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Original scientific paper 

Abstract: Risks in supply chains are first identified and then prioritized 
based on their probability of occurrence and their impact. Attempts to 
mitigate risks in the absence of complete and accurate information about 
their likelihood and impact may constitute a significant waste of resources. 
Since the resources available for risk management are usually limited, firms 
need to know how to allocate these funds appropriately. That is, a strategy is 
required to determine which risks are a priority in terms of acquiring 
complete and accurate information. We develop a model that incorporates 
two conflicting terms to address this issue. The first, captured by entropy, 
measures the resources wasted due to risk factors for which there is 
inaccurate information about the probability of occurrence and impact. The 
second is the cost associated with the efforts expended in collecting accurate 
information about risk factors. To solve the model, we propose a stopping-
rule algorithm. Its efficiency is verified using data gathered from a real-world 
pharmaceutical and generalized green supply chains. Numerous 
computerized experiments show that the stopping-rule algorithm prevails 
over the widely used risk-management Pareto rule, and that the algorithm is 
able to achieve the optimal solution in 94% of investigated cases. 

Key words: Shannon entropy; Pharmaceutical supply chain; Generalized 
green supply chain; Supply chain risk management. 

1. Introduction 

1.1. Supply-chain risks 

This paper is concerned with risk management in supply chains. A supply chain 
(SC) is a widely used term that refers to an integrated network of entities, beginning 
with the initial supplier and ending with the customer, that aims to effectively and 
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efficiently synchronize demand and supply across those entities, while providing 
value to all stakeholders (Lawrence et al., 2019). Typical examples of supply chains 
include the web, multimedia communication networks, healthcare, and large-scale 
technological projects (Herbon et al., 2012; Laumanns & Lefeber, 2006).  

Supply-chain risk management (SCRM) is an important tool when faced with 
potential disruption, and can help reduce the likelihood and severity of risk scenarios 
occurring in SCs. In rapidly changing and unpredictable working environments, 
supply chains are exposed to various internal and external risks that may have a 
substantial impact on their operation, causing financial or reputational damage. For 
instance, internal risks (e.g., poor stock visibility, inventory shortages) may increase 
operational costs and cause lost sales. External threats (e.g., boycotts) may cause 
delays in planned deliveries, thereby reducing customer satisfaction and inducing 
reputational damage. 

One example of a supply-chain risk is unexpectedly high inventory costs, which 
can occur due to obsolescence. Financial losses can also arise for other reasons, e.g., 
through the need to rework stock or due to the penalties incurred for the non-
delivery of goods or due to stock-outs. An example of the latter was the crisis that 
affected Ericsson in 2000, where a fire that took place at the firm’s sole supplier of 
microchips immediately disrupted the entire material supply, with estimated losses 
of USD 400 million according to the T28 model (Norrman & Jansson, 2004). The flood 
in Chennai, India in 2015 resulted in an economic loss of US $2.2 billion (Swiss Re 
Group, 2012). The Japan earthquake and tsunami of 2011 led to a rapid decline in 
Toyota's production and resulted in a reduction in profits of $72 million per day 
(Pettit et al., 2013). More recently, in the wake of the COVID-19 pandemic that 
started in 2020, 94% of Fortune 1000 firms observed supply-chain disruptions, and 
75% of them reported a negative or strongly negative effect on business (Jain, 2021). 
Araz et al. (2020) considered COVID-19 to be the most severe supply-chain 
disruption the world has experienced in decades; examples of unexpected challenges 
have included demand and supply shocks related to hoarding, (foreign) labor 
shortages, and cross-border transportation restrictions. 

The topic of supply-chain risk management has attracted many scholars. Several 
review articles are available, including Ho et al. (2015), which identified the most 
common steps in SCRM, and Fan & Stevenson (2018), which focused on identifying 
risk types and proposing risk-mitigation strategies. 

1.2. Allocating limited risk-management resources 

Strategies to mitigate risks in supply chains often entail significant expenditure in 
terms of both time and money. First of all, efforts are required to obtain information 
about risk factors. Manuj & Mentzer (2008) detailed the actions involved in such an 
endeavor. In particular, they stated that selection of the appropriate parties (i.e., 
experts) is critical for obtaining meaningful data on the range of possible incidents. 
Managers from various manufacturing companies and industries, as well as those 
who worked with a single organization over an extended period of time (thus 
witnessing the company move through several transformations), should be involved.  

Yet, even if it were possible to identify the full set of risks, budget constraints 
would make it infeasible to eliminate them all (e.g., through cooperation between 
supply-chain members) or to mitigate them all (e.g., by preparing reserves or 
building flexibility). For instance, Sherwin et al. (2020) developed risk-mitigation 
models to deal with at-risk suppliers within the nuclear power plant construction 
supply chain. Due to the impracticality of managing all risks, the models proposed by 
these authors allow decision-makers to derive mitigation strategies that meet the 
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firm’s budgetary constraints. In a study with similar goals, Khosravi-Farmad & 
Ghaemi-Bafghi (2020) proposed an integrated network security risk-management 
strategy based on the Bayesian decision network (BDN). The advantage of the BDN is 
that it allows network security administrators to realize optimal security 
countermeasures under budget limitations. El Baz & Ruel (2021) studied the 
potential role of supply-chain risk management in mitigating the effects of 
disruptions to the supply chain caused by the COVID-19 pandemic. The authors 
stated that to improve supply-chain robustness and resilience, firms need to develop 
interconnected SCRM practices. However, they acknowledged that due to the impact 
of the pandemic on firms’ financial health, some companies might not have the 
necessary resources and abilities to adopt such practices. Zhang & Guan (2021) 
proposed a two-stage model to allocate a limited budget among risk response 
strategies in the context of project management.  

As illustrated by the above studies, players in supply chains are generally faced 
with a greater number of risk factors than they are able to address given the 
available resources. This implies that a framework needs to be developed to ensure 
that resources are allocated to risk-mitigation strategies in an appropriate manner.  

1.3. Problem definition and contribution 

Large-scale systems, such as supply chains, are capital intensive and entail 
enormous amounts of information. Such information may consist of all future events 
over an infinite horizon. At any given moment, these events are not fully known; 
however, data pertaining to these events may be required in order to control the 
system optimally. Yet, the resources available to managers, in terms of time, 
personnel, information, and capital, tend to be limited. Moreover, many companies 
face difficulties handling the vast amounts of complex data that tend to characterize 
modern working environments (see, for example, the works of Alharthi et al., 2017 
and Moktadir et al., 2019 among many others). The present study focuses on the 
acquisition of information pertaining to future sources of risk. According to Sharma 
et al. (2022), there is insufficient literature on the topic of risk quantification. 

This study develops a new method to overcome the difficulties associated with 
risk management under constrained resources, and it illustrates the applicability of 
the method to two real-life supply chains. Thus, the scope of the work is mainly 
restricted to risk management under two specific settings: a pharmaceutical supply 
chain and a generalized green supply chain. The underlying principle of our 
approach is that, in order to achieve effective risk management, decision-makers do 
not require information about all risks in advance (where information refers to the 
probability of occurrence and the severity), but only about a limited number of them. 
As a result, limited resources can be channeled in specific directions when the firm is 
seeking information about the entire pool of risks. The algorithm at the heart of the 
approach is a stopping rule based on the concept of entropy. Entropy is a scientific 
concept, as well as a measurable physical property, that is most commonly 
associated with a state of disorder, randomness, or uncertainty. Claude Shannon 
referred to this “missing information” as entropy, in an analogous manner to the use 
of this term in statistical mechanics, and in so doing, gave birth to the field of 
information theory. Shannon’s definition of entropy has now been universally 
accepted. The stopping rule proposed in this study seeks to determine, through 
optimization, the set of risk factors for which information should be revealed. More 
specifically, the proposed algorithm minimizes the total costs associated with 
obtaining detailed information about risk factors, while simultaneously minimizing 
the ineffective utilization (“entropy” in our terms) of available resources, noting that 
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this entropy decreases with the number of risk factors for which accurate 
information is obtained. 

The key research questions addressed in this study are as follows: 
(1) How can a management team efficiently select a set of risk factors to address 

(given that it may not be cost effective or even feasible to address all risk factors)? 
(2) How can a simple procedure (i.e., the proposed stopping rule) be applied to a 

pharmaceutical supply chain and what are the managerial implications? 
(3) How can a simple procedure (i.e., the proposed stopping rule) be applied to a 

generalized green supply chain and what are the managerial implications? 
The contributions of this study to the existing literature are as follows: 
(a) The suggested model is unique in its approach of balancing two 

considerations: The first, captured by entropy, measures the resources wasted in the 
case of inaccurate information about the probabilities of occurrence and impacts of 
risk factors. The second is the cost associated with the efforts expended in collecting 
accurate information about risk factors.  

(b) We provide a numerical illustration of the proposed model for the case of a 
pharmaceutical supply chain. This application was chosen because, unlike many 
other supply chains, the pharmaceutical SC is characterized by very high complexity 
due to factors such as unpredictable demand volatility, the immense scope of the 
delivered items, and the short lifecycles of the products. Accordingly, the supply 
chain is exposed to a wide range of risks, a full investigation of which would require 
considerable time and resources.  

(c) We provide a numerical illustration of the model for the case of a generalized 
green supply chain. This application was chosen due to the increasing global interest 
in environmental issues, along with the fact that, since this is a relatively new field, 
the operation of green supply chains entails new threats that have not been widely 
discussed.  

(d) The proposed model is realistic in terms of its two key assumptions, namely 
that full, accurate information is not available and that risk-management resources 
are limited. 

 2. Literature review 

This study focuses on the applicability of a simple stopping rule for the purpose of 
managing risks in two supply chains. Accordingly, the theoretical aspects of the 
model and its mathematical analysis are not presented in this paper. Similarly, the 
literature review presented below, rather than focusing on theoretical work, 
highlights studies in which risk-management models were applied to real-world 
systems - in particular, to supply chains. The review focuses on three main areas: (1) 
acquiring information about risk factors; (2) managing risks under limited 
information; and (3) risk-management case studies. 

2.1. Acquiring information about risk factors 

To assess vulnerabilities in a supply-chain context, companies must identify 
direct risks to their operations, and risks to all other entities, including those caused 
by the linkages between organizations (CIPS, 2013). Identifying risks and assessing 
their likelihood and potential impact on operations is a complex and challenging task 
for a single organization (Jüttner, 2005). According to Norrman & Jansson (2004), 
risk mapping, i.e., a structured approach for mapping risk sources and understanding 
their potential consequences, is one of the essential tools. Two commonly used 



 Herbon & Tsadikovich/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 994-1034 

998 

techniques for risk mapping are “fault tree analysis” (FTA) and “event tree analysis” 
(ETA).  

Nakandala et al. (2017) used a hierarchical holographic model (HHM) to allow 
managers to identify potential risk scenarios within the fresh-food supply chain. 
Following risk identification, the authors conducted a risk assessment procedure 
based on a hybrid method incorporating qualitative and quantitative approaches. 
Prakash et al. (2017) held discussion and brainstorming sessions to reveal experts’ 
opinions on risk factors in the dairy industry. The risks were then quantified by 
means of an interpretive structural modeling (ISM) approach, which aims to identify 
and summarize relationships among the specific variables that define a problem. 
Lawrence et al. (2020) suggested identifying risk factors through an extensive search 
of the public literature domain. Then, in order to construct a risk quantification 
model with a high degree of confidence, multiple sources were used to gather details 
of the events that unfolded after the disaster. Information was extracted from news 
articles, videos, government reports and other sources, and these data were used to 
construct probability tables. In recent work, Zhu & Liu (2023) constructed a three-
layer back propagation neural network for risk prediction within the prefabricated 
building supply chain.  

The traditional approach to risk assessment involves placing risks in a prioritized 
order based on their likelihood and severity (El Baz & Ruel, 2021). Information about 
likelihood and severity may be gathered from a variety of sources, including 
historical data, expert opinion, and scenario thinking. In contrast to this approach, 
the current study does not assume that information is known for all risk factors. 

2.2. Managing risks under limited information 

An increasingly common practice when conducting risk assessment of a large-
scale system is to consider only partial information. This may be because of a lack of 
full, accurate information. Duong et al. (2019), for instance, stated that one of the 
main barriers to effective management of agricultural risks lies in the very limited 
information about the risks themselves. The COVID-19 pandemic is a recent 
reminder of how situations may arise where people are forced to perceive risks 
based on partial and rapidly changing information (Pine et al., 2021).  

