instances and was found to be better than the MIP solver (M’Hallah, 2014). A 
metaheuristic of category intelligent optimization techniques for minimizing 
makespan and tardiness was studied. The findings revealed that combining 
metaheuristics with variable neighbourhood search increased their performance 
(Anjana et al., 2020). A method for minimizing the makespan of a scheduling problem 
by combining concepts from dispatching rules, GA, and data mining is developed. The 
study findings suggested that the method effectively solves scheduling problems in 
real-time (Habib Zahmani & Atmani, 2021). SA with GA was used to sequence several 
courses related to the classroom in education (Czibula et al., 2016). Many researchers 
have chosen GA as their method of choice among these and all of the other strategies 
described earlier. GA has been widely used in JSP as a stand-alone or principal 
algorithm in hybrid techniques (Sergienko et al., 2009). An overview of the reviewed 
research articles is shown in Table 1. 

Table 1. Summary of literature 

Study by Objective/s Approach Description 

(Zhao et al., 
2023) 

Earliness/ 
tardiness 
penalty 

GA and Tabu 
search 

Combined a genetic algorithm and 
tabu search to optimize the goal 
and an average improvement of 
45.3% was made. 

(Gil-Gala et 
al., 2023) 

Total 
tardiness 

Priority rules 
Combined priority rules to 
minimize total tardiness. 

(Valledor et 
al., 2022) 

Makespan, 
total 

weighted 
tardiness 

Hybrid 
dynamic non-

dominated 
sorting GA II 

metaheuristic 
(HDNSGA-II) 

HDNSGA-II discussed to find the 
optimal solution for minimizing 
makespan and tardiness. 

(Ahmadian 
et al., 2021) 

Makespan 
Variable 

neighbourhood 
search (VNS) 

The VNS algorithm is used to 
identify a near-optimal solution to 
reduce completion time. Optimal 
solutions were obtained in 
approximately 57% of the cases. 

(Bari & 
Karande, 

2021) 

Flow time 
and 

tardiness 

Dispatching 
rules 

The best dispatching rule is RMDD, 
whereas the worst is minimum 
slack time MST, considering 
multiple objectives in a scheduling 
problem. 
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Study by Objective/s Approach Description 

(He et al., 
2021) 

Total flow 
time and 

mean 
tardiness 

Effective multi-
objective Jaya 

algorithm 
(EMOJaya) 

Object-based learning is 
incorporated into the EMOJaya to 
enhance the search quality and 
effectiveness of the population. 

(Negi et al., 
2021) 

Multiple 
objectives 

Metaheuristic 
grey wolf 

optimization 
(GWO) 

Combined GWO with different 
metaheuristic approaches to 
achieve a solution for objective 
functions. 

(Anjana et 
al., 2020) 

Makespan 
and 

tardiness 

Metaheuristic 
of category 
intelligent 

optimization 

Combined metaheuristics with 
variable neighbourhood search 
increased the performance. 

(Ardakani 
et al., 2020) 

Makespan 
Heuristic 
algorithm 

The heuristic algorithm works 
better than the mathematical 
model for truck-to-door 
sequencing. 

(Cayo & 
Onal, 2020) 

Tardiness 
with setup 

time 

Heuristic 
approach 

Sequencing production orders in 
near-real-time, primarily to 
minimize total tardiness. 

(Gong et al., 
2019) 

Completion 
time 

Metaheuristic 
approach - 
Effective 
memetic 

algorithm 
(EMA) 

To increase the algorithm's 
performance and fully utilize the 
solution space, a novel efficient 
local search strategy is suggested 
and included in the EMA. 

(Martínez et 
al., 2019) 

Setup times 
and costs 

Exact solution - 
Branch and 

check 

Find the best solutions to the 
production planning problem of 
the packaging industry. 

(Dao et al., 
2018) 

Flow time 
Versions of the 
bat algorithm 

Versions of the bat algorithm 
implemented, communication 
strategy schemes, and the 
makespan scheme were used to 
solve the NP-hard job shop 
scheduling problems. 

(Yu & Lee, 
2018) 

Total family 
tardiness 

Exact solution - 
Branch and 

bound 

Jobs are organized into families 
using the branch and bound 
technique. 

(K. K. 
Kumar et 
al., 2017) 

Flow time, 
tardiness 

Dispatching 
rules 

The SPT rule gives an appropriate 
sequence for flow time problems 
in a static scheduling problem. 
EDD rule generates a suitable 
sequence for tardiness problems. 

(Pranzo & 
Pacciarelli, 

2016) 

Completion 
time 

Iterated Greedy 
(IG) algorithm 

Metaheuristic technique described 
for increasing accuracy of greedy 
constructive heuristic. 

(Gupta & 
Chauhan, 

2015) 
Makespan Heuristic 

Heuristics have been frequently 
used to solve NP-hard problems. 
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Study by Objective/s Approach Description 

(Li et al., 
2015) 

Tardiness 
Metaheuristic- 

GA 

The most widely used meta-
heuristic for solving the 
scheduling problem to reduce 
tardiness. 

(Lee et al., 
2014) 

Total 
tardiness 

PSO and SA 
algorithms 

PSO and SA algorithms are for 
lesser job-sized problems, while 
SA is recommended for large job-
sized problems to minimize total 
tardiness. 

(M’Hallah, 
2014) 

Earliness 
and 

tardiness 

Hybrid variable 
neighbourhood 

search and 
mixed-integer 

linear 
programming 

The hybrid method reached the 
best solution to minimize earliness 
and tardiness in most instances. 

(Schaller & 
Valente, 
2013) 

Total 
earliness 

and 
tardiness 

GA 

GA constantly produces answers 
with lower total earliness and 
tardiness compared to SA 
techniques, a neighbourhood 
search, a variable greedy 
algorithm, and fast ant colony 
processes studied in the article. 

(Sayadi et 
al., 2010) 

Makespan Metaheuristic 

Meta-heuristic approaches have 
been frequently used to solve 
complex problems, as accurate 
methods are unfeasible for 
medium and large cases. 

2.1. Research gap  

• The existing work used a hybrid approach focusing on makespan criteria of 
scheduling problems. Some of the literature used combined algorithms to reduce 
tardiness. However, the researchers did not use the combination of dispatching 
rules and GA to minimize tardiness and the randomness of the population.  

• Different approaches are required to minimize tardiness to increase production 
efficiency while decreasing expenses. 

3. Methodology 

3.1. Dispatching Rules for Scheduling and its Formulation 

Dispatching rules determine the sequence in which jobs are worked on a machine. 
Using different rules in scheduling results in a distinct scheduling sequence and 
significantly impacts the performance measures. As a result, more testing is required 
before making a definitive conclusion on the best sequencing rule to use in scheduling. 
Thus a comprehensive strategy for selecting the optimal sequence is necessary for 
managerial decision-making. However, these principles may not always provide the 
best sequence for scheduling jobs, so they must be combined with an evolutionary 
strategy. GA can scan a wide range of search spaces because of its substantial 
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exploration capacity. The lack of a powerful search engine prevents it from precisely 
searching closely for a good solution. To solve the job shop scheduling challenge, 
numerous researchers are increasing GA's performance by incorporating various 
search and heuristic methodologies for minimizing the makespan. In this research 
work, to minimize tardiness, GA is combined with dispatching rules to find a solution 
that is close to optimal through community evaluation and the injection of the best 
solution of antecedent iteration to successor iteration. 