However, other scholars have argued that complete information may not be 
necessary. The suggestion that it is possible to obtain efficient solutions under 
limited (i.e., partial or imperfect) information is not new, and has been utilized in 
numerous fields – both in theoretical work and in practice. Menzies & Sinsel (2000) 
proposed a decision tree combined with a pruning method for practical, large-scale 
what-if queries in relation to a software-effort estimation project. They characterized 
the space of what-ifs by searching for significant ranges, i.e., small sets of parameter 
values that are most influential in terms of achieving some desired result. Herbon et 
al. (2003) developed a pseudo-stochastic model for the optimal control of a dynamic 
system over a given planning horizon. They investigated the impact of uncertain 
future events on decision-making in a stochastic environment and demonstrated that 
one can use a substantially reduced amount of information to achieve near-optimal 
control of a real dynamic system. Cao et al. (2014) proposed a partial-information 
state-based approach to optimize the long-run average performance in a partially 
observed Markov decision process (POMDP).  

Models that assume partial information have also been employed in the field of 
risk management. Kraev & Tikhonov (2019), who considered human resource 
management, focused on the personnel screening stage, when very little information 
about the applicant is known. Thus, there is a high risk of recruiting an inappropriate 
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candidate. To overcome this obstacle, the authors proposed using data from social 
networks where the applicant is a member. Rios et al. (2020) used attack-defense 
trees to estimate system risks in the context of assaults on Internet of Things (IoT)-
based smart grid systems. In such a system, there is usually limited or no information 
about the attack events. Zweifel (2021) used linear partial information theory to deal 
with imprecise information in the insurance domain where the risk profile of a newly 
enrolled customer is not fully known. 

2.3. Case studies of risk factors in supply chains 

This subsection describes case studies focusing on managing risk factors within 
various types of supply chain, including, but not limited to, pharmaceutical and green 
supply chains. 

2.3.1. Pharmaceutical supply chains 

Wang & Jie (2020) proposed a framework for managing uncertainty and risk in 
pharmaceutical supply nets. In particular, the authors determined that the threats 
can be divided into two main categories: internal and external. To mitigate these 
risks, the authors investigated how the risks were affected by various supply-chain 
integration capabilities, such as supply-chain visibility, agility, and flexibility. 
Lawrence et al. (2020) proposed a static Bayesian network model to quantify the 
impact of severe weather on pharmaceutical supply-chain performance, with a view 
to facilitating the development of effective risk control and mitigation strategies. 
Sharma et al. (2022) considered the case of the Indian pharmaceutical industry and 
assessed the impacts of the risks using a fuzzy synthetic evaluation (FSE) method, 
which is an appropriate technique when dealing with multiple parameters having 
different risk levels. Bø et al. (2023) investigated how the COVID-19 crisis has 
affected the risk, resilience, and reliability of Norwegian food and pharmaceutical 
supply chains – industries that had to maintain the supply of essential goods despite 
societal lockdown. 

2.3.2. Green supply chains 

Giannakis & Papadopoulos (2016) explored risks within sustainability-related 
supply chains with a view to gaining knowledge about how to manage these risks 
more effectively. The risks were detected through a brief interview with supply-
chain managers from 30 companies representing different industries in the UK and 
France. Risk analysis and assessment was carried out by means of the failure modes 
and effects analysis (FMEA) approach. Unlike Giannakis & Papadopoulos (2016), 
Mangla et al. (2018) focused on a specific plastic manufacturing firm operating in 
North India. Being the leading producer of plastic-based products on the domestic 
and global market, the firm seeks to maximize its economic-ecological gains, and 
thus, it is committed to adopting green supply-chain (GSC) initiatives in various 
aspects of its business. By using fuzzy FMEA analysis to assess the risks, the authors 
found that the main barriers to implementing GSC initiatives are inaccuracy in using 
green methodology (i.e., processes, operations, machines, and equipment) and 
mismanagement in the reverse logistics network design. Similarly to Mangla et al. 
(2018), in the current work, we derive the main risk factors through a thorough 
literature review.  

India’s pharmaceutical sector has shown considerable growth over the last 
decade. Despite the advantages of such growth, a negative consequence has been the 
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substantial increase in medical waste (such as expired medications and 
contaminated products), which places a burden on the environment and can be 
detrimental to public health. To address this problem, Kumar et al. (2019) 
investigated how to integrate green supply-chain concepts into India’s 
pharmaceutical sector. A consequential two-step approach was proposed. In the first 
step, the main green-related risks within the pharmaceutical industry were revealed 
based on a literature review coupled with the fuzzy Delphi approach. In the second 
step, these risks were prioritized using a fuzzy analytical hierarchy process. Similarly 
to Kumar et al. (2019), Shakeri et al. (2020) identified the main risk factors that 
hinder GSC activities within the pharmaceutical industry in Iran, with an emphasis 
on the medicine supply chain of the Imam Reza Hospital of Mashhad. With the help of 
a literature review and expert opinions, 31 significant risks were detected. Unlike 
previous studies, where the risks were investigated in isolation, the authors 
suggested exploring the interrelations between risks and their influence on the 
performance of the supply chain. The Bayesian belief networks (BBN) approach was 
used to prioritize and analyze the risks. The results revealed that the main risk 
factors affecting the successful implementation of GSC activities are an inefficient 
logistics network design, supplier quality issues, and green raw material supply 
disruption.  

According to Chen et al. (2022), most of the research devoted to managing risks 
within green supply chains has focused on detecting and assessing the threats 
related to particular phases within green operations, e.g., refurbishing or 
remanufacturing. To adequately address all risks, the entire green process, starting 
from material purchase and ending with the recycling or disposal of goods, needs to 
be considered. Focusing on the case study of a Taiwanese laptop manufacturer, Chen 
et al. (2022) first identified the main green-related risk factors through an extensive 
literature survey and discussion with a panel of experts. Then, based on the FMEA 
procedure, the risk priority number (RPN) of each risk was calculated. However, 
unlike previous studies where the RPN is a simple product of the risk’s severity, 
occurrence and detection, Chen et al. (2022) separated each of these categories into 
different dimensions, so-called RPN subcomponents. For instance, they assumed that 
the severity of a risk is related to four properties referred to as quality, time, 
elasticity, and cost. Next, they calculated the relative weights of the RPN 
subcomponents for each green risk factor using the analytic network process (ANP) 
method, and finally, they ranked the risks based on a combination of grey relational 
analysis and the previously determined ANP weights. Medina-Serrano et al. (2021) 
presented a case study of a leading manufacturer of electrical products in Germany 
aiming to improve the company’s sustainability through effective risk management 
procedures. In Gao et al. (2022), the authors identified the main risk factors that may 
impede the implementation of green supply-chain management practices within 
small and medium enterprises (SMEs) in China. To identify the causal relationships 
among the risk factors, they developed and implemented a hybrid decision-making 
tool based on a combination of fuzzy logic and the DEMATEL approach. The research 
identified 17 risk factors and determined that the most effective risk-mitigation 
strategies would be supplier collaboration, support from company management, and 
support from external authorities.  

2.3.3. Other sectors 

Diabat et al. (2012) developed and implemented a decision tool to analyze and 
mitigate risks within RMK, a leading producer of food products in South India. The 
authors classified risks according to their criticality based on cross-impact matrix 
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multiplication (MICMAC) analysis, identifying four risk groups: autonomous, 
dependent, linkage, and driver/independent. The authors concluded that risks in the 
“autonomous” group require the closest attention of decision-makers, and 
consequently, they devised mitigation strategies to deal with such risks. 
Globalization has created the opportunity for many countries to procure products 
from a wide range of importers, including food importers. To avoid a situation in 
which the consumption of imported products may be harmful to health, an effective 
multi-criteria risk prevention tool is needed to rank the suppliers. Puertas et al. 
(2020) developed such a tool for the case of the importation of cereals to the 
European Union. The tool is based on well-known techniques such as TOPSIS, 
ELECTRE, and cross efficiency (CE). The authors identified corruption, 
environmental sustainability in agriculture in the country of the supplier, and 
logistics issues as risk factors for importing poor-quality products. Hendayani et al. 
(2021) conducted interviews among the managers of the firm KPBS Pangalengan (a 
dairy company in Bandung, Indonesia) to collect information regarding the risks 
within its supply chains. To identify ways of mitigating these risks, the authors 
developed a procedure based on a combination of failure mode and effect analysis 
and quality function deployment (QFD). This resulted in the identification of seven 
risk-mitigation strategies for the company. For more papers in this field, we refer the 
reader to the recent extensive review of risk management in food supply chains by 
Azizsafaei et al. (2021).   

Oke & Gopalakrishnan, (2009) investigated the connection between the type of 
risk and the appropriate mitigation strategy within North America’s retailer supply 
chain. They found that mitigation policies may either be specific (i.e., designed to 
cope with a particular kind of risk) or generic (i.e., capable of dealing with any risk). 
In particular, specific mitigation policies are more appropriate for low-likelihood and 
high-impact risks, whereas generic mitigation strategies are suited to high-likelihood 
and low-impact risks. To manage risks in an automotive supply chain, with an 
emphasis on the product life cycle (PLC) and the operational process cycle (OPC), 
Salehi Heidari et al. (2018) implemented an integrated fuzzy AHP and fuzzy TOPSIS 
approach. The proposed model allows the ranking of various risk-management 
practices (including admission, weakening, transfer, and avoidance) to reduce the 
risk factors within the supply chain. The effectiveness of the proposed method was 
tested on a real-life manufacturing company in the automotive industry of Iran. 
Jonathan et al. (2020) aimed to formulate recommendations for the effective risk 
management of the supply chain of Eskom – South Africa’s primary electricity 
supplier. The first stage involved constructing a focus group comprising 22 company 
managers. The managers were interviewed and their responses were analyzed to 
derive recommendations for risk management. A key recommendation was the need 
to continuously monitor external and internal customer services.  

Similarly to the approach used in the current work, Dohale et al. (2023) retrieved 
the principal risk factors and their characteristics (i.e., severity and probability of 
occurrence) from multiple case studies within the apparel industry in India during 
the COVID-19 pandemic. They also used these case studies to derive a set of possible 
mitigation strategies. The data were verified by a group of experts, and appropriate 
mitigation strategies were selected by implementing a risk mitigation strategy 
matrix. The authors determined that the most critical risks were demand uncertainty 
and supply disruption, and that these risks may be alleviated by incorporating 
flexibility and postponement strategies. Flexibility refers to the ability to deploy an 
organization’s resources efficiently in order to respond to unexpected change, 
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whereas postponement involves delaying (or slowing down) the production and 
distribution of goods as long as exact information about demand is not available.  

Sabila et al. (2022) focused on risk management within the agricultural supply 
chain in Indonesia. To identify the risks, the authors reviewed previous literature 
and gathered expert opinions. The risks were then prioritized using the fuzzy FMEA 
method, and finally, appropriate mitigation strategies were determined via the 
TOPSIS approach.  

In the era of advanced technologies based on web interconnectivity, blockchains 
are vital for ensuring user anonymity and immutability. Such technology has already 
been applied to numerous spheres of daily life, ranging from healthcare to the 
educational sector and secret military services. Dua et al. (2023) explored the role of 
blockchain technology in mitigating the customer’s perceived risks (e.g., financial, 
psychological, social, performance, and physical) within different supply chains. In 
particular, the authors considered the cases of precious metal manufacturing, fast-
moving consumer goods (FMCG), the automotive industry, and pharmaceutical nets. 
Based on fuzzy analytical hierarchical processing (F-AHP), the authors detected 
critical risks across these supply chains and offered appropriate mitigation tactics.  

Trucking services play a vital role in the day-to-day operation of numerous 
production and service companies. This industry faces multiple threats that may 
disrupt its operations. Therefore, selecting appropriate risk-mitigation strategies is 
critical. To cope with this problem, Dadsena et al. (2019) developed an integrated 
multi-objective optimization model compromising three objective functions given 
limited budget: feasibility of mitigation strategies, cost reduction, and targeted level 
of risk. In Qazi et al. (2018), the authors devised a method to prioritize risks, discover 
the interrelations between them, and explore suitable mitigation strategies. They 
used Bayesian belief networks and fault tree analysis (FTA) to create a network of 
risks, allowing them to understand their interconnectivity. They then assessed the 
risks based on BBNs and expected utility theory (EUT). Finally, to choose an 
appropriate strategy to mitigate a given risk, the authors employed the “swing 
weights” approach. The primary purpose of this method is to achieve a trade-off 
between the efficiency of the proposed mitigation strategy and its costliness. Such an 
approach allows decision-makers to select only those mitigation strategies that are 
feasible given the budget constraints. The process was demonstrated through a case 
study conducted in a global manufacturing supply chain involving semi-structured 
interviews and focus-group sessions with experts in risk management. 