The following sequencing rules are considered alternatives for allowing a 
workstation's schedule to progress through time, and their formulation procedure is 
presented below. Table 2 lists the notations used in the paper.  

Table 2. Notations and their description 

Notations Description 

1, 2, 3,…, N-1, N Jobs j 

Pj Processing time of job j 

Dj Due date of job j 

Cj The time by which the processing of job j is completed 

𝑇𝑗  The tardiness of job j 

Df (j, Pj, Dj) 
Data frame for a set of jobs with a processing time of job j and 

due date of job j 

Slkj Slack time of job j 
Slkmin Minimum slack time 

t The period at which a job is selected for operation 

∂ Change in time t 

Mptj Modified processing time of job j at time t 

Mddj Modified due date of job j 

RMddj Reversed modified due date of job j 

Mrmdd The modified due date for reversed modified due date of job j 

1, 2, 3…, n-1, n Factors that affect the processing time of jobs 

x 
(Excellent-5, Very Good-4, Good-3, Satisfactory-2,  Bad-1) Not 

limited can have less or more levels 

c Condition of job j for a specific no. of factors with levels used 

Pjc 
Processing time of job j at given condition c with factors 

affecting the job at a given time with levels of factors 

𝑇𝑁𝑐
 

Total number of condition c of job j for a specific number of 
factors with levels used 

Sc1, Sc2, Sc3…Scn-1, 
Scn 

Scenarios affecting the job's processing time 

𝜇𝑠𝑐𝑗
 Average processing time for the selected scenarios concerning 

job j 
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Notations Description 

𝑃𝑆𝑐𝑗
 Processing time of job j for Sc1, Sc2, Sc3…, Scn-1, Scn 

𝑇𝑁𝑠
 Total number of scenarios for job j 

p(Sc1), p(Sc2), …, 
p(Scn) 

Probabilities associated with scenarios 

𝑇𝑡𝑠1
, 𝑇𝑡𝑠2

,…, 𝑇𝑡𝑠𝑛−1
, 

𝑇𝑡𝑠𝑛
 

Total tardiness of scenarios 

E (Tt) Expected total tardiness 

Add Average due date 

Vdd Varied due date 

SPT: Jobs are processed following their processing time. The job that requires the least 
amount of processing time on the system is scheduled as soon as possible. 

Procedure 1: Formulation of SPT rule 
Input: Df (j = 1, 2, …, N, Pj, Dj) 
 begin   
   Sorted_Df (j, Pj, Dj) = Df.Sort(Pj, Ascending = True) 
  end 
 
Output: SPT_Rule_Df (j, Pj, Dj) = Sorted_Df (j, Pj, Dj) 

EDD: Jobs are performed in sequential order to be supplied to the user. 

Procedure 2: Formulation of EDD rule 
Input: Df (j = 1, 2, …, N, Pj, Dj) 
 begin 
   Sorted_Df (j, Pj, Dj) = Df.sort(Dj, Ascending = True) 
  end 
 
Output: EDD_Rule_Df (j, Pj, Dj) = Sorted_Df (j, Pj, Dj) 

MST: Choose the job j with the least slack time. 

𝑗∗ = 𝑚𝑖𝑛𝑗∈𝑁{𝐷𝑗 − 𝑡 − 𝑃𝑗} (1) 

where 𝑗∗ is selected job with least slack time. 

Procedure 3: Formulation of MST Rule 
Input: Df (j = 1, 2, …, N, Pj, Dj) 
 begin 

Step 1. Set t = 0 
Step 2. Compute Slkj = Dj - Pj 

Step 3. Slkmin = min(Slkj) 
Step 4. Pjmin  = Processing time of job with Slkmin 
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Step 5. ∂ = t + Pjmin 
Step 6. Drop the job from Df (j, Pj, Dj) with Slkmin and append it in New_Df (j, 

Pj, Dj) 
Step 7. Take updated Df (j, Pj, Dj) 
Step 8. Repeat Step 2 - Step 6 
Step 9. New_Df (j, Pj, Dj) 

end 
 
Output: MST_Rule_Df (j, Pj, Dj) = New_Df (j, Pj, Dj) 

MDD: Choose the job with the least modified due date. 

𝑗∗ = 𝑚𝑖𝑛𝑗∈𝑁{𝑀𝑑𝑑𝑗} (2) 

where, 𝑀𝑑𝑑𝑗 = max (𝐷𝑗 , 𝑡 + 𝑃𝑗) and 𝑗∗ is selected job with the least modified due date. 

Procedure 4:  Formulation of MDD Rule 
Input:  Df (j = 1, 2, …, N, Pj, Dj) 

begin 
Step 1. Set t = 0 
Step 2. Calculate Mptj =  Pj + t 

Step 3. Mddj = max (Dj, Mptj) 

Step 4. Mddmin = min (Mddj) 
Step 5. Pjmin = Processing time of job with Mddmin 
Step 6. ∂ = t + Pjmin 
Step 7. Drop the job from Df (j, Pj, Dj) with Mddmin and append it in New_Df 

(j, Pj, Dj) 
Step 8. Take updated Df (j, Pj, Dj) 
Step 9. Repeat Step 2 - Step 8 
Step 10. New_Df (j, Pj, Dj) 

  end 
 
Output : MDD_rule_Df(j, Pj, Dj) = New_Df(j, Pj, Dj) 

Greedy: Choose the job with the least amount of tardiness when it is finished last. 

Procedure 5:  Formulation of Greedy Rule 
Input: Df (j = 1, 2, …, N, Pj, Dj) 

begin 
Step 1. Calculate sum(Pj) 

Step 2. Mxdd = max (Mddj) 
Step 3. ∂ = sum(Pj) - Mxdd 
Step 4. Drop the job from Df (j, Pj, Dj) with Mxdd and append it in New_Df (j, 

Pj, Dj) 
Step 5. Take updated Df (j, Pj, Dj) 
Step 6. Repeat Step 2 - Step 5 
Step 7. New_Df (j, Pj, Dj) 

end 
 
Output: Greedy_Rule_Df (j, Pj, Dj) = New_Df (j, Pj, Dj) 
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RMDD: Select the job with the greatest reversed adjusted due date value. 

𝑗∗ = min𝑗∈𝑁{𝑃𝑗 + min(𝑀𝑑𝑑𝑗 , 0)} (3) 

where  𝑀𝑑𝑑𝑗= Dj - Pj – t and 𝑗∗ is a selected job with reversed adjusted due date. 

Procedure 6:  Formulation of RMDD Rule 
Input: Df (j = 1, 2, …, N, Pj, Dj) 

begin  
Step 1. Set t = 0 
Step 2. Compute Mddj = Dj - Pj - t 

Step 3. Calculate RMddj = (Pj + min (Mddj, 0)) 
Step 4. Mrmdd = min (RMddj) 

Step 5. Pjmin = Processing time of job with Mrmdd 
Step 6. ∂ = t + Pjmin 
Step 7. Drop the job from Df (j, Pj, Dj) with Mrmdd and include it in New_Df 

(j, Pj, Dj) 
Step 8. Take Updated Df (j, Pj, Dj) 
Step 9. Repeat Step 2 - Step 8  
Step 10. New_Df (j, Pj, Dj) 

 end 
Output: RMDD_rule_Df (j, Pj, Dj) = New_Df (j, Pj, Dj) 

3.2. Objective Function 

Sequencing rules are applied to a given dataset of jobs to obtain a sequence of the 
jobs. Each sequencing rule provides a result as per the requirement of the operator. 
The operators are primarily concerned with performance measures such as flow time 
and job tardiness of the sequence. Performance measures are used to quantify the 
effectiveness of a sequencing rule. One of the most common scheduling criteria found 
in practical problems is the performance measure of meeting job due dates. While 
fulfilling deadlines is just a qualitative goal, it generally entails imposing time-based 
fines on late jobs while providing no advantages for finishing jobs early. This 
understanding naturally leads to the tardiness measure quantifying the scheduling 
goal, and the minimization of total tardiness is a fundamental sequencing problem. 
EDD sequence gives no more than one tardy job, it gives the minimum tardiness value. 
SPT rule focuses on processing time, and tardiness is related to meeting job due dates; 
SPT sequencing minimizes tardiness when all jobs have the same due date. The 
statement that tardiness is not a linear function of completion time makes dealing with 
the total tardiness measure difficult. As a result, finding optimal solutions frequently 
necessitates combinatorial optimization. If the number of late jobs is reduced, some 
jobs may have to wait an unacceptably long time. Instead, if the total amount of 
tardiness is reduced, the likelihood of an excessively long wait for any specific job is 
reduced. Thus this paper focuses on minimizing total tardiness performance measure 
with the combination of dispatching rules and procedure of community evaluation. 
The following is a basic explanation of tardiness, total tardiness, maximum tardiness 
and average tardiness. 

Tardiness: It is the measure of the delay in completing a job beyond the due date. 
Tardiness can have either a positive or zero value. If the completion time minus the 
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due date is a negative value, the job is early and not tardy; hence, it will be associated 
with 0. 

𝑇𝑗 = max(0,  𝐶𝑗 −  𝐷𝑗) (4) 

where, 𝐶𝑗 − 𝐷𝑗  is the lateness of job j. 

Total Tardiness: By aggregating the tardiness of all jobs in the set, the cumulative 
delay of all jobs in the set is computed and shown in Eq. (5). 

𝑇 = ∑ 𝑇𝑗

𝑁

𝑗=1

 (5) 

Maximum Tardiness: It is the measure of a job with the most delay beyond the due 
date.  

Average Tardiness: It is the proportion of total tardiness and the number of jobs in 
the system presented in Eq. (6). 

𝑇𝑎𝑣𝑔 
=

𝑇

𝑁
 (6) 



3.3. Proposed Algorithm 

The proposed algorithm of the combinatorial method with Dispatching Rules and 
Community Evaluation Chromosomes (DRCEC) employs a traditional GA by injecting 
dispatching rules. Then, the best sequence is determined using a community 
evaluation of sequences. Below is a description of the proposed algorithm in detail. 

DRCEC, a combinatorial algorithm, is used to develop an optimal sequence for 
minimizing tardiness in scheduling and sequencing problems. The community 
evaluation chromosomes procedure depends on the concept of GA. GA is based on the 
famous quote by Charles Darwin – "Survival of the Fittest". It is not the strongest or 
the most intelligent species that survive, but the one that is most responsive to change.  
The proposed algorithm is compared with PSO, which is a metaheuristic technique for 
selecting the best scheduling sequence with the least amount of tardiness. The PSO 
consists of creating the population, assigning velocity to the particles, updating the 
particle's location until the stopping condition is reached, and selecting the optimal 
alternative with the least amount of tardiness. The detailed process used in DRCEC is 
shown in Figure 1. The classical GA is based on selecting a random population that 
generates feasible chromosomes as an initial population. This starting population will 
affect the solutions and the time taken to obtain the optimal solution. The GA described 
by Bari et al. (2022) in their research work is also employed to compare the proposed 
algorithm.  This classical GA is improved by introducing dispatching rules related to 
processing time and due date in the initial population of the DRCEC algorithm. When 
the DRCEC algorithm is implemented, chromosomes are generated with SPT, EDD, 
MST, MDD, RMDD and Greedy dispatching rules mentioned in section 3.1 and injected 
into the initial community population. The remaining chromosomes are generated to 
prevent the predilection that may be because of selected dispatching rules 
chromosomes. Once the opening community is generated using dispatching rules and 
randomness, this community undergoes the operation of crossover and mutation in 
series and generates more chromosomes. Finally, the chromosomes generated in the 
above steps and the opening community are merged to get the total chromosomes. 
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The community is evaluated based on tardiness by applying Eq. (4) and Eq. (5). The 
chromosome with minimum total tardiness is selected as the optimal solution. This 
iteration's optimal solution is now inserted as one of the members of the population 
of the successor iteration. If stopping criteria are met, the selected chromosome is 
declared a near-optimal sequence or the above process is applied to the next iteration. 
The formulation of the DRCEC algorithm is presented in procedure 7. 

Procedure 7: DRCEC algorithm 
 
Input: Df (j = 1, 2, …, N, Pj, Dj), num_iteration  
 begin 

Step 1. Read Df (j, Pj, Dj) 
Step 2. Read num_iteration 
Step 3. Rules_sequence = Sequences (use Procedure 1 - Procedure 6 for 

generating sequences) 
Step 4. Set num_iteration = 1 
Step 5. Select population_list = Rules_sequences + Random_sequences 
Step 6. parent_list = population_list + 

                  Optimal_sequence  
Step 7. offspring_list = Apply Crossover operator on parent_list 
Step 8. offspring_list = offspring_list + Apply Mutation operator on 

offsfring_list 
Step 9. total_chromosomes = parent_list +  

                    offspring_list 
Step 10. Calculate T for all total_chromosomes 
Step 11. Compare T of all chromosomes 
Step 12. Optimal_Sequence = Select the total_chromosome with minimum T 
Step 13. Inject Optimal_sequence as member of population for next iteration 
Step 14. Increment num_iteration by 1 
Step 15. If num_iteration = C, then STOP 

      else go to Step 5 
Step 16. Print Optimal_Sequence and T  

 end 

Output: Optimal_Sequence and T 

3.4. Stochastic Approaches for Scheduling 

In real-world scheduling operations, various factors affect the processing 
time of jobs and cannot be neglected. The deviation produced in the accuracy 
of the processing time values can hamper the efficacy of the job shop and 
create a delay in scenarios. Stochastic scheduling provides relatively accurate 
results to assist the industry in scheduling jobs with real-time data. This also 
gives the operators an idea of when and how to sequence the jobs and provides 
the client with an idea to set the due date of procurement. In this research, the 
assumptions that job descriptors are deterministic and the machine is 
continuously available are relaxed. Three stochastic scheduling models, as 
explained below, are reformulated as deterministic and optimal sequence 
generated by applying the DRCEC algorithm.   
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Figure 1. Flowchart for DRCEC algorithm 
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3.4.1. Stochastic linguistic approach 

In the stochastic linguistic approach, the processing time of jobs is estimated by 
considering various factors like machine conditions, raw material used, weather 
conditions, workers' availability, and so on that affect their operations. These factors 
can either increase or decrease the processing time. If a particular factor increases the 
job's processing, it may not be in its best form. Conversely, if the same factors are in 
their best form, the processing time of the job will decrease. In the linguistic method, 
one or all the factors can be in their best or worst shape under different circumstances. 
Thus, if there are 'n' factors affecting the processing time of a job and each factor can 
have 'x' levels, then the number of conditions is given by xn.  