2.4. Gap relative to the existing literature 

Table 1 summarizes the previous work most relevant to the problem considered 
in this paper, and classifies the studies according to key characteristics. From this 
table, it can be seen that risk management generally starts with risk identification. 
During this procedure, the decision-makers aim to (a) uncover all relevant risks and 
(b) acquire accurate information about their probability of occurrence and 
corresponding severity. Usually, this information is obtained by conducting 
interviews with internal managers and external specialists. Despite having 
significant advantages, this method is both time- and resource-intensive – a factor 
that has not been taken into account in most previous studies (see column entitled 
“Constraint type” in Table 1). Given that a firm’s available resources for risk 
identification tend to be limited, the acquired data will be incomplete and imprecise. 
Consequently, the firm’s risk management plan will suffer as a result of the 
information gap, which in turn may lead to resource waste.  
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Table 1. A comparison of the proposed model with related work 

Paper Bø et al. (2023) 
Sharma et al. 

(2022) 
Lawrence et 

al. (2020) 
Puertas et al. 

(2020) 

Application 
sector(s) 

Norwegian 
food and 

pharma supply 
chains 

Indian pharma 
industry 

U.S. pharma 
supply chain 

European 
Union food 

chain 

Model 
classification 

Impact on 
risk, 

resilience and 
reliability 

Fuzzy 
synthetic 

evaluation 

Bayesian 
network 
approach 

Discrete 
decision 
methods 

Information 
needed about 

risk factors 

Likelihood and 
severity 

Likelihood Likelihood 

Weight and 
scaled value of 

each risk-
related factor 

Constraint 
type 

None None None None 

Solution 
method 

Several rounds 
of semi-

structured 
interviews  

Determining 
most 

contributive 
risks with four 

risk 
parameters 

Predictive 
inference 
reasoning 

Combination 
of TOPSIS, 

ELECTRA and 
CE methods 

Additional 
characteristics 

Proposes 
frequent 

assessment of 
identified 

risks, 
followed by 

risk 

Identifies the 
critical risks 

that need to be 
mitigated 

Identifies 
severe 

weather as 
an 

important 
risk when 
selecting 
suppliers 

Ranks the 
suppliers with 
respect to the 
identified risk 

factors 

 

Paper 
Salehi 

Heidari et al. 
(2018) 

Dua et al. 
(2023) 

Dohale et al. 
(2023) 

Mangla et al. 
(2018) 

Application 
sector(s) 

Automotive 
manufacturing 

company in 
Iran 

Metal 
manufacturing, 

fast-moving 
consumer 

goods, 
automotive and 
pharmaceutical  

 

Apparel 
industry in 

India 

Green plastic 
supply chain in 

India 

Model 
classification 

Fuzzy 
discrete 
decision 
methods 

Fuzzy 
discrete 
decision 
methods 

Quantitative 
risk 

assessment 
methodology 

Fuzzy risk 
assessment 

tool 
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Information 
needed about 

risk factors 

Organizational 
performance 
factors and 

risk 
operational 

practices 

Relative 
importance of 

each risk factor 

Likelihood 
and severity 

Probability of 
occurrence, 
severity and 

non-detection 

Constraint 
type 

None None None None 

Solution 
method 

Combination of 
fuzzy AHP and 

TOPSIS 
methods 

Fuzzy AHP 
Risk 

assessment 
matrix 

Fuzzy FMEA 

Additional 
characteristics 

Suggests 
various 

practices for 
decreasing 
operational 

risks  

Allows 
assessment of 

the linkage 
between (a) 
the risks and 

(b) the 
capabilities 

and assurance 
provided by 
blockchain 

Identifies 
demand 

uncertainty 
and supply 

disruption as 
the most 

critical risks  
 

Develops a 
benchmarking 

framework that 
facilitates GSC 
management 
and planning 

 

Paper 
Kumar et 
al. (2019) 

Chen et al. 
(2022) 

Dadsena et 
al. (2019) 

Qazi et al. 
(2018) 

The 
suggested 
stopping 

rule 

Applicatio
n sector(s) 

Green 
pharma 

supply chain 
in India 

Green 
laptop-

manufactur
er supply 
chain in 
Taiwan 

Trucking 
industry in 

India 

Aero, a 
global 

manufacturi
ng supply 

chain 

Pharma 
and 

generalized 
green  
supply 
chains 

Model 
classificati

on 

Fuzzy 
discrete 
decision 
methods 

Discrete 
decision 
methods 

and 
relational 
analysis 

Multi-
objective 

optimizatio
n 

BBN-based 
modeling of 

a risk 
network 

combined 
with 

expected 
utility 
theory 

Non-linear, 
integer 

optimizatio
n problem 

Informati
on needed 
about risk 

factors 

Risk factor 
evaluation 

Expected 
importance 
of each risk 

factor 

The current 
level of risk 
and the loss 

incurred 
due to its 

occurrence 

Conditional 
probability 
and cost of 
mitigation 
strategies 

Likelihood 
and severity 
of a subset 
of the risk 

factors 
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Constraint 
type 

None None Budget Budget Budget 

Solution 
method 

Fuzzy Delphi 
approach 
and fuzzy 

AHP 

FMEA, ANP, 
grey 

relational 

Single-
objective 
problem 

using global 
criterion 
method 

Fault tree 
analysis 

One-
dimensional 

online 
search with 
speed O(N) 

Additional 
characteri

stics 

Offers a 
benchmark 

model to 
manage 

GSC 
initiatives 

and 
sustainable 

issues in 
the 

pharma 
industry 

Focuses 
on the 
entire 
green 

process 

Examines 
and 

identifies 
the optimal 

range of 
budgetary 

investment  

Derives a 
framework 

that can 
model the 

real-life 
trade-off 
between 

conflicting 
and 

interdepend
ent 

objectives 

Results in 
low 

utilization  
of the 

budget 

 
Based on the comprehensive literature review provided above and the 

comparison shown in Table 1, the present study makes the following contributions 
to the existing literature: 

(a) We do not require that the likelihood and severity are known for all risk 
factors; this information only needs to be acquired for some of the risk factors. 

(b) Our approach builds an optimization model and considers limited resources 
and information. 

(c) We devise a simple and highly efficient procedure, implemented online, to 
address risk factors in supply chains under a limited budget. The suggested stopping 
rule can be implemented very quickly for any problem size, i.e., with complexity 
O(N).  

(d) We illustrate the applicability of the proposed model to two real-life supply 
chains – a pharmaceutical SC and a generalized green SC. We demonstrate that the 
proposed model may be successfully implemented to manage risk factors faced by 
both types of supply chain. Moreover, in the case of the generalized green supply 
chain, we conduct a comparative analysis between our approach and a widely used 
technique, and show the superiority of the former. 

Section 3 provides a detailed description of the proposed model and its solution 
algorithm. The implementation of the model within pharmaceutical and 
environmentally-oriented supply chains is provided in Sections 4 and 5, respectively. 
Section 6 concludes our study.  

3. The model and the stopping rule 

3.1. The optimization model 

The proposed model is based on the assumption that firms allocate a limited 
budget to the process of risk management. Thus, to manage the firm’s risks 
effectively, decision-makers need to adopt a logical approach when deciding how to 
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utilize the available assets. A portion of these assets is used to identify the risks and 
to acquire information about them – specifically, their probability of occurrence and 
their impact. The quality of the obtained information plays a vital role in deciding 
which threats should be a priority for mitigation strategies. Consequently, it is 
necessary to decide which risks warrant the acquisition of complete and accurate 
information and which may be ignored in the light of the restricted budget and/or 
the lack of a clear benefit. The model proposed herein aims to tackle this challenging 
question. 

In our model, the number of risks for which precise information will be collected 
is a decision variable f . Accordingly, the remaining risks fN − , wherein N  

represents the total number of relevant risks under investigation, may be neglected. 
The greater the value of f , the higher the costs associated with acquiring precise 

information. This effect, which constitutes one of the terms of our objective function, 
is modeled through a flexible polynomial function of a pair of given parameters  ,  

( 0,0   ). More specifically,   represents a scaling factor applied to the 

cost of acquiring accurate information and  is a coefficient that characterizes the 

specifications of both the supply chain and the management policy regarding 
obtaining information about risk factors. When 10   , the polynomial function 

becomes concave, reflecting the case where learning has taken place due to 
experience gained from investigating former risk factors. In the case where 1= , 

the function is linear, implying that the costs of acquiring information are identical 
for each risk factor. Finally, in the remaining case, where 1 , a convex curve 

reflects a strategy in which risk factors that are more accessible (i.e., cheaper to 
estimate) are addressed first. The objective, ( )Z f , defined in equation (1) below, 

represents the monetary penalties incurred when addressing only a limited number 
of risk factors. The first term in (1) reflects the fact that incomplete information can 
lead to the ineffective utilization (entropy in our terms) of available resources. This 
entropy decreases with the number of risk factors for which accurate information is 
obtained, thereby reducing the amount of incorrect and incomplete information, 
reduces the ineffective utilization of resources (i.e., the entropy). The second term in 
the objective function represents the costs of acquiring precise information. The cost 
increases with the number of risk factors for which accurate information is obtained. 
Some of the information about risk factors is unknown, thus, the entropy measures 
the dispersion of the density function of the likelihoods of the risk factors given the 
unknown information is modeled by a uniform density. Mavi et al. (2016) used 
Shannon entropy to weigh criteria in the context of supplier selection. Khorram 
(2020) developed a novel approach for managing risks pertaining to port container 
terminals. The Shannon entropy concept was used to convert the subjective weights 
(proposed by experts) to objective weights, while the fuzzy VIKOR technique was 
implemented to rank and prioritize the failure modes on the basis of maximum 
“group utility” and minimum “individual regret.”   

Based on the above discussion, the unconstrained optimization problem is 
characterized by the following objective function: 

( ) 














+







=






N

f

N

fH
fZ

NfINT ln

)(
)(min

 0

,                                                                        (1) 

where )( fH  denotes the entropy of N investigated risks, and complete and 

accurate information is known for f of these risks. The entropy is defined by  
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1

1 .  

To determine the decision variable f such that objective function (1) is 

minimized, we develop a stopping-rule algorithm presented in the following 
subsection. To simplify the development of this algorithm, we analyze problem (1) 
under the assumption of a continuous setting rather than a discrete one. Such a 
presentation enables us to utilize certain mathematical properties (e.g., convexity or 
concavity) of  ( )H f . 

Assumptions:  
1. The management team can suffer the consequences of addressing only a subset 

of the risk factors. 
2. Complete and accurate information may only be available for some of the risk 

factors. 
3. The stopping rule performs sufficiently well to replace the optimal solution 

(which is unknown). 
4. The likelihoods and impacts (i.e., potential damage) of the risk factors are the 

only factors needed to prioritize them.  
 

3.2. The stopping rule 

Starting from objective (1), we can state without proof that 
Nf

fH

f

1)(

0

−=




=

, i.e., 

that the first component initially decreases with an increase in the number of known 

risk factors. On the other hand, the second component, 


 







N

f , starts at 0 and 

increases with f. These statements are not sufficient to postulate that the objective is 
convex. Indeed, the shape of the function depends on the sequence in which the risk 
factors are addressed, and it has been demonstrated in real-world applications that 
non convex curves may arise. We apply an axiomatic stopping rule that simplifies the 
procedure. According to this rule, the decision-maker seeks accurate information 
about the next risk (its probability of occurrence and its impact) provided the 
objective further decreases. An alternative strategy would be to set Nf = , meaning 

that the decision-maker acquires accurate information about all risk factors. 
Applying such a strategy would of course allow the decision-maker to determine 
(retrospectively) the optimal number of risk factors. However, it is likely that the 

optimal number of risk factors, *
f , is significantly smaller than N. Therefore, a 

decision-maker operating under such a strategy would not be able to reap the 
benefits (i.e., a smaller objective) since the resources required to obtain full 
information would already have been wasted. 

The following subsection provides a numerical illustration of the initial 
procedures that are required before applying the proposed model to any application. 
It is assumed that similar procedures have already been carried out for the two 
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applications presented in Sections 4 and 5; therefore, in these case studies, only the 
optimization stage is illustrated. 

3.3. Preparing the initial vector of normalized impacts 

The initial vector of normalized impacts, which consists of the products of the 
probabilities and the impacts, is sufficient information to apply the stopping rule. 
Assuming that there are 20=N  risk factors (identical to the number of risk factors in 

both of the applications studied below), we provide an example of a table showing 
the information pertaining to these risks (see Table 2). The table is divided into four 
sections corresponding to the following four sets: }{},{},{},{ CBAO . Set  }{A  

includes risk factors for which only information about the probability of occurrence 
in a given planning horizon is known. Set }{B  consists of risk factors for which only 

information about the impact of the risk (should it be realized) is known. Set }{C  

includes risk factors for which neither the probability nor the impact is known. 
Finally, set }{O  includes risk factors for which complete information is available. 