Procedure 8 is used to generate stochastic linguistic scheduling data with 
processing time for all conditions, affecting factors with a predetermined level and 
jobs' due dates. Then, procedure 9 is applied to the stochastic job data in the form of 
linguistic level to reformulate the stochastic problem as a deterministic problem. 
Finally, the DRCEC algorithm is further applied to find the optimum sequence. 

Procedure 8: Stochastic linguistic scheduling data representation 
while i in range 𝑇𝑁𝑐

 

    for j in range N 
        Pj = Pjc 

    end 
end 
while j in range N 
 Dj = Due date of job is common irrespective of conditions of job 
end 

Df (j, Pjc, Dj) 
 

Procedure 9: Reformulation of a stochastic linguistic problem as a deterministic 
problem 
for j in range N 
    Pj = Processing time of selected condition C of job j 
   Dj = Due date of job is common irrespective of conditions of job 
end 
 
Df (j, Pj, Dj) 

3.4.2. Stochastic scenarios approach 

In the stochastic scenarios approach, scheduling is done considering more than one 
scenario of the jobs. These scenarios are for the same jobs, which means the end 
product is the same, but the path to prepare the end product may differ. For example, 
in some scenarios, jobs can be made of different materials, and the size of the raw 
material or the machine used to process can be different. These various factors 
affecting the jobs can increase or decrease the processing time of the jobs. Thus, 
different scenarios are created that can assist in stochastic scheduling with real-time 
data.  

Procedure 10 is used to formulate the stochastic scenarios scheduling data with 
processing time for all scenarios of the jobs and the due date for jobs. Procedure 11 is 
used to reformulate a stochastic problem into a deterministic problem using job data 
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from stochastic scenarios. The DRCEC algorithm is further applied to find the optimum 
sequence. 

 

Procedure 10: Stochastic scenarios scheduling data representation  
 
while i in range 𝑇𝑁𝑠

        //where i is the iterator variable 

    for j in range N 
       Pj = 𝑃𝑆𝑐𝑗

 

    end 
end 
while j in range N 

     Dj = Due date of the job is common irrespective of job conditions. 
end 
 
Df (j, 𝑃𝑆𝑐𝑗

, Dj) 

 

Procedure 11: Reformulation of stochastic scenarios problem as a deterministic 
problem 
 
for j in range N 
    Pj = 𝜇𝑠𝑐𝑗

 

   Dj = Due date of the job is common irrespective of job conditions. 
 end 
 
Df (j, Pj, Dj) 

3.4.3. Stochastic probabilistic approach 

The stochastic probabilistic scheduling approach is similar to the stochastic 
scenarios approach, wherein each scenario has a different probability. Procedure10 is 
used to represent data of stochastic probabilistic scheduling, with the addition of 
probability of scenarios as p(Sc1), p(Sc2), p(Sc3),…, p(Scn-1), p(Scn). The summation of 
probabilities of all scenarios should be one, represented in Eq. (7). 

∑ 𝑝(𝑆𝑐𝑖
) = 1

𝑛

𝑖=1

 (7) 

where, 𝑝(𝑆𝑐𝑖
) is the probability associated with the scenario. 

DRCEC algorithm is applied to find the optimum sequence for stochastic 
probabilistic scheduling problems. Procedure 12 is used to find the total tardiness of 
the optimal sequence. 
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Procedure 12: Calculation of total tardiness in a stochastic probabilistic problem 
E(Tt) = 0 
while i in range 𝑇𝑁𝑠

          

             
     𝐸(𝑇𝑡) = 𝐸(𝑇𝑡) + [ 𝑝(𝑆𝑐𝑖

) ∗ 𝑇𝑡𝑠𝑖
] 

end 

4. Hypothetical Testing  

This section generates and analyzes a dataset to evaluate the performance of the 
GA and DRCEC approaches. The computations were conducted on a computer with 
Intel(R) Core(TM) i3-9100F CPU @ 3.60GHz processor running on Windows 10 
operating system with 8GB RAM and 500GB storage space. The computation code is 
written in Python programming language and comparisons are made between the 
results obtained through these algorithms. Thirty-five test datasets with a varied 
number of jobs are arbitrarily created to assess the performance of the proposed 
DRCEC technique. 

4.1. Dataset Generation 

A typical strategy presented by Zammori et al. (2014) was used to produce a 
dataset for scheduling problems. Job processing times are normally distributed, with 
a mean of 100 time units and a standard deviation of 25 time units picked at random; 
due dates are uniformly distributed with the average due date (Add) and vary with the 
due date (Vdd) given by Eq. (8) and Eq. (9) respectively. 

 

𝐴𝑑𝑑 = (
1

𝑁
∑ 𝑃𝑗

𝑁

𝑗=1

) 𝑁 ∗ (1 − 𝑇𝑓) 

 

(8) 

 

𝑉𝑑𝑑 = (
1

𝑁
∑ 𝑃𝑗

𝑁

𝑗=1

) 𝑁 ∗ 𝑉𝑑  (9) 

 
where, Tf is a tardiness factor in the range [0.2, 0.8] that roughly correlates to the 
predicted proportion of tardy jobs in a random sequence of jobs, and Vd [0.2, 0.6] is the 
relative variation in due dates. Parameters Tf and Vd considered in this paper for 
generating due dates are 0.3 and 0.4, respectively. 

4.2. Application of PSO, GA and DRCEC on Datasets 

Five datasets are generated for each with 5, 10, 15, 25, 35, 45, and 100 jobs. D005_1 
to D005_5 are the five datasets with five jobs (D represents the dataset, 005 represents 
the number of jobs present in the dataset, and 1 to 5 indicates five datasets 
consecutively). All datasets are labelled with numbers in this manner for simple 
identification. The total tardiness is calculated for each dataset using different priority 
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rules like SPT, EDD, MST, MDD, Greedy, and RMDD methods which are recorded in 
Table 3. When compared to all other rules, the highlighted value has the lowest 
tardiness, indicating that it is the best for the dataset. It is observed that the MDD rule 
contributes more to obtaining optimal sequence concerning the tardiness of jobs. Each 
dataset was tested with combinations of parameters such as population size 200, 
crossover rate 0.8, and mutation rate 0.1 with a varied number of iterations. Table 4 
briefly describes the parameters used for testing 35 datasets. With each combination 
mentioned in Table 4, the dataset is run 10 times for PSO, GA and the proposed DRCEC 
approach. In this way, a total of 5250 test results of total tardiness are found for 35 
datasets. The results of average and standard deviations of 10 runs' total tardiness 
with varying iterations for datasets are recorded and shown in Table 5. 

Table 3. Tardiness of the dataset using priority rules 

Dataset SPT EDD MST MDD Greedy RMDD 

D005_1 216 227 268 188 227 229 

D005_2 184 196 196 196 196 184 

D005_3 210 192 230 192 192 224 

D005_4 275 286 434 275 286 286 

D005_5 107 127 157 107 127 127 

D010_1 403 401 506 401 401 403 

D010_2 496 516 652 448 516 496 

D010_3 578 536 536 491 536 597 

D010_4 437 315 476 315 315 440 

D010_5 404 386 620 309 386 404 

D015_1 947 900 973 838 900 909 

D015_2 964 920 1087 854 920 1007 

D015_3 976 896 1119 824 896 974 

D015_4 1030 1041 1267 945 1041 1051 

D015_5 906 1004 1067 961 1004 1006 

D025_1 2147 2789 3328 2112 2789 2356 

D025_2 2520 2321 2452 2257 2321 2522 

D025_3 2357 2593 3219 2260 2593 2360 

D025_4 2031 1747 1926 1516 1747 2033 

D025_5 1895 2145 2291 1801 2145 1914 

D035_1 4349 1011 1093 891 1011 4048 

D035_2 4549 1761 1865 1540 1761 4358 

D035_3 7306 1004 1119 1004 1004 5745 

D035_4 5324 2010 2010 1767 2010 5517 

D035_5 6717 900 1008 900 900 6452 

D045_1 9568 2708 3031 2334 2708 9667 

D045_2 7952 508 508 456 456 5270 

D045_3 6537 1662 1681 1571 1662 6180 

D045_4 8481 605 644 536 605 6935 

D045_5 6037 2401 2460 2224 2401 6084 

D100_1 182215 210869 214489 174612 210839 194431 

D100_2 183832 208941 211376 174661 208953 194554 
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Dataset SPT EDD MST MDD Greedy RMDD 

D100_3 202532 247432 304699 251976 250476 208143 

D100_4 212641 234417 236794 200488 234417 223177 

D100_5 193488 220262 222790 185405 220300 203872 

Table 4. Parameters for the dataset testing 

 Dataset 
Group of 
 Dataset 

No. of  
Iterations 

No. of  
Jobs 

D005_1 to  D005_5 Small 

10 

5 
20 
30 
40 
50 

D010_1 to  D010_5 Small 

10 

10 
20 
30 
40 
50 

D015_1 to D015_5 Medium 

10 

15 
20 
30 
40 
50 

D025_1 to D025_5 Medium 

10 

25 
20 
30 
40 
50 

D035_1 to D035_5 Large 

10 

35 
20 
30 
40 
50 

D045_1 to D045_5 Large 

10 

45 

20 
30 
40 

50 

D100_1 to D100_5 With 100 jobs 

10 

100 
20 
30 
40 
50 

Figure 2 (a - d) shows a graphical representation of trends in average total 
tardiness of 10 runs for 10 iterations of each dataset. From Figure 2, it is observed that 
the DRCEC does better than the GA and PSO. All the datasets are tested for 10, 20, 30, 
40 and 50 iterations and observed that the total tardiness of the DRCEC approach for 
all the datasets is less than GA and PSO.   
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(a) Dataset with 5 and 10 jobs  (b) Dataset with 15 and 25 jobs 

     

(c) Dataset with 35 and 45 jobs                      (d) Dataset with 100 jobs 

Figure 2. Trends of total tardiness for PSO, GA and DRCEC 

The convergence tendency of PSO, GA and DRCEC algorithms for randomly selected 
sample datasets is shown in Figure 3. The convergence rate of the DRCEC is more than 
the PSO and the GA algorithm and assures a better value of total tardiness with a 
smaller number of iterations. In DRCEC, convergence occurs because priority rules are 
introduced to the initial population. Furthermore, in the DRCEC method, the best 
sequence of each iteration is added to the population of the next iteration, enhancing 
the fitness function of all chromosomes. This promises the convergence of the DRCEC.  
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(a) Convergence for PSO 

(b) Convergence for GA 

(c) Convergence for DRCEC 

Figure 3. Comparison of convergence in PSO, GA and DRCEC 
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4.3. Execution Time of GA and DRCEC 

The time of each iteration for the D045_3 dataset as a sample is generated and 
shown in Figure 4 to compare the execution durations of the algorithms. Algorithms 
are terminated after they have completed 40 iterations. Figure 4 displays the runtimes 
of GA and DRCEC for each iteration of the D045_3 dataset, demonstrating that DRCEC 
has a faster runtime than GA. In addition, because the priority rule sequences are 
included in the initial population, the DRCEC technique increases convergence and 
achieves the near-optimal solution in a significantly shorter period. 

 

Figure 4. Execution time for GA and DRCEC 

4.4. Accuracy of PSO, GA and DRCEC 

The average total tardiness for all datasets with 10 executions is computed and 
presented in Table 6. The termination condition is to reach 50 iterations. The optimal 
value of each dataset is found using the DRCEC algorithm. The reason behind using 
DRCEC to find near-optimal values is as it performs better than PSO and GA. By 
reaching around 100 iterations, the first 30 datasets (D005_1 to D045_5) with 5 to 45 
jobs obtain near-optimal values for the dataset. The datasets D005_1 to D045_5 were 
tested for all possible iterations, and it was revealed that after 100 iterations, it 
received the best value for total tardiness. At the same time, the dataset with 100 jobs, 
that means D100_1 to D100_5, is tested with all possible iterations and observed that 
after 500 iterations, it obtains a near-optimal value for total tardiness. The optimal 
value of each dataset from D005_1 to D100_5 is computed and recorded in Table 6.  

The relative error in the algorithm is calculated concerning the optimal value 
obtained by the algorithm after 100 iterations for datasets with 5, 10, 15, 25, 35 and 
45 jobs and 500 iterations for the dataset with 100 jobs. The relative error is 
represented by Eq. (10). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑜𝑓 10 𝑟𝑢𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
 

(10) 
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The algorithm's accuracy is how close the calculated tardiness value is to the 
optimal value of the dataset. Thus the accuracy of the algorithm can be represented by 
Eq. (11). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) 

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) ∗ 100 
(11) 

The relative error and percentage accuracy for all the datasets are figured out and 
expressed in Table 6. The average percentage accuracy of algorithms is presented in 
Table 7. It is found that for generating an optimal sequence of jobs, DRCEC achieves an 
average accuracy of 99.59%. The range of relative error for 35 datasets with GA is 0.59, 
while for DRCEC it is 0.043. Using DRCEC, 22 out of 35 datasets attain near-optimal 
solution after 50 iterations, while only 11 out of 35 datasets could reach a near-optimal 
solution with an error of 0.0006 to 0.5904 using GA. It is observed that the PSO method 
performs poorly because only small datasets with five jobs may reach the best 
solution. Figure 5 represents the graphical representation of accuracy calculated for 
PSO, GA and DRCEC approaches. Experimental data in Figure 5 shows that the 
accuracy of GA and DRCEC is almost the same for small and medium datasets, but for 
large datasets and datasets with 100 jobs, the accuracy differs.  When the number of 
jobs rises, the accuracy of the DRCEC approach is superior to GA. When compared to 
GA and DRCEC, the PSO algorithm is less accurate. 