Table 2. Illustrative example of a set of sorted risk factors, along with their 

likelihoods and expected impacts. The impact is measured in terms of the 

cost of the damage in New Israeli Shekels (NIS) 

Risk factor Set 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Risk factor 1 }{O  0.1 2 

Risk factor 2 }{O  0.05 1 

Risk factor 3 }{O  0.2 4 

Risk factor 4 }{O  0.7 10 

Risk factor 5 }{O  0.01 20 

Risk factor Set 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Risk factor 6 }{A  0.3 Unknown 

Risk factor 7 }{A  0.01 Unknown 

Risk factor 8 }{A  0.1 Unknown 

Risk factor 9 }{A  0.27 Unknown 

Risk factor 10 }{A  0.2 Unknown 

Risk factor Set 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Risk factor 11 }{B  Unknown 0.5 

Risk factor 12 }{B  Unknown 20 

Risk factor 13 }{B  Unknown 2 

Risk factor 14 }{B  Unknown 10 

Risk factor 15 }{B  Unknown 100 
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Risk factor Set 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Risk factor 16 }{C  Unknown Unknown 

Risk factor 17 }{C  Unknown Unknown 

Risk factor 18 }{C  Unknown Unknown 

Risk factor 19 }{C  Unknown Unknown 

Risk factor 20 }{C  Unknown Unknown 

 
Defining the first 

OJ  ( NJO  ) risk factors to be the risk factors in set {O}, we 

determine the average probability and impact values over the “more informed” sets 
and then we assign these values to the “less informed” sets; that is, 

194.0ˆ
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where ip  denotes the realization probability (known or unknown) of risk factor i over 

a given horizon, and 
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where id denotes the expected potential damage (known or unknown) of risk factor i 

over a given horizon. We denote the normalized impact of risk factor i  in sets }{O , 

}{A , }{B , and }{C  by B

i
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ir , respectively: 
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Table 3 shows the result of implementing the above procedures.
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Table 3. Sorted risk factors, along with their likelihoods and potential 

impacts, after assigning averaged values to missing data 

Risk factor 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Normalized 
impact 

Risk factor 1 0.1 2   0.0030622 
Risk factor 2 0.05 1 0.0007655 
Risk factor 3 0.2 4 0.0122488 
Risk factor 4 0.7 10 0.1071770 
Risk factor 5 0.01 20 0.0030622 

Risk factor 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Normalized 
impact 

Risk factor 6 0.3 16.95 0.0778564 
Risk factor 7 0.01 16.95 0.0025952 
Risk factor 8 0.1 16.95 0.0259521 
Risk factor 9 0.27 16.95 0.0700708 

 Risk factor 10 0.2 16.95   0.0519043 

Risk factor 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Normalized 
impact 

Risk factor 11 0.194 0.5 0.0014852 
Risk factor 12 0.194 20 0.0594067 
Risk factor 13 0.194 2 0.0059407 
Risk factor 14 0.194 10 0.0297033 
Risk factor 15 0.194 100 0.2970335 

Risk factor 
Probability of 

occurrence (per 
unit time) 

Impact 

 ( 6
10  NIS) 

Normalized 
impact 

Risk factor 16 0.194 16.95 0.0503472 
Risk factor 17 0.194 16.95 0.0503472 
Risk factor 18 0.194 16.95 0.0503472 
Risk factor 19 0.194 16.95 0.0503472 
Risk factor 20 0.194 16.95 0.0503472 

 
In the next two sections, we demonstrate the effectiveness of the proposed 

stopping-rule algorithm (which, as mentioned, only requires the vector of 
normalized impacts as an input) by implementing it on two real-life case studies: a 
pharmaceutical supply chain and a generalized green supply chain. Based on data 
gathered from the operation of the supply chains, the approach is tested for multiple 
computerized scenarios wherein the scaling coefficient   and the learning 

coefficient   are varied. The results are summarized and analyzed to derive 

managerial insights and suggestions.   
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4. Application in a pharmaceutical supply chain: method and results 

4.1. Pharmaceutical supply chains 

Pharmaceutical supply chains deliver various medical supplies (e.g., drugs) from 
production facilities to wholesalers or directly to pharmacies, clinics, and hospitals. 
According to recent reports (see, for example, Grand View Research, 2020), the 
global pharmaceutical logistics market was valued at USD 69.0 billion in 2019 and is 
expected to increase. The growing competitive pressure associated with the 
globalization of markets, coupled with the rising complexity of deliveries, short 
product lifecycle, and volatility of demand, renders pharmaceutical supply chains 
extremely vulnerable to diverse risks.  

The COVID-19 pandemic has further highlighted the need for agile and robust 
pharmaceutical supply chains, since, unlike many other logistics chains, any risk to 
the operation of the pharmaceutical chain may have a direct effect on end-user 
health and mortality, rather than merely wasting resources. Thus, detecting and 
mitigating the risk factors within pharmaceutical chains is of critical importance. 

We begin by identifying and characterizing the risks, i.e., determining the 
probability of occurrence within a given unit of time and the corresponding impact. A 
common method of obtaining this information is to conduct a questionnaire among 
decision-makers in the field (see, for instance, the works of Breen, 2008; Ouabouch & 
Amri, 2013; and Jaberidoost et al., 2015). Due to the distinct geographical, social, and 
political aspects of a given pharmaceutical supply chain, the risks vary from one 
study to another; yet, numerous risk factors appear to be common to many or all 
supply chains. Based on an analysis of the relevant literature (see, for example, 
Ouabouch & Amri, 2013 and Agorzie et al. 2017), we identified 20 such common risk 
factors, which are presented in Column #1 of Table 4. The practice of identifying the 
common risk factors through a literature survey is well known and has been used in 
various studies. For example, Aloini et al. (2012) reviewed the literature pertaining 
to construction supply chains and identified 13 common risk factors. Ren et al. 
(2022) consulted literature on cold chain disruptions to identify risk factors that may 
potentially cause packaging failure. In this study, to validate the data retrieved from 
the literature, we also talked with experts in the field. In particular, experts from the 
CLALIT Healthcare Maintenance Organization (HMO), the second-largest HMO in the 
world, were involved A similar approach for identifying, appraising, and validating 
the risk factors was adopted in the case of environmentally-oriented supply chains 
(see Section 5). 

Information regarding the probability of occurrence and the impact of each risk 
(see Columns #2 and #3 respectively in Table 4) is presented on a numeric scale 
ranging from 1 to 5, where a rating of one means either a low probability of 
occurrence or a minor impact, while a rating of five has the opposite meaning. The 
greater the likelihood and the impact (i.e., potential damage) of a given risk factor, 
the higher its expected impact. Thus, we calculated the expected impact of each risk 
(Column #4) by multiplying Column #2 by Column #3. The data in Table 4 allow us 
to proceed to the next stage wherein the stopping-rule algorithm is implemented. 
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Table 4. Risk factors in pharmaceutical chains and their scaled 
characteristics (probability of occurrence and impact) 

Risk 
number 

Risk factor f  

(#1) 

Retrieved data (in 
numeric scaled form 
ranging from 1 to 5) 

Expected 
impact 

(#4) 
Probability of 

occurrence 
(#2) 

Impact 
(#3) 

1 
Untimely delivery of products 

to customers 
2.4920 4.1740 10.40161 

2 
Inefficiency in transport 

infrastructure 
2.2280 3.9915 8.89306 

3 
Compliance problems (e.g., 
return of inadequate drugs) 

2.6360 3.0000 7.90800 

4 
Failure of operational 

equipment at company’s 
warehouse 

2.0600 3.0000 6.18000 

5 
Significant decline in market 

prices 
2.4300 3.7695 9.15989 

6 Outage of IT system 2.4480 3.3630 8.23262 

7 
Delivery chain disruptions 
(pandemics, cyber-attacks, 

natural disasters) 
2.1800 3.6000 7.84800 

8 
Accidental product damage 

during loading, unloading, or 
holding procedures 

2.5080 3.0190 7.57165 

9 Supplier quality problems 2.5630 4.3955 11.26567 

10 
Unpredictable regulatory 

trade barrier 
2.3500 3.5300 8.29550 

11 Poor stock visibility 2.9080 3.0840 8.96827 

12 
Unexpected demand 

fluctuations 
2.6870 3.8100 10.23747 

13 
Theft in the stores and the 

delivery sectors 
3.2200 3.6600 11.78520 

14 
Supplier delivery failure 

(incapable supplier) 
2.6240 3.3420 8.76941 

15 
Untimely delivery of products 

by suppliers 
3.1840 3.2580 10.37347 

16 Inventory shortage 3.0370 3.6765 11.16553 

17 
Product expiration along the 

supply chain 
3.3040 4.0240 13.29530 

18 Excess stocking 3.3320 2.9830 9.93936 

19 
Significant increase in 

wholesale prices 
3.0000 3.7300 11.19000 

20 
Lack of personnel within 
inbound and outbound 

logistics 
2.9560 4.1430 12.24671 
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The next step was to use the expected impact values, shown in Column #4 of 

Table 4, to calculate the normalized impact of each risk, ir  (see Table 5). Recall that 

the sum of all normalized impacts is 1. 

 Table 5. Risk factors in a pharmaceutical supply chain and their normalized 
impacts under full information (e.g., historical data) 

Risk 
number 

f  
Normalized 

impact ir  
Risk 

number 
f  

Normalized 

impact ir  

1 

Untimely 
delivery of 
products to 
customers 

0.05369 11 
Poor stock 
visibility 

0.04629 

2 
Inefficiency in 

transport 
infrastructure 

0.04591 12 
Unexpected 

demand 
fluctuations 

0.05284 

3 

Compliance 
problems (e.g., 

return of 
inadequate 

drugs) 

0.04082 13 

Theft in the 
stores and 

the delivery 
sectors 

0.06083 

4 

Failure of 
operational 

equipment at 
company’s 
warehouse 

0.03190 14 

Supplier 
delivery 
failure 

(incapable 
supplier) 

0.04527 

5 
Significant 
decline in 

market prices 
0.04728 15 

Untimely 
delivery of 

products by 
suppliers 

0.05355 

6 
Outage of IT 

system 
0.04250 16 

Inventory 
shortage 

 
0.05764 

7 

Delivery chain 
disruptions 
(pandemics, 

cyber-attacks, 
natural 

disasters) 

0.04051 17 

Product 
expiration 
along the 

supply 
chain 

0.06863 

8 

Accidental 
product 

damage during 
loading, 

unloading, or 
holding 

procedures 

0.03908 18 
Excess 

stocking 
0.05131 

9 
Supplier 
quality 

problems 
0.05815 19 

Significant 
increase in 
wholesale 

prices 

0.05776 
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Risk 
number 

f  
Normalized 

impact ir  
Risk 

number 
f  

Normalized 

impact ir  

10 
Unpredictable 

regulatory 
trade barrier 

0.04282 20 

Lack of 
personnel 

within 
inbound 

and 
outbound 
logistics 

0.06322 

Now, based on the data in Table 5, we use (1) to compute the value of the 
corresponding objective function, )( fZ , where the entropy, )( fH , is computed 

according to   
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1

1

ln

1

)ln()( . By definition, 
=

=
N

i

ir
1

1  and 

)ln()0( NH = . The calculation of the objective function also requires the values of   

and   to be known. Recall that parameter   is a scaling factor. Its exact estimation 

is by no means trivial: first, there is very limited information available to enable its 
evaluation; second, the previous research that has attempted to determine the cost of 
acquiring risk information has shown that this figure varies significantly depending 
on the size of the firm and its operational domain. For instance, cybersecurity risk-
assessment costs may vary from $1,000 to $50,000 (see, Esecurity Solutions, 2021). 
Kirvan (2021) reports that the hourly rate for conducting a risk assessment is in the 
region of $150-$400, which, considering the time needed to complete such an 
analysis (about 40 days; see Biscoe, 2021), yields a total cost of $48,000-$128,000 
(assuming a typical 8-hour workday). Based on these studies, in our sensitivity 
analysis (described below), we set the maximum value of   to $128,000 (or 1.28 

units measured in hundreds of thousands of dollars). However, we first illustrate the 
implementation of our algorithm for the case where the values of   and   are fixed, 

with 2.0=  and 3= . Table 6 shows the value of the objective as a function of the 

decision variable f given the data presented in Table 5.  