 

Figure 5. Visual accuracy of PSO, GA and DRCEC  
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Table 7. Average Accuracy of algorithms 

Algorithm Average Accuracy 

PSO 68.01 

GA 89.43 

DRCEC 99.59 

5. Case Study: Application of DRCEC in Pipe Fittings and Flanges 

Industry 

A case study was conducted with a pipe fittings and flanges manufacturing 
company to verify methods and compare results to real-world scenarios. Table 8 
shows information from a company datasheet. In this dataset, there are 90 jobs 
processed on a lathe machine and 31 jobs done on a vertical milling centre (VMC) 
machine. For every 90 and 31 jobs in the dataset, there are two scenarios with 
different processing times. The model developed for the case study uses the stochastic 
scenarios scheduling method explained in section 3.4. The model is created for 
multiple jobs and one machine scenario, which means scheduling will be done for any 
number of jobs as long as they are processed on one machine. With respect to Table 8, 
the simulation model assigns job numbers based on the sizes of the individual 
components; that is, job numbers are assigned based on the 'Size (NB)' column. The 
model also calculates the processing time of the respective job, in minutes, by taking 
the product of the values from the columns 'Qty.' and 'Processing Time'. The 
processing time is converted to hours because the jobs' due dates are also expressed 
in hours. The data required for scheduling operations are prepared and recorded for 
lathe and VMC machines. The reformed sample dataset for the VMC machine is shown 
in Table 9. Then it is restructured into the dataset using procedure 11 and shown in 
Table 10. It displays the dataset as a data frame; each row represents a job with a job 
number, job name and processing time.  

Table 8. Dataset of pipe fittings and flanges industry 

Item Specification 
Size 
(NB) 

Qty. 
Processing 

Time 
Process Used 

Couplings 
(Half) 

Half couplings, 
dimensions as per 

ANSI B16.11, 
screwed to BSPT (F) 

end, 3000#, 
material as per 

ASTM A 105 duly 
galvanized 

15 31 10 min / 1 no Vertical 
Drilling On 3 

Axis VMC 20 32 8 min / 1 no 

25 25 6 min / 1 no 

32 14 11 min / 1 no 

40 12 10 min / 1 no 

50 10 8 min / 1 no 

Couplings 
(Full) 

Full couplings, 
dimensions as per 

15 20 22 min / 1 no 

20 11 18 min / 1 no 
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Item Specification 
Size 
(NB) 

Qty. 
Processing 

Time 
Process Used 

ANSI B16.11, 
screwed to BSPT (F) 

end, 3000#, 
material as per 

ASTM A 105 duly 
galvanized 

25 10 16 min / 1 no 

Vertical 
Drilling On 3 

Axis VMC 

40 12 20 min / 1 no 

50 13 20 min / 1 no 

Flanges Slip on, raised face, 
serrated finish 

flange, dimensions 
as per ANSI B 16.5, 
150#, Material to IS 

2062 Gr. A. duly 
galvanized 

15 2 14 min / 1 no Vertical 
Boring  
Vertical 

Drilling 3 Axis 
VMC 

20 2 12 min / 1 no 

25 46 16 min / 1 no 

32 35 13 min / 1 no 

40 25 18 min / 1 no 

50 22 12 min / 1 no 

65 21 10 min / 1 no 

80 11 14 min / 1 no 

100 10 18 min / 1 no 

125 7 14 min / 1 no 

150 8 15 min / 1 no 

200 9 13 min/ 1 no 

250 12 14 min / 1 no 

300 10 16 min / 1 no 

350 13 17 min / 1 no 

400 16 15 min / 1 no 

450 14 16 min / 1 no 

500 11 10 min / 1 no 

550 12 14 min / 1 no 

600 10 13 min / 1 no 

*A dataset of 90 jobs processed on a lathe machine is excluded in the article due to 
space constraints. 

Table 9. Reformed dataset of VMC for pipe fittings and flanges industry  

Job 
Number 

Job Name Scenario 1  
Processing Time 

Scenario 2  
Processing Time 

1 Couplings (Half) (15) 5.166 4.2 

2 Couplings (Half) (20) 4.266 4.65 

3 Couplings (Half) (25) 2.5 3.45 

4 Couplings (Half) (32) 2.566 4.2 

5 Couplings (Half) (40) 2 4.35 

6 Couplings (Half) (50) 1.333 6.6 

7 Couplings (Full) (15) 7.333 4.65 

8 Couplings (Full) (20) 3.3 5.4 
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Job 
Number 

Job Name Scenario 1  
Processing Time 

Scenario 2  
Processing Time 

9 Couplings (Full) (25) 2.666 6.6 

10 Couplings (Full) (40) 4 5.7 

11 Couplings (Full) (50) 4.333 4.8 

12 Flanges (15) 0.466 19.133 

13 Flanges (20) 0.4 22.4 

14 Flanges (25) 12.266 166.133 

15 Flanges (32) 7.583 74.2 

16 Flanges (40) 7.5 118.066 

17 Flanges (50) 4.4 79.333 

18 Flanges (65) 3.5 77.7 

19 Flanges (80) 2.566 112.233 

20 Flanges (100) 3 100.333 

21 Flanges (125) 1.633 98.466 

22 Flanges (150) 2 46.2 

23 Flanges (200) 1.95 99.4 

24 Flanges (250) 2.8 98.233 

25 Flanges (300) 2.666 98.466 

26 Flanges (350) 3.683 70 

27 Flanges (400) 4 64.4 

28 Flanges (450) 3.733 65.333 

29 Flanges (500) 1.833 46.9 

30 Flanges (550) 2.8 46.2 

31 Flanges (600) 2.166 28 

Table 10. Restructured dataset for pipe fittings and flanges industry after applying 
Procedure 11 

Job Number Job Name Average Processing Time 

1 Couplings (Half) (15) 4.68 

2 Couplings (Half) (20) 4.45 

3 Couplings (Half) (25) 2.97 

4 Couplings (Half) (32) 3.38 

5 Couplings (Half) (40) 3.17 

6 Couplings (Half) (50) 3.96 

7 Couplings (Full) (15) 5.99 

8 Couplings (Full) (20) 4.35 

9 Couplings (Full) (25) 4.63 

10 Couplings (Full) (40) 4.85 

11 Couplings (Full) (50) 4.56 

12 Flanges (15) 9.79 

13 Flanges (20) 11.4 

14 Flanges (25) 89.19 

15 Flanges (32) 40.89 

16 Flanges (40) 62.78 

17 Flanges (50) 41.86 
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Job Number Job Name Average Processing Time 

18 Flanges (65) 40.6 

19 Flanges (80) 57.39 

20 Flanges (100) 51.66 

21 Flanges (125) 50.04 

22 Flanges (150) 24.1 

23 Flanges (200) 50.67 

24 Flanges (250) 50.51 

25 Flanges (300) 50.56 

26 Flanges (350) 36.84 

27 Flanges (400) 34.2 

28 Flanges (450) 34.53 

29 Flanges (500) 24.36 

30 Flanges (550) 24.5 

31 Flanges (600) 15.08 

The dataset displayed in Table 10 and a due date provided by the client of four 
months, or 700 hours (assuming 25 working days per month and seven working hours 
per day), are used as input for the DRCEC algorithm explained in section 3.3. When 
tardiness was calculated using the due date of 700 hours for the job processed on the 
lathe machine, the total tardiness was found to be zero. Further testing with different 
due dates reveals that the tardiness for the lathe machine is zero for due dates more 
than or equal to 548. Thus the dataset for the lathe machine is tested for different due 
dates such as 400, 450, 500, 548, 600, and 700 hours, while the dataset for the VMC 
machine is tested for a due date of 700 hours. Finally, the DRCEC, GA and PSO 
algorithms are applied to the pipe fittings and flanges industry data for lathe and VMC 
machines considering the termination conditions of 10, 20, 30, 40, and 50 iterations 
with 10 runs each. Table 11 (a) and (b) show the average tardiness with a standard 
deviation of 10 runs for the VMC and lathe machine datasets, respectively. From the 
standard deviation, it is observed that DRCEC has no spread in tardiness values for all 
10 runs. Thus convergence of the DRCEC algorithm is more significant than the GA and 
PSO algorithms. The convergence of the algorithm for varied iterations is shown in 
Figure 6. Figure 6 (a) presents the convergence of DRCEC, while Figure 6 (b) and 
Figure 6 (c) describe the convergence of GA and PSO algorithms respectively for the 
VMC machine. One can see from Figure 6 (c) that the PSO needs additional iterations 
to reach convergence. It is observed that in GA the value of tardiness is inconsistent 
for iterations and convergence of tardiness is after 20 iterations; on the other hand, in 
DRCEC, the value is steady from iteration one. Thus, convergence is more significant 
than GA.  

Error and accuracy of DRCEC, GA and PSO are computed by applying Eq. (10) and 
Eq. (11). These are displayed in Table 12 (a) and (b) for VMC and lathe machines, 
respectively. It is experimental that the DRCEC algorithm's performance is remarkable 
compared to GA and PSO. The error is zero for a varied number of iterations; thus, the 
accuracy is 100 % in DRCEC. The accuracy is visually represented in Figure 7 and 
Figure 8 for VMC and lathe machines, respectively. Results of the FCFS utilized in a 
manufacturing company for job scheduling are shown in Table 13. It has been noted 
that the DRCEC results in less tardiness than the conventional method employed in the 
company. As a result, the manufacturing company reduce costs while increasing 
production efficiency. 
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Table 11 (a).    Average tardiness and std. deviation of the VMC machine  

Machine VMC Machine 

Algorithm DRCEC GA PSO 

Due Date 700 700 700 

Tardiness, Std. 
Deviation / Iterations 

T σ T σ T σ 

10 206.96 0 218.75 21.14 206.690 0 

20 206.96 0 207.55 0.72 232.646 36.63 

30 206.96 0 207.68 2.16 219.014 14.67 

40 206.96 0 206.96 0 216.569 8.76 

50 206.96 0 207.26 0.59 239.811 59 

T - Tardiness       σ - Standard Deviation         

Table 11 (b).    Average tardiness and std. deviation of lathe machine 

DRCEC 

548-700 500 450 400 

T σ T σ T σ T σ 

0 0 47.6 0 129.95 0 254.18 0 
0 0 47.6 0 129.95 0 254.18 0 
0 0 47.6 0 129.95 0 254.18 0 
0 0 47.6 0 129.95 0 254.18 0 
0 0 47.6 0 129.95 0 254.18 0 

GA 

548-700 500 450 400 

T σ T σ T σ T σ 

0 0 47.6 0.14 133.45 3.87 293.48 39.55 
0 0 47.6 0 130.66 2.13 263.37 11.49 
0 0 47.6 0 131.45 4.5 260.47 6.99 
0 0 47.6 0 130.66 2.13 262.41 14.18 
0 0 47.6 0 130.66 2.13 262.1 7.56 

PSO 

548-700 500 450 400 

T σ T σ T σ T σ 

0 0 47.6 0.14 221.711 82.49 553.627 168.84 
0 0 47.6 0 177.013 38.89 511.977 89.48 
0 0 47.6 0 205.155 87.85 661.152 317.07 
0 0 47.6 0 129.94 0 545.064 398.27 
0 0 47.6 0 226.537 87.23 592.07 224.49 

T - Tardiness       σ - Standard Deviation              
   

Table 12 (a).   Error and accuracy of DRCEC, GA and PSO algorithm for VMC 
machine 

Machine VMC Machine 

Algorithm DRCEC GA PSO 
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Due Date 700 700 700 

Error, Accuracy / 
Iterations 

E A E A E A 

10 0 100 0.0569 94.31 0 100 

20 0 100 0.0028 99.72 0.1241 87.59 

30 0 100 0.0034 99.66 0.0582 94.18 

40 0 100 0 100 0.0464 95.36 

50 0 100 0.0014 99.86 0.1587 84.13 

E - Error       A – Accuracy in %   

Table 12 (b). Error and accuracy of DRCEC, GA and PSO algorithm for lathe 
machine 

DRCEC 

548-700 500 450 400 

E A E A E A E A 

0 100 0 100 0 100 0 100 
0 100 0 100 0 100 0 100 
0 100 0 100 0 100 0 100 
0 100 0 100 0 100 0 100 
0 100 0 100 0 100 0 100 

GA 

548-700 500 450 400 

E A E A E A E A 

0 100 0.001 99.89 0.0269 97.3 0.1546 84.53 
0 100 0 100 0.0055 99.45 0.0361 96.38 
0 100 0 100 0.0115 98.84 0.0247 97.52 
0 100 0 100 0.0055 99.45 0.0324 96.76 
0 100 0 100 0.0055 99.45 0.0311 96.88 

PSO 

548-700 500 450 400 

E A E A E A E A 

0 100 0 100 0.4138 58.62 0.5408 45.92 
0 100 0 100 0.2658 73.42 0.5035 49.65 
0 100 0 100 0.3665 63.35 0.6155 38.45 
0 100 0 100 0 100 0.5336 46.64 
0 100 0 100 0.4263 57.37 0.5706 42.94 

E – Error    A- Accuracy in % 
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(a) DRCEC 