Table 6. Value of the objective )( fZ  as a function of the decision variable f  

f  )( fZ  f  )( fZ  f  )( fZ  

0 1.000000 7 1.005809 14 1.063628 

1 0.999978 8 1.009250 15 1.079311 

2 1.000098 9 1.014639 16 1.097320 

3 1.000255 10 1.020917 17 1.117492 
4 0.999784 11 1.028879 18 1.140301 
5 1.001238 12 1.038751 19 1.165935 
6 1.003182 13 1.050435 20 1.194460 

 
To evaluate the effectiveness of the proposed stopping-rule algorithm, we 

introduce the set of performance measures defined in Table 7. 
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Table 7. Performance measures: mod
, ,

el N actual
    

Measure  Meaning  

1
)(

)(
mod

mod −=
antic

el

el
fZ

fZ
  

The gap (in %) between the objective associated with 

the stopping rule, i.e., )(
mod el

fZ , and the anticipative 

optimum, i.e., )(
antic

fZ * 

1
)(

)(
−=

antic

N

N
fZ

fZ
  

The gap (in %) between the objective associated with 

seeking full information, i.e., )(
N

fZ , and the 

anticipative optimum, i.e., )(
antic

fZ   

1
)(

)(
−=

antic

actual

actual
fZ

fZ
  

The gap (in %) between the objective associated with 

seeking actual information, i.e., )(
actual

fZ , and the 

anticipative optimum, i.e., )(
antic

fZ ** 

* The anticipated optimum, )(
antic

fZ , is the optimal solution that is achieved when exact 

information regarding the probabilities of occurrence and impacts of all risks is known in 

advance (e.g., from historical data), whereas )(
mod el

fZ  is the objective that is achieved by 

implementing the proposed algorithm.  

**  The actual number of risk factors to be explored, i.e., 
actual

f , is the value chosen by the 

decision-makers. In practice, when no model is used, such a decision tends to be subjective, 

and thus might be far from 
antic

f .    

 
From Table 6, it straightforwardly follows that the anticipative optimal solution 

(that is, the optimal solution when information about the risks is fully known) is 

obtained at 4=
antic

f , with accordingly 0.999784)( =
antic

fZ , whereas the solution 

that is obtained by implementing the proposed model is 1
mod

=
el

f , with 

0.999978)(
mod

=
el

fZ . To evaluate actual
f , i.e., the number of risk factors that are 

explored in the real-life operation of such supply chains, a small survey was 
conducted among several experts employed by the Health Maintenance Organization 

(HMO) in Israel. The results of this survey led to 17=
actual

f  which, when applied to 

the data in Table 6, yields 1.117492)( =
actual

fZ . Note that the estimate obtained from 

the experts is in line with the results shown in Table 6 in the sense that f  = 17 

serves as a threshold value after which the objective function starts to increase more 
rapidly. This means that seeking additional accurate information about further risk 

factors would be relatively expensive. Having established that 0.999784)( =
antic

fZ , 

0.999978)(
mod

=
el

fZ , and 1.117492)( =
actual

fZ , the performance measures 

Nel  ,mod  and actual  may be calculated (see Table 8).  
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Table 8. Effectiveness of the proposed algorithm relative to other approaches 

Measure  Deviation (%) 

elmod  0.019% 

N  19.472% 

actual  11.773% 

  
Table 8 indicates that the suggested stopping rule has the potential to obtain a 

solution with nearly the same objective value as the anticipative optimal solution, the 
percentage difference being just 0.019%. However, the anticipative optimal solution 
effectively requires full information to be sought, which is less efficient and incurs 
greater monetary costs than implementing the solution obtained by the proposed 
model (specifically, the strategy of seeking full, accurate information is 1.194 times 
more expensive). Table 8 also illustrates the superiority of the proposed model over 
current practice, where information about 17 risk factors is obtained. Specifically, 
the objective under this strategy is approximately 11.773% greater than under the 
proposed model (i.e., stopping rule).  

Naturally, different pharmaceutical supply chains are characterized by different 
values of the parameters   and  . To investigate the effect of varying these 

parameters on the performance measures presented above, a sensitivity analysis 
was conducted. In this analysis,   was varied between 0.0128 and 1.28, in steps of 

0.0128, while   took on values between 0.1 and 4, in increments of 0.1. In total, 

4,000 different scenarios were generated. Figures 1 and 2 depict the impact of 

parameters   and   on the performance measures N  and actual  , respectively.  

The results of the sensitivity analysis show that in approximately 94% of 
scenarios, the optimal solution determined by the proposed algorithm (stopping 
rule) coincides with the anticipative optimal solution (i.e., %0mod =el ). The largest 

deviation is observed for the case where 0128.0=  and 8.1= , with accordingly 

%111.0mod =el . Figure 1 shows that the performance measure N  attains its 

maximum value of %454.127=N  for the case where 28.1=  and 4= , 

whereas its minimum value, %726.0=N , occurs when 0128.0=  and   falls in 

the interval between 0.1 and 1.2, i.e., ]2.1,1.0[ . The last performance indicator, 

actual , reaches its maximum value, %403.125=actual , when 28.1=  and 1.0= , 

and its minimum value (of %465.0=actual ) when 0128.0= and 4=  (see Figure 

2).  
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Figure 1. The effects of   and  on 
N    

  

Figure 2. The effects of   and  on actual  

It may be surprising to some that, as shown in Figures 1 and 2,   has a much 

stronger influence on the performance measures 
N  and 

actual  than  . In 

particular, 
N  increases almost linearly with  , but remains relatively unchanged 

as a function of   (see Figure 1). A more complicated pattern is observed for the 

performance measure 
actual  (see Figure 2); for a given value of  , actual  

exponentially decreases with  . Since parameter   represents a power in the 

proposed objective, its value is likely to be relatively small for most organizations 
(accordingly, a maximum value of less than 4 was used to conduct the sensitivity 
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analysis). Consequently, we expect that the value of the performance measure actual  

will be greater than the value of elmod .   

4.2. The effect of changing the sequence of risk factors 

The above results were obtained under the assumption that the risks are 
sequenced according to the order presented in Table 4. To rule out the possibility 
that the conclusions reached in the previous subsection are valid only for that 
specific sequence, we generated 100,000 random sequences of the same set of risks, 
and present the results in Table 9. 

Table 9. The effect of changing the order of risk factors (summary measures for 
100,000 random sequences) 

 
Proposed 

model
 

Full 
information 

Actual 
practice 

Average performance (in %) 00442.0mod =el   509.19=N  846.11=actual  

Poorest performance (in %) 16269.0mod =el   708.19=N  084.12=actual  

Proportion (in %) of 
sequences for which the 

objective is no more than 
100% greater than the 
anticipative optimum  

100 100 100 

Proportion (in %) of 
sequences for which the 

objective is no more than 
80% greater than the 
anticipative optimum 

100 100 100 

Proportion (in %) of 
sequences for which the 

objective is no more than 
60% greater than the 
anticipative optimum 

100 100 100 

Proportion (in %) of 
sequences for which the 

objective is no more than 
40% greater than the 
anticipative optimum 

100 100 100 

Proportion (in %) of 
sequences for which the 

objective is no more than 
20% greater than the 
anticipative optimum 

100 100 100 

Proportion (in %) of 
sequences for which the 

objective is no more than 
10% greater than the 
anticipative optimum 

100 0 0 

Proportion (in %) of 
sequences for which the 

objective is no more than 5% 
100 0 0 
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Proposed 

model
 

Full 
information 

Actual 
practice 

greater than the anticipative 
optimum 

Proportion (in %) of 
sequences for which the 

objective is no more than 1% 
greater than the anticipative 

optimum 

100 0 0 

Proportion (in %) of 
sequences for which the 

objective is no more than 
0.1% greater than the 
anticipative optimum 

99.681 0 0 

Proportion (in %) of 
sequences for which the 

objective is no more than 
0.01% greater than the 
anticipative optimum 

91.759 0 0 

Proportion (in %) of 
sequences for which the 
objective is equal to the 

anticipative optimum 

89.177 0 0 

 
The results in Table 9 support our earlier conclusions by showing that the specific 

sequence of the risk factors has a relatively small effect on the performance 
measures. In particular, in more than 89% of all sequences, the objective achieved by 
the proposed model matches that of the anticipative optimum. In 100% of all 
sequences, the proposed model obtains an objective that is no more than 1% higher 
(i.e., more expensive) than the objective of the anticipative optimum. Table 9 also 
indicates that the strategy of seeking information about all risks, as well as the 
current strategy used in practice, are relatively inefficient. For these two approaches, 
not a single sequence achieves an objective that is even 1% lower than that of the 
anticipative optimum.   

5. Application in a generalized green supply chain: method and results 

Continuous depletion of natural resources during recent decades, coupled with 
increased air, water, and soil pollution, has caused rapid deterioration in 
environmental sustainability. Consequently, the frequency of natural disasters (e.g., 
earthquakes, floods) has substantially increased, potable water has become 
increasingly scarce, and living conditions have deteriorated. As a part of the 
worldwide effort to improve the current situation, traditional supply chains have 
been forced to revise their operation by adopting new environmentally-oriented 
rules such as environmental purchasing, environmentally-oriented distribution, and 
reverse logistics (see Mangla et al., 2018). By accepting such standards, firms extend 
their responsibility beyond the classical supply-chain operational aspects (e.g., 
avoiding delivery disruptions, ensuring sufficient inventory levels) to novel, 
environmentally-oriented issues (e.g., reducing pollution, product waste, and 
packaging). Non-compliance with these requirements may cause losses of a financial 
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nature or cause significant reputational damage. Since the available assets of firms 
are limited, the main purpose of this subsection is to demonstrate how implementing 
the proposed stopping-rule algorithm may assist a firm in deciding which 
environmental supply-chain issues should be addressed and which may be neglected. 
Non-compliance with an environmental rule may be characterized by two factors: 
the likelihood of the ensuing adverse event (e.g., excessive packaging) and the 
corresponding impact of the event on the firm. Accordingly, we treat these adverse 
events as risk factors.  

We begin by identifying the main sources of risk faced by a firm when operating a 
generalized green supply chain (see Column #1 of Table 10). These risk factors were 
obtained by reviewing the relevant literature, particularly the studies by Giannakis & 
Papadopoulos (2016), Mangla et al. (2018), de Oliveira et al. (2022), Kumar et al. 
(2019), and Medina-Serrano et al. (2021). The reader is referred to Section 2.3.2 for 
detailed descriptions of these papers. Note that rather than focusing on green-related 
risks in a specific industry, we identified the main risk factors based on a review of 
studies from various sectors of the economy (e.g., pharmaceutical, plastics industry). 
This approach was taken because our goal was to investigate the effectiveness of the 
proposed method for a generalized green supply chain, thereby increasing the 
significance of our findings. Such an approach has been employed in many previous 
studies. For instance, Pan & Wu (2014) used generalized stochastic Petri nets (GSPN) 
to simulate a generalized green supply-chain network, while Wibowo (2013) 
developed a fuzzy multi-attribute decision-making approach to tackle a generalized 
green supply-chain performance-evaluation problem. Each risk factor presented in 
Table 10 is accompanied by two attributes: (a) the likelihood of occurrence and (b) 
the corresponding impact (see Columns #2 and #3, respectively). The data in these 
columns are presented in a scaled form with values ranging from 1 (very low 
probability of occurrence or insignificant impact) to 10 (very high probability of 
occurrence or substantial impact). The last column in this table (i.e., #4) is calculated 
by multiplying Column #2 by Column #3 and reflects the expected impact.  

 

Table 10. Generalized green supply-chain risks 

Risk 
number 

Risk factor f  

(#1) 

Acquired data 
Expected 

impact 
(#4) 

Probability 
of 

occurrence 
(#2) 

Impact 
(#3) 

1 
(1) Disturbances in supplying 

green raw materials 
3.0 7.0 21.0 

2 
(2) Lack of collaborative 

relationships in adopting green 
practices 

3.0 5.0 15.0 

3 
(3) Excessive or unnecessary 

packaging 
5.5 6.7 36.9 

4 
(4) Failure of government 

policies (lack of environmental 
policies and regulations) 

4.0 5.0 20.0 

5 
(5) Deficiency in the green 

technology level required to 
achieve “going green” policies 

7.0 8.0 56.0 

6 (6) Lack of environmental 6.0 7.0 42.0 
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Risk 
number 

Risk factor f  

(#1) 

Acquired data 
Expected 

impact 
(#4) 

Probability 
of 

occurrence 
(#2) 

Impact 
(#3) 

standards and certifications 
(e.g., ISO, RoHS) 

7 
(7) Scarcity of labor with the 

necessary knowledge in green 
operations and activities 

7.0 9.0 63.0 

8 

(8) Cost ineffective 
development (adoption of 

more expensive green 
practices) 

8.0 7.0 56.0 

9 
(9) Reverse logistics related 

disruptions 
8.0 8.0 64.0 

10 

(10) Green issues while closing 
the loop of the GSC (gate-

keeping policy issues regarding 
the returned products) 

8.0 9.0 72.0 

11 
(11) Environmental accidents 

(e.g., fires, explosions) 
8.5 4.9 41.7 

12 (12) Pollution (air, water, soil) 8.0 6.9 55.2 

13 (13) Product waste 5.6 5.0 28.0 

14 
(14) Disturbances due to 

climate change (e.g., 
earthquakes, floods) 

8.8 5.3 46.6 

15 
(15) Inventory related 

disruptions (e.g., product 
unavailability) 

8.0 3.0 24.0 

16 
(16) Inefficient use of materials 

and energy 
7.0 6.9 48.3 

17 
(17) Legal risks (e.g., litigation 

claims) 
6.9 3.0 20.7 

18 (18) Water scarcity 6.8 4.0 27.2 

19 
(19) Limited 

flexibility/Capacity disruptions 
8.0 6.0 48.0 

20 
(20) Market dynamics (e.g., 

financial crisis, boycotts) 
8.5 5.3 45.1 

 

The identification and characterization of the relevant risk factors is just the first 
step in the risk-management procedure. Since the available resources of a firm for 
risk mitigation are limited, decision-makers need to decide how to optimally use 
them – that is, which risks should be addressed and which may be overlooked (due 
to either low probability of occurrence or insignificant damage). Various techniques 
have been developed to achieve this goal. Among the most popular and widely used 
is the Pareto rule (see, for instance, Giannakis & Papadopoulos, 2016), according to 
which all risks faced by the firms are sorted in descending order of expected impact. 
That is, the higher the expected impact of the risk, the higher its rank in the risk 
hierarchy, and consequently, the greater the effort that should be expended in 
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mitigating it. It is practical to separate the ranked list into a number of groups (e.g., 
three), where the first group (named A) includes the risks that together account for 
approximately 80% of the total impact, the second group (named B) includes the 
risks that will increase the accumulated impact to approximately 95%, and the last 
group (named C) consists of the remaining risks. Such a practice is widely used in 
inventory management and many other areas (see, for instance, Wild, 2017). 
Applying the Pareto rule to the data in Table 10 leads to the classification of the risks 
presented in Table 11. 

Table 11. Pareto classification 

Risk factor f  

 (#1) 

Expected impact     
(in descending order)  

(#2) 

Aggregated 
Impact 
 (#3) 

Aggregated 
impact as a % of 
the total impact 

(#4) 

Group 
(#5) 

10 72 72 8.7% A 

9 64 136 16.4% A 

7 63 199 24.0% A 
5 56 255 30.7% A 
8 56 311 37.4% A 

12 55.2 366.2 44.1% A 
16 48.3 414.5 49.9% A 
19 48 462.5 55.7% A 
14 46.64 509.14 61.3% A 
20 45.05 554.19 66.7% A 
6 42 596.19 71.8% A 

11 41.65 637.84 76.8% A 
3 36.85 674.69 81.2% A 

13 28 702.69 84.6% B 
18 27.2 729.89 87.9% B 
15 24 753.89 90.8% B 
1 21 774.89 93.3% B 

17 20.7 795.59 95.8% B 
4 20 815.59 98.2% C 
2 15 830.59 100.0% C 

 

Having completed this step, the decision-makers are aware of which risks are 
most dangerous for the firm (i.e., group A) and which may be neglected if the 
available resources are not sufficient (i.e., groups B-C). The simplicity and efficiency 
of the Pareto rule have not been called into question in the risk-management 
literature, and so the legitimate question arises: how does the proposed stopping 
rule compare with the Pareto rule, both in terms of performance and methodology?  

For its successful implementation, the Pareto method requires as input all 
relevant data regarding a given risk factor, i.e., its probability of occurrence and its 
impact. However, in practice, it is highly unlikely that these data are known a priori 
for all risk factors. Usually, the firm needs to expend considerable effort in acquiring 
such information. Given that the total budget allocated to risk management tends to 
be limited, the resources available to mitigate risk will be diminished due to the 
substantial prior investment in revealing accurate information about all risks. The 
lack of resources for risk prevention or elimination could cause the firm to suffer 
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losses if untreated risks are realized. For this reason, in contrast to the Pareto 
method, the proposed algorithm is based on the premise that revealing information 
about only a subset of the entire set of risks is more efficient. To illustrate this claim, 
we conduct a numerical experiment based on the data presented in Table 12.  

Table 12. Input data for comparison between proposed algorithm and Pareto 
rule 

Parameter Description 
Initial 
value 

  
Coefficient used to characterize the specifications of a 

given supply chain 
3 

1TB  
Theoretical expenditure associated with acquiring 
accurate information regarding the probabilities of 

occurrence and severities of all risk factors ( N ) 
3.5* 

2TB  
Total costs associated with the efforts toward 

avoiding or reducing the consequences of all risk 

factors ( N ) 
5.4* 

TB  
Total available budget allocated by the firm for risk 

management, 21 TBTBTB +  
7.1* 

iED  Expected impact of untreated risk i , ]..1[ Ni  
See 

Column #4 
in Table 10  

* Stated in conventional monetary units (depending on the firm’s size, these units may 
vary from thousands to hundreds of thousands of dollars) 

 
Recall that the goal of the decision-makers is to decide how to optimally allocate a 

limited budget, TB , such that the overall expenditure (denoted by TC ) associated 

with risk management will be minimized, where TC  includes the costs of: (a) 

acquiring exact information (i.e., the probability of occurrence and impact) for f  

risks, Nf  , where f  is an unknown that needs to be determined; (b) 

implementing mitigation strategies for 1f  risk factors, ff 1
, where 1f  is also an 

unknown that needs to be determined; and (c) the expected damage resulting from 

the remaining 
1fN −  untreated risks. In cost terms, the three components of TC  may 

be expressed as 











N

f
TB1

(see equation (1) wherein 1TB= ), 








N

f
TB 1

2
, and 


+=

N

fi

iED
11

, respectively. Given that f  and 1f  should be chosen so as to minimize TC  

subject to the limited budget TB , the following mathematical model represents our 
formulation:    
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
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
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= 
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.

),(

1





                                (4) 

Based on model (4), we first calculate ),( 1ffTC  for the Pareto rule. Recall again 

that for Pareto implementation, accurate information about all risk factors needs to 
be known in advance. That is, Nf =  which, with respect to the constraint in (4), 

implies that 1f  should satisfy 
2

1
1

)(

TB

NTBTB
f

−
  and 1fN −  risks will remain 

untreated. We then substitute into (4) the data given in Table 11 for 
1,TBTB and 

2TB , as well as the data for iED  from Table 10, which leads to the results 

summarized in Table 13. Note that for computational purposes, we express the 

values of the expected impact of the risk i , i.e., 
iED  (see Column #4 in Table 10), 

in the format 2
10*

−

iED . 

Table 13. The solution obtained using the Pareto rule 

1
f  

(#1) 

Treated risk factors * 

(#2) 

*

1
( 20, )TC f f=  

(#3) 

Utilized budget 
(in %) 

1
1 2

/
f

TB TB TB
N

  
+   

  

 

(#4) 
 

1 10 11.356 53.1% 
2 10, 9 10.986 56.9% 
3 10, 9, 7 10.626 60.7% 
4 10, 9, 7, 5 10.336 64.5% 
5 10, 9, 7, 5, 8 10.046 68.3% 
6 10, 9, 7, 5, 8, 12 9.764 72.1% 
7 10, 9, 7, 5, 8, 12, 16 9.551 75.9% 
8 10, 9, 7, 5, 8, 12, 16, 19 9.341 79.7% 
9 10, 9, 7, 5, 8, 12, 16, 19, 14 9.145 83.5% 

10 10, 9, 7, 5, 8, 12, 16, 19, 14, 20 8.964 87.3% 
11 10, 9, 7, 5, 8, 12, 16, 19, 14, 20, 6 8.814 91.1% 
12 10, 9, 7, 5, 8, 12, 16, 19, 14, 20, 6, 11 8.668 94.9% 
13 10, 9, 7, 5, 8, 12, 16, 19, 14, 20, 6, 11, 3 8.569 98.7% 

* The risks and their corresponding order are the same as in Table 10. Note that the 
description of each risk may be found in Column #1 of Table 10.  

 
 The results in Table 13 may be interpreted as follows: Assume that the firm 

decides to allocate a total budget of 1.7=TB  (see Table 12) for the task of risk 
management. Since the implementation of the Pareto rule requires that 

20
*

== Nf , this means that the firm needs to pay a total of 5.31 =TB (see Table 
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12) to acquire accurate information about all risks. Consequently, the assets that 
remain available for mitigation efforts are reduced to 6.31 =−TBTB . Given that the 

total costs associated with the efforts toward avoiding/reducing the consequences of 
all risk factors is 4.52 =TB  (see Table 12), and since 6.31 =−TBTB , the firm is able 

to deal with a maximum of 
1

13f =  risks, thereby utilizing 98.7% of its total budget 

(see Column #4 in Table 13). Referring to Table 11, this means that the firm can, in 
principle, treat all risks with the highest expected impact, i.e., those that belong to 
risk-group A, while absorbing the expected damage from the remaining risks. The 
decision-makers may also choose to apply mitigation efforts to fewer risk factors, i.e., 

1
13f  , which, on the one hand, will reduce the cost 









N

f
TB 1

2
, while on the other 

hand, will lead to an increase in the expenses associated with the expected impact of 

the untreated risks, i.e., 
+=

N

fi

iED

1
*

1

. Obviously, different choices of 
1

f  will result in 

different values of the objective function *

1
( 20, )TC f f= , as shown in Column #3 

of Table 13.  The table also shows that increasing the budget utilization (Column #4) 
achieves lower overall costs (Column #3). In particular, to minimize the total cost, 

the decision-makers should choose *

1
13f = , associated with the highest budget 

utilization. 

Next, we calculate the objective function ),( 1ffTC  under the application of the 

proposed stopping rule. To this end, based on Table 10, we first compute the 

normalized impact, i.e., 
ir  , of each risk factor. The results are presented in Table 14, 

wherein the order of the risks is the same as in Table 10. 

Table 14. Risk factors and their normalized impacts under full information 

f  
Normalized 

impact ir  
f  

Normalized 

impact ir  

1 0.025283 11 0.050145 

2 0.018059 12 0.066459 

3 0.044366 13 0.033711 

4 0.024079 14 0.056153 
5 0.067422 15 0.028895 
6 0.050566 16 0.058151 
7 0.075850 17 0.024922 
8 0.067422 18 0.032748 
9 0.077054 19 0.057790 

10 0.086685 20 0.054240 
 

Then, given that 5.31 ==TB  and 3=  (see Table 12), and using equation (1), 

we compute the value of the objective function )( fZ , which is shown in Table 15. 
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Table 15. Value of the objective )( fZ  

f  )( fZ  f  )( fZ  f  )( fZ  
0 1.000000 7 1.136824 14 2.178037 
1 0.997835 8 1.210144 15 2.453100 
2 0.995898 9 1.303187 16 2.767857 
3 1.003940 10 1.417610 17 3.123493 
4 1.016525 11 1.562365 18 3.524221 
5 1.042785 12 1.734508 19 3.973515 
6 1.082540 13 1.939259 20 4.472702 

From Table 15, it is immediately apparent that the objective function attains its 

minimal value when 2
*
=f , with 0.995898)(

*
=fZ . It is worth noting that the 

optimal solution of the model coincides with the optimal anticipative solution (that 
is, the solution when full data about the probabilities of occurrence and severities of 
the risks are known in advance). The solution means that information is sought, and 
mitigation efforts are expended, for the first two risks only. To calculate the total cost 
of such a solution, we again use the objective function in (4). In particular, 

substituting 2
*

1

*
== ff  into (4) yields 489.8)2,2(

*

1

*
=== ffTC . Note also that 

2
*

1

*
== ff  constitutes a feasible solution since the constraint in (4) is satisfied. 

One can easily verify that the solution determined by the proposed stopping rule 
is superior to that obtained by implementing the Pareto rule. To illustrate this, we 
compute the percentage difference between the objective function obtained using 

the Pareto rule (which varies as a function of *

1f ), i.e., ),20(
*

1

*
ffTC = , and the 

objective function achieved by the proposed algorithm, 489.8)2,2(
*

1

*
=== ffTC . 