 

(b) GA 

 

                    (C) PSO 

Figure 6. Convergence of the algorithm          
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Figure 7. Accuracy of DRCEC, GA and PSO algorithm for VMC machine 

 

Figure 8. Accuracy of DRCEC, GA and PSO algorithm for lathe machine 

Table 13.  Validation of case study 

Machine Name LATHE Machine VMC Machine 

The method used 
in the company for 

scheduling jobs 
FCFS FCFS 

Due Date 
548-
700 

500 450 400 700 

Total Tardiness 0 1200.55 4206.48 7691.41 494.07 

6. Statistical test validation with ANOVA 

This section presents statistical testing with Analysis of variance (ANOVA) which 
compares the means of PSO, GA and DRCEC algorithms. The absence of a discernible 
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difference between the means of the techniques used in this study is the null 
hypothesis that is investigated. ANOVA just reports that there is a significant 
difference between the approaches used but does not specify where those differences 
occur if the null hypothesis is rejected. Thus Post hoc tests are performed to pinpoint 
the locations of the techniques differences. The ANOVA test is performed on the 
average taken from 10 runs for two samples each from small, medium and large 
datasets in JASP open source statistical software. For datasets with five jobs, the 
standard deviation is 0, making the ANOVA test insignificant. The results of the 
significance test for other datasets are presented in Table 14 at a significance level of 
(α=0.05). It is observed that the main ANOVA table shows that the F-statistic is 
significant as the p-value is less than α = 0.05. Later, post Hoc that means “after the 
fact” comparisons are also performed and the ptukey value shows there is a difference 
between each pair of approaches, except in dataset D010_5 and D015_5 where there 
is less difference in DRCEC and GA. Figure 9 shows the descriptive plot with error bars 
for sample datasets which reveals that the performance of DRCEC is better than GA 
and PSO. 

Table 14. Validation of results with ANOVA 

ANOVA - D010_5-Tardiness  

Cases 
Sum of 

Squares 
df Mean Square F p 

Algorithm 5228.169 2 2614.085 12.104 0.001 

Residuals 2591.6 12 215.967     

Post Hoc Comparisons - Algorithm  

    
Mean 

Difference 
SE t ptukey  

DRCEC GA -2.38 9.294 -0.256 0.965 

 PSO -40.74 9.294 -4.383 0.002 

GA PSO -38.36 9.294 -4.127 0.004 

ANOVA - D015_5-Tardiness  

Cases 
Sum of 

Squares 
df Mean Square F p 

Algorithm 39924.784 2 19962.392 26.35 < .001 

Residuals 9090.86 12 757.572     

Post Hoc Comparisons - Algorithm  

    
Mean 

Difference 
SE t ptukey  

DRCEC GA -11.08 17.408 -0.636 0.803 

 PSO -114.56 17.408 -6.581 < .001 

GA PSO -103.48 17.408 -5.944 < .001 
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ANOVA - D025_5-Tardiness  

Cases 
Sum of 

Squares 
df Mean Square F p 

Algorithm 271456.121 2 135728.061 175.822 < .001 

Residuals 9263.568 12 771.964     

Post Hoc Comparisons - Algorithm  

    
Mean 

Difference 
SE t ptukey  

DRCEC GA -83.4 17.572 -4.746 0.001 

 PSO -317.78 17.572 -18.084 < .001 

GA PSO -234.38 17.572 -13.338 < .001 

ANOVA - D035_5-Tardiness  

Cases 
Sum of 

Squares 
df Mean Square F p 

Algorithm 1.795×10+7  2 8.973×10+6  103.836 < .001 

Residuals 1.037×10+6  12 86419.041   

Post Hoc Comparisons - Algorithm  

    
Mean 

Difference 
SE t ptukey  

DRCEC GA -483.36 185.924 -2.6 0.056 

 PSO -2523.96 185.924 -13.575 < .001 

GA PSO -2040.6 185.924 -10.975 < .001 

ANOVA - D045_5-Tardiness  

Cases 
Sum of 

Squares 
df Mean Square F p 

Algorithm 4.279×10+7  2 2.140×10+7  102.374 < .001 

Residuals 2.508×10+6  12 208991.186     

Post Hoc Comparisons - Algorithm  

    
Mean 

Difference 
SE t ptukey  

DRCEC GA -1065.84 289.131 -3.686 0.008 

 PSO -3994.88 289.131 -13.817 < .001 

GA PSO -2929.04 289.131 -10.131 < .001 
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Figure 9.  Descriptive plots- Error bars for DRCEC, GA, and PSO 

7. Conclusions 

Dispatching rules alone are ineffective in sequencing the jobs to reduce tardiness, 
but when combined with the evolutionary approach, they produce good results. This 
research combines dispatching rules with community evaluation chromosomes to 
create an optimal sequence with a lower tardiness performance measure. A total of 35 
datasets were tested for 10, 20, 30, 40, and 50 iterations to compute the tardiness with 
DRCEC. The results were compared with PSO and GA, revealing that the total tardiness 
with the DRCEC approach is less than PSO and GA for all the datasets, especially with 
a large number of jobs. The DRCEC algorithm was used to create optimal sequences 
for three stochastic scheduling models that were further examined in the study. It is 
also witnessed that the convergence process of the DRCEC is much faster than GA and 
PSO. In the DRCEC method, the best sequence of each iteration is inserted into the 
population of the next iteration, enhancing the fitness function of all chromosomes and 
promising its convergence. Using DRCEC, 22 out of 35 datasets attain optimal solution 
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after 50 iterations, while only 11 out of 35 datasets could reach an optimal solution 
using GA. According to the average execution time of the algorithms, the proposed 
algorithm is faster. The algorithm has been tested for a case study in a manufacturing 
company that specializes in pipe fittings and flanges using a lathe and a VMC machine, 
and it outperforms. Finally, based on the results of the manufacturing company, the 
strong performance of DRCEC versus GA and PSO is proved. The statistical test 
validation with ANOVA showed that there are substantial differences between the 
methods employed and that the DRCEC outperforms GA and PSO.  It has been noted 
that the traditional FCFS method gives tardiness values of 494.07 hours considering a 
due date of 700 hours for the VMC machine and 1200.55, 4206.48, and 7691.41 hours 
considering the due date of 500, 450 and 400 hours respectively for lathe machine, 
whereas DRCEC gives values of 206.96 hours for VMC machine and 47.6, 129.95, and 
254.18 hours for lathe, which are significantly less. This helps the company increase 
production efficiency.  

The study has a limitation which includes fixed parameters, like population size, 
mutation rate, and crossover rate. Parameter adjustments are not incorporated to 
elude recordings of numerous experimental tests. A total of 5250 experimental tests 
were performed with the fixed parameters.  

Work on this research in the future could include designing environments for 
several machines, giving the company a wide array of options. Combinatorial 
approaches can be used by researchers to improve the accuracy of scheduling issues 
when combined with other different metaheuristic techniques. Furthermore, changing 
the stand-alone design parameters for web apps allows the operator to use it remotely 
on any device. 
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