The results are presented in Table 16. Interestingly, the budget utilization  

1
1 2

22
/

ff
TB TB TB

N N

 ==   
+    

     

 for the solution based on the stopping rule is only 

7.65%, which is considerably lower than the budget utilization when employing the 
benchmark method, i.e., 98.7%. 

It can be seen from Table 11 that the risk classification for this example does not 
follow a clear Pareto principle in which approximately 80% of the consequences 
originate from 20% of the causes (see, for instance, Kim et al., 2017 and Ziyadin et al., 
2020) among many others). According to Giannakis & Papadopoulos (2016), 
situations such as that shown in Table 11 may arise when supply-chain risks are 
diverse and when multiple decision-makers take part in the estimation of risk 
consequences. Under these circumstances, the perceived importance of the risks 
becomes homogeneously spread, and accordingly, the Pareto rule is violated. This 
means that in some real-life situations, the relative size of set A is likely to be much 
smaller than in our example. Consequently, the gap between the two methods would 

be even greater than 0.94% (since 1f
* would be smaller than 13) – probably in the 

region of 15%. 
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 Table 16. Superiority of the proposed algorithm over the Pareto rule 

Pareto rule 
1

)2,2(

),20(
*

1

*

*

1

*

−
==

=

ffTC

ffTC  (in %) 
1f

* ),20(
*

1

*
ffTC =  

1 11.356 33.77% 
2 10.986 29.41% 
3 10.626 25.17% 
4 10.336 21.75% 
5 10.046 18.33% 
6 9.764 15.01% 
7 9.551 12.50% 
8 9.341 10.03% 
9 9.145 7.72% 

10 8.964 5.59% 
11 8.814 3.82% 
12 8.668 2.10% 
13 8.569 0.94% 

6. Discussion 

6.1. Summary and conclusions 

An unpredictable and frequently changing business environment requires firms 
to be aware of the current risks that may have a significant impact on their operation. 
Addressing all risks is not cost effective and is also likely to be infeasible. We 
contribute to the relatively modest literature presenting empirical evidence on 
efficient and effective risk mitigation in supply chains under the assumption of a 
limited budget. By assuming a continuous setting, we develop a relatively simple 
stopping rule in which the algorithm stops acquiring exact information about risk 
factors at the point where acquiring such information for the subsequent risk factor 
would cause the cost objective to increase for the first time.  

Our computational analyses indicate that the proposed model is a highly effective 
tool that achieves superior results to other techniques utilized in the domain of risk 
management. In particular, we find that the total cost of risk management is lower 
for the proposed model than for the widely used Pareto algorithm. Moreover, we find 
that for approximately 94% of all investigated cases, the stopping-rule algorithm 
coincides with the anticipative optimal solution, which is never worse than the 
optimal solution. By generating 100,000 random sequences of the same set of risks, 
we show that in 99.681 % of sequences, the objective is no more than 0.1% greater 
than the anticipative optimum. The conclusion is that changing the sequence of risk 
factors has a relatively small effect on the results. 

6.2. Managerial implications 

It may be surprising to some to learn that, for both of the applications 
investigated in this study, the optimal number of risk factors to be fully explored is, 
according to our model, very small. This not only results in a significant monetary 
saving (relative to the traditional approach), but also reduces the time spent on risk 
management. 
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Our model assumes that the risk factors should be prioritized solely on the basis 
of their likelihood and their impact (i.e., potential damage). Decision-makers who 
wish to include additional considerations (e.g., subjective preference) may alter the 
initial set of risk factors and run the stopping rule again. Given that our analysis 
shows, through the above computational runs that the specific sequence of the risk 
factors has a relatively small effect on the performance measures, it is expected that 
the efficiency of our model would not deteriorate significantly by including 
additional considerations.  

For the generalized green supply chain, the budget utilization according to the 
solution based on the stopping rule is less than 10% of the budget utilization under 
the benchmark method. Risk-management teams may find this to be an appealing 
feature, especially when monetary resources are low. 

6.3. Future research avenues 

The stopping rule is empirically tested using real-life data gathered from the 
operation of pharmaceutical supply chains and supply chains with generalized, 
green-related risks. These two applications are characterized by numerous risk 
factors, and efficient management of their risks is crucial to society. Applying the 
proposed algorithm to other supply chains, such as perishable food or the fashion 
industry, would be a worthwhile avenue for future research. 

The suggested stopping rule (which is effectively a substitute for the unknown 
optimal solution of the model) involves a very simple procedure: if the objective does 
not increase in value, the subsequent risk factor should be added to the list of risk 
factors for which full information is pursued. Thus, the complexity of the suggested 
algorithm is O(N), meaning that many risk factors can be handled within a very short 
computational time. The efficiency achieved for very large projects, are suggested as 
avenues for future research. 

Author Contributions: Research problem, A.H.; Methodology, A.H; Formal Analysis, 
A.H., D.T.; Writing – Original Draft Preparation, A.H., D.T.; Writing - Review & Editing, 

A.H., D.T. Both authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Not Applicable 

Acknowledgments: The author would like to thank the editors and anonymous 
reviewers for commenting on earlier versions of this paper. 

Conflicts of Interest: The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence the work reported 

in this paper. 

References  

Agorzie, C. J., Agorzie, C. J., Monday, J. U., & Aderemi, H. O. (2017). Supply Chain Risk 
Factors’ Assessment in the Nigerian Pharmaceutical Industry. European Journal of 
Business and Management, 9(17), 130–138. 
https://www.iiste.org/Journals/index.php/EJBM/article/view/37380 



An efficient stopping rule for mitigating risk factors: applications in pharmaceutical … 

1029 

Alharthi, A., Krotov, V., & Bowman, M. (2017). Addressing barriers to big data. 
Business Horizons, 60(3), 285–292. https://doi.org/10.1016/j.bushor.2017.01.002 

Aloini, D., Dulmin, R., Mininno, V., & Ponticelli, S. (2012). Supply chain management: 
A review of implementation risks in the construction industry. Business Process 
Management Journal, 18(5), 735–761. 
https://doi.org/10.1108/14637151211270135 

Araz, O. M., Choi, T.-M., Olson, D. L., & Salman, F. S. (2020). Data Analytics for 
Operational Risk Management. Decision Sciences, 51(6), 1316–1319. 
https://doi.org/10.1111/deci.12443 

Azizsafaei, M., Sarwar, D., Fassam, L., Khandan, R., & Hosseinian-Far, A. (2021). A 
Critical Overview of Food Supply Chain Risk Management. Advanced Sciences and 
Technologies for Security Applications, 413–429. https://doi.org/10.1007/978-3-
030-68534-8_26 

Biscoe, C. (2021). How long does an ISO 27001 risk assessment take? 
https://www.vigilantsoftware.co.uk/blog/how-long-does-an-iso-27001-risk-
assessment-take 

Bø, E., Hovi, I. B., & Pinchasik, D. R. (2023). COVID-19 disruptions and Norwegian 
food and pharmaceutical supply chains: Insights into supply chain risk management, 
resilience, and reliability. Sustainable Futures, 5, 100102. 
https://doi.org/10.1016/j.sftr.2022.100102 

Breen, L. (2008). A Preliminary Examination of Risk in the Pharmaceutical Supply 
Chain (PSC) in the National Health Service (NHS). Journal of Service Science and 
Management, 01(02), 193–199. https://doi.org/10.4236/jssm.2008.12020 

Cao, X.-R., Wang, D.-X., & Qiu, L. (2014). Partial-Information State-Based Optimization 
of Partially Observable Markov Decision Processes and the Separation Principle. 
IEEE Transactions on Automatic Control, 59(4), 921–936. 
https://doi.org/10.1109/TAC.2013.2293397 

Chen, I. F., Kuo, P. Y., Tsaur, R. C., Sarkar, S., & Huang, S. C. (2022). Risk Analysis of 
Green Supply Chain Using a Hybrid Multi-Criteria Decision Model: Evidence from 
Laptop Manufacturer Industry. Axioms, 11(12), 668. 
https://doi.org/10.3390/axioms11120668 

CIPS. (2013). Supply Chain Vulnerability. In Chartered Institute of Procuement and 
Supply Kwowledge Works (Issue January). 
https://www.pc.gov.au/__data/assets/pdf_file/0004/275440/sub007-supply-
chains.pdf 

Dadsena, K. K., Sarmah, S. P., Naikan, V. N. A., & Jena, S. K. (2019). Optimal budget 
allocation for risk mitigation strategy in trucking industry: An integrated approach. 
Transportation Research Part A: Policy and Practice, 121, 37–55. 
https://doi.org/10.1016/j.tra.2019.01.007 

de Oliveira, U. R., Muniz, M. de A., Anaia, L. A., & Rocha, H. M. (2022). Medication 
supply chain risk management for a brazilian home care provider: a business 
sustainability study. Cleaner Logistics and Supply Chain, 3, 100018. 
https://doi.org/10.1016/j.clscn.2021.100018 

Diabat, A., Govindan, K., & Panicker, V. V. (2012). Supply chain risk management and 
its mitigation in a food industry. International Journal of Production Research, 



 Herbon & Tsadikovich/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 994-1034 

1030 

50(11), 3039–3050. https://doi.org/10.1080/00207543.2011.588619 

Dohale, V., Verma, P., Gunasekaran, A., & Ambilkar, P. (2023). COVID-19 and supply 
chain risk mitigation: a case study from India. International Journal of Logistics 
Management, 34(2), 417–442. https://doi.org/10.1108/IJLM-04-2021-0197 

Dua, S., Sharma, M. G., Mishra, V., & Kulkarni, S. D. (2023). Modelling perceived risk in 
blockchain enabled supply chain utilizing fuzzy-AHP. Journal of Global Operations 
and Strategic Sourcing, 16(1), 161–177. https://doi.org/10.1108/JGOSS-06-2021-
0046 

Duong, T. T., Brewer, T., Luck, J., & Zander, K. (2019). A global review of farmers’ 
perceptions of agricultural risks and risk management strategies. Agriculture 
(Switzerland), 9(1), 10. https://doi.org/10.3390/agriculture9010010 

El Baz, J., & Ruel, S. (2021). Can supply chain risk management practices mitigate the 
disruption impacts on supply chains’ resilience and robustness? Evidence from an 
empirical survey in a COVID-19 outbreak era. International Journal of Production 
Economics, 233, 107972. https://doi.org/10.1016/j.ijpe.2020.107972 

Esecurity Solutions, E. (2021). Cybersecurity Risk Assessments - What to Expect. 
www.esecuritysolutions.com/expect-security-risk-assessment 

Fan, Y., & Stevenson, M. (2018). A review of supply chain risk management: 
definition, theory, and research agenda. International Journal of Physical Distribution 
and Logistics Management, 48(3), 205–230. https://doi.org/10.1108/IJPDLM-01-
2017-0043 

Gao, S., Lim, M. K., Qiao, R., Shen, C., Li, C., & Xia, L. (2022). Identifying critical failure 
factors of green supply chain management in China’s SMEs with a hierarchical cause–
effect model. Environment, Development and Sustainability, 24(4), 5641–5666. 
https://doi.org/10.1007/s10668-021-01675-8 

Giannakis, M., & Papadopoulos, T. (2016). Supply chain sustainability: A risk 
management approach. International Journal of Production Economics, 171, 455–
470. https://doi.org/10.1016/j.ijpe.2015.06.032 

Grand View Research. (2021). Pharmaceutical Logistics Market Size, Share & Trends 
Analysis Report By Type (Cold Chain Logistics, Non-cold Chain Logistics), By 
Component (Storage, Transportation, Monitoring Components), By Region, And 
Segment Forecasts, 2023 - 2030. https://www.grandviewresearch.com/industry-
analysis/pharmaceutical-logistics-market 

Hendayani, R., Rahmadina, E., Anggadwita, G., & Pasaribu, R. D. (2021). Analysis of 
the House of Risk (HOR) Model for Risk Mitigation of the Supply Chain Management 
Process (Case Study: KPBS Pangalengan Bandung, Indonesia). 2021 9th International 
Conference on Information and Communication Technology, ICoICT 2021, 13–18. 
https://doi.org/10.1109/ICoICT52021.2021.9527526 

Herbon, A., Khmelnitsky, E., Maimon, O., & Yakubov, Y. (2003). Reduction of future 
information required for optimal control of dynamic systems: A pseudostochastic 
model. IEEE Transactions on Automatic Control, 48(6), 1025–1029. 
https://doi.org/10.1109/TAC.2003.812789 

Herbon, A., Levner, E., Hovav, S., & Shaopei, L. (2012). Selection of Most Informative 
Components in Risk Mitigation Analysis of Supply Networks : An Information-Gain 
Approach. International Journal of Innovation, Management and Technology, 3(3), 



An efficient stopping rule for mitigating risk factors: applications in pharmaceutical … 

1031 

267. 

Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A 
literature review. International Journal of Production Research, 53(16), 5031–5069. 
https://doi.org/10.1080/00207543.2015.1030467 

Jaberidoost, M., Olfat, L., Hosseini, A., Kebriaeezadeh, A., Abdollahi, M., Alaeddini, M., 
& Dinarvand, R. (2015). Pharmaceutical supply chain risk assessment in Iran using 
analytic hierarchy process (AHP) and simple additive weighting (SAW) methods. 
Journal of Pharmaceutical Policy and Practice, 8(1), 1–10. 
https://doi.org/10.1186/s40545-015-0029-3 

Jain, E. C. (2021). Shortage of everything: How Covid-19 exposed the vulnerability in 
modern global supply chains. The Economic Times. 
https://economictimes.indiatimes.com/small-biz/trade/exports/logistics/shortage-
of-everything-how-covid-19-exposed-the-vulnerability-in-modern-global-supply-
chains/articleshow/85320950.cms?utm_source=contentofinterest&utm_medium=te
xt&utm_campaign=cppst. 

Jonathan, E. C., Mafini, C., & Bhadury, J. (2020). Supply chain risk mitigation in South 
Africa: a case study of Eskom. Benchmarking, 27(3), 1105–1125. 
https://doi.org/10.1108/BIJ-06-2019-0261 

Jüttner, U. (2005). Supply chain risk management: Understanding the business 
requirements from a practitioner perspective. The International Journal of Logistics 
Management, 16(1), 120–141. https://doi.org/10.1108/09574090510617385 

Khorram, S. (2020). A novel approach for ports’ container terminals’ risk 
management based on formal safety assessment: FAHP-entropy measure—VIKOR 
model. Natural Hazards, 103(2), 1671–1707. https://doi.org/10.1007/s11069-020-
03976-z 

Khosravi-Farmad, M., & Ghaemi-Bafghi, A. (2020). Bayesian Decision Network-Based 
Security Risk Management Framework. Journal of Network and Systems 
Management, 28(4), 1794–1819. https://doi.org/10.1007/s10922-020-09558-5 

Kim, B. J., Singh, V., & Winer, R. S. (2017). The Pareto rule for frequently purchased 
packaged goods: an empirical generalization. Marketing Letters, 28(4), 491–507. 
https://doi.org/10.1007/s11002-017-9442-5 

Kirvan, P. (2021). How do risk assessment costs vary and why? 
https://searchdisasterrecovery.techtarget.com/answer/How-do-risk-assessment-
costs-vary-and-why 

Kraev, V. M., & Tikhonov, A. I. (2019). Risk management in human resource 
management. TEM Journal, 8(4), 1185–1190. https://doi.org/10.18421/TEM84-11 

Kumar, A., Zavadskas, E. K., Mangla, S. K., Agrawal, V., Sharma, K., & Gupta, D. (2019). 
When risks need attention: adoption of green supply chain initiatives in the 
pharmaceutical industry. International Journal of Production Research, 57(11), 
3554–3576. https://doi.org/10.1080/00207543.2018.1543969 

Laumanns, M., & Lefeber, E. (2006). Robust optimal control of material flows in 
demand-driven supply networks. Physica A: Statistical Mechanics and Its 
Applications, 363(1), 24–31. https://doi.org/10.1016/j.physa.2006.01.045 

Lawrence, J. M., Hossain, N. U. I., Nagahi, M., & Jaradat, R. (2019). Impact of a cloud-



 Herbon & Tsadikovich/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 994-1034 

1032 

based applied supply chain network simulation tool on developing systems thinking 
skills of undergraduate students. Proceedings of the International Conference on 
Industrial Engineering and Operations Management, 878–889. 

Lawrence, J. M., Ibne Hossain, N. U., Jaradat, R., & Hamilton, M. (2020). Leveraging a 
Bayesian network approach to model and analyze supplier vulnerability to severe 
weather risk: A case study of the U.S. pharmaceutical supply chain following 
Hurricane Maria. International Journal of Disaster Risk Reduction, 49, 101607. 
https://doi.org/10.1016/j.ijdrr.2020.101607 

Mangla, S. K., Luthra, S., & Jakhar, S. (2018). Benchmarking the risk assessment in 
green supply chain using fuzzy approach to FMEA: Insights from an Indian case 
study. Benchmarking, 25(8), 2660–2687. https://doi.org/10.1108/BIJ-04-2017-
0074 

Manuj, I., & Mentzer, J. T. (2008). Global Supply Chain Risk Management. Journal of 
Business Logistics, 29(1), 133–155. https://doi.org/10.1002/j.2158-
1592.2008.tb00072.x 

Mavi, R. K., Goh, M., & Mavi, N. K. (2016). Supplier Selection with Shannon Entropy 
and Fuzzy TOPSIS in the Context of Supply Chain Risk Management. Procedia - Social 
and Behavioral Sciences, 235, 216–225. 
https://doi.org/10.1016/j.sbspro.2016.11.017 

Medina-Serrano, R., González-Ramírez, R., Gasco-Gasco, J., & Llopis-Taverner, J. 
(2021). How to evaluate supply chain risks, including sustainable aspects? A case 
study from the German industry. Journal of Industrial Engineering and Management, 
14(2), 120–134. https://doi.org/10.3926/jiem.3175 

Menzies, T., & Sinsel, E. (2000). Practical large scale what-if queries: Case studies 
with software risk assessment. Proceedings ASE 2000: 15th IEEE International 
Conference on Automated Software Engineering, 165–173. 
https://doi.org/10.1109/ASE.2000.873661 

Moktadir, M. A., Ali, S. M., Paul, S. K., & Shukla, N. (2019). Barriers to big data analytics 
in manufacturing supply chains: A case study from Bangladesh. Computers and 
Industrial Engineering, 128, 1063–1075. https://doi.org/10.1016/j.cie.2018.04.013 

Nakandala, D., Lau, H., & Zhao, L. (2017). Development of a hybrid fresh food supply 
chain risk assessment model. International Journal of Production Research, 55(14), 
4180–4195. https://doi.org/10.1080/00207543.2016.1267413 

Norrman, A., & Jansson, U. (2004). Ericsson’s proactive supply chain risk 
management approach after a serious sub-supplier accident. International Journal of 
Physical Distribution and Logistics Management, 34(5), 434–456. 
https://doi.org/10.1108/09600030410545463 

Oke, A., & Gopalakrishnan, M. (2009). Managing disruptions in supply chains: A case 
study of a retail supply chain. International Journal of Production Economics, 118(1), 
168–174. https://doi.org/10.1016/j.ijpe.2008.08.045 

Ouabouch, L., & Amri, M. (2013). Analysing Supply Chain Risk Factors: A Probability-
Impact Matrix Applied to Pharmaceutical Industry. Journal of Logistics M Anagement, 
2(2), 35–40. https://doi.org/10.5923/j.logistics.20130202.01 

Pan, M., & Wu, W. (2014). A Petri net approach for green supply Chain network 
modeling and performance analysis. Lecture Notes in Business Information 



An efficient stopping rule for mitigating risk factors: applications in pharmaceutical … 

1033 

Processing, 171 171 LNBIP, 330–341. https://doi.org/10.1007/978-3-319-06257-
0_26 

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: 
Development and implementation of an assessment tool. Journal of Business 
Logistics, 34(1), 46–76. https://doi.org/10.1111/jbl.12009 

Pine, K. H., Lee, M., Whitman, S. A., Chen, Y., & Henne, K. (2021). Making sense of risk 
information amidst uncertainty: Individuals’ perceived risks associated with the 
covid-19 pandemic. Conference on Human Factors in Computing Systems - 
Proceedings, 1–15. https://doi.org/10.1145/3411764.3445051 

Prakash, S., Soni, G., Rathore, A. P. S., & Singh, S. (2017). Risk analysis and mitigation 
for perishable food supply chain: a case of dairy industry. Benchmarking, 24(1), 2–
23. https://doi.org/10.1108/BIJ-07-2015-0070 

Puertas, R., Marti, L., & Garcia-Alvarez-coque, J. M. (2020). Food supply without risk: 
Multicriteria analysis of institutional conditions of exporters. International Journal of 
Environmental Research and Public Health, 17(10), 3432. 
https://doi.org/10.3390/ijerph17103432 

Qazi, A., Dickson, A., Quigley, J., & Gaudenzi, B. (2018). Supply chain risk network 
management: A Bayesian belief network and expected utility based approach for 
managing supply chain risks. International Journal of Production Economics, 196, 
24–42. https://doi.org/10.1016/j.ijpe.2017.11.008 

Ren, T., Ren, J., & Matellini, D. (2022). A cold chain packaging risk management 
system based on Bayesian Network. … Journal of Mechanical and …, 10(10), 35–44. 
http://researchonline.ljmu.ac.uk/id/eprint/18704/%0Ahttps://researchonline.ljmu
.ac.uk/id/eprint/18704/1/2-858-167228960035-44.pdf 

Rios, E., Rego, A., Iturbe, E., Higuero, M., & Larrucea, X. (2020). Continuous 
quantitative risk management in smart grids using attack defense trees. Sensors 
(Switzerland), 20(16), 1–25. https://doi.org/10.3390/s20164404 

Sabila, N. N., Profita, A., & Sukmono, Y. (2022). The application of fuzzy FMEA and 
TOPSIS methods in agricultural supply chain risk management (Case Study: 
Kabupaten Paser). Teknika: Jurnal Sains Dan Teknologi, 18(1), 23. 
https://doi.org/10.36055/tjst.v18i1.14260 

Salehi Heidari, S., Khanbabaei, M., & Sabzehparvar, M. (2018). A model for supply 
chain risk management in the automotive industry using fuzzy analytic hierarchy 
process and fuzzy TOPSIS. Benchmarking, 25(9), 3831–3857. 
https://doi.org/10.1108/BIJ-11-2016-0167 

Shakeri, M., Zarei, A., Azar, A., Maleki, M., & Razgah, M. (2020). Green Supply Chain 
Risk Network Management and Performance Analysis : Bayesian Belief Network 
Modeling. Environmental Energy and Economic Research, 4(3), 165–183. 
https://doi.org/10.22097/EEER.2020.215399.1134 

Sharma, A., Kumar, D., & Arora, N. (2022). Supply chain risk factor assessment of 
Indian pharmaceutical industry for performance improvement. International Journal 
of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-01-
2022-0035 

Sherwin, M. D., Medal, H. R., MacKenzie, C. A., & Brown, K. J. (2020). Identifying and 
mitigating supply chain risks using fault tree optimization. IISE Transactions, 52(2), 



 Herbon & Tsadikovich/Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 994-1034 

1034 

236–254. https://doi.org/10.1080/24725854.2019.1630865 

Swiss Re Group. (2012). Natural catastrophes and man-made disasters in 2011. 
Sigma. http://www.swissre.com/sigma/ 

Wang, M., & Jie, F. (2020). Managing supply chain uncertainty and risk in the 
pharmaceutical industry. Health Services Management Research, 33(3), 156–164. 
https://doi.org/10.1177/0951484819845305 

Wibowo, S. (2013). Fuzzy multiattribute evaluation of green supply chain 
performance. Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics 
and Applications, ICIEA 2013, 290–295. 
https://doi.org/10.1109/ICIEA.2013.6566382 

Wild, T. (2017). Best practice in inventory management, third edition. In Best 
Practice in Inventory Management, Third Edition. Routledge. 
https://doi.org/10.4324/9781315231532 

Zhang, Y., & Guan, X. (2021). Budget allocation decisions for project risk response. 
Kybernetes, 50(12), 3201–3221. https://doi.org/10.1108/K-03-2020-0188 

Zhu, T., & Liu, G. (2023). A Novel Hybrid Methodology to Study the Risk Management 
of Prefabricated Building Supply Chains: An Outlook for Sustainability. Sustainability 
(Switzerland), 15(1), 361. https://doi.org/10.3390/su15010361 

Ziyadin, S., Sousa, R. D., Suieubayeva, S., Yergobek, D., & Serikbekuly, A. (2020). 
Differentiation of logistics services on the basis ABC analysis. E3S Web of 
Conferences, 159(04034), 1–8. https://doi.org/10.1051/e3sconf/202015904034 

Zweifel, P. (2021). Bridging the gap between risk and uncertainty in insurance. 
Geneva Papers on Risk and Insurance: Issues and Practice, 46(2), 200–213. 
https://doi.org/10.1057/s41288-021-00220-y 

© 2023 by the authors. Submitted for possible open access publication under 

the terms and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 


