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Original scientific paper 

Abstract: In this paper, we present the Rat Swarm Optimization with Decision 
Making (HDRSO), a hybrid metaheuristic algorithm inspired by the hunting 
behavior of rats, for solving the Traveling Salesman Problem (TSP). The TSP is 
a well-known NP-hard combinatorial optimization problem with important 
transportation, logistics, and manufacturing systems applications. To improve 
the search process and avoid getting stuck in local minima, we added a natural 
mechanism to HDRSO by incorporating crossover and selection operators. In 
addition, we applied 2-opt and 3-opt heuristics to the best solution found by 
HDRSO. The performance of HDRSO was evaluated on a set of symmetric 
instances from the TSPLIB library, and the results demonstrated that HDRSO 
is a competitive and robust method for solving the TSP, achieving better results 
than the best-known solutions in some cases. 

Key words: Bio-inspired; Metaheuristics; Rat Swarm Optimizer (RSO); 
Combinatorial optimization; TSP; Artificial intelligence (AI); Swarm 
intelligence (SI); Modeling systems. 

1. Introduction 

Optimization, planning, and decision-making in real-time are essential in every 
aspect of our lives, from daily decision-making to the operations of large companies. 
However, these decisions can often be complex, with multiple factors and potential 
drawbacks. By looking at how large companies and mega-companies approach 
decision-making, we can gain insight into how to make better choices. These 
companies often face high stakes, with significant potential gains and losses. They use 
various methods and tools to address these complex optimization problems, which 
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can be classified based on their computation time and solution quality. Some methods 
prioritize speed and may not always find the optimal solution, while others prioritize 
a very high solution quality, which may come at the cost of longer computational time. 
Ultimately, the performance and efficiency of these methods depend on both their 
optimality and the time required for implementation. 

Combinatorial optimization problems (COPs) are an important area of study within 
operations research, with applications in various fields such as industry, urban 
management, biology, and technology (Peres & Castelli, 2021). When studying these 
problems, it is important to consider factors such as the available time and resources, 
the potential benefits of the study, and the available tools and computing power. To 
solve COPs, there are several classes of methods, including exact and deterministic 
methods (Chung & Freund, 2022). These methods typically involve enumerating the 
possible solutions in the search space, using techniques such as boundary calculations 
and heuristics to guide the search and improve efficiency. Traditional methods such 
as separation and progressive evaluation techniques (SEP) or backtracking algorithms 
fall under this category. While exact methods can be used to find optimal solutions for 
problems of moderate size, their computational time tends to increase exponentially 
with the size of the problem, making them less practical for larger applications. 

When the need for an optimal solution is not as pressing, approximate approaches 
can provide an efficient solution for large optimization problems. These techniques, 
such as greedy approaches and iterative improvement, have been used by 
practitioners for many years and have proven effective in various contexts. For 
example, Lin and Kernighan's approach is widely considered the best algorithm for the 
traveling salesman problem. These approximate methods can balance computational 
time and solution quality for certain types of problems. 

In recent years, significant progress has been in developing powerful and general 
approximate methods known as metaheuristics. These methods, which include 
neighborhood approaches such as simulated annealing and tabu search (Prajapati et 
al., 2020) and evolutionary algorithms such as genetic algorithms (Sun, 2015) and 
evolutionary strategies (Slowik & Kwasnicka, 2020), have enabled the development of 
approximate solutions for large-scale classical optimization problems and previously 
unmanageable applications (Ezugwu et al., 2021). Metaheuristics have gained 
increasing attention in operations research and artificial intelligence in recent years. 

There are several reasons why metaheuristics have become increasingly popular 
in recent years: 

- They have strategies in place to guide the search for optimal solutions. 
- They can efficiently explore the search space to find (near) optimal solutions. 
- The techniques that make up metaheuristic approaches range from simple 

local search algorithms to complex learning processes. 
- They have mechanisms to avoid getting stuck in suboptimal regions of the 

search space. 
- They can incorporate problem-specific heuristics into the search process, but 

a higher-level strategy controls these. 
- They can use the experience gained during the search process to guide the 

remainder of the search better. 
Table 1 provides a classification of several types of metaheuristics that can be 

distinguished. 
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 Table 1. A brief review of metaheuristic algorithms  

Type of 
Metaheuristic 

Metaheuristic Author and year 

 
 
 

Algorithms 
metaheuristics 

 

Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) 

Firefly Algorithm (FA) (Xu et al., 2022; Yang, 2009) 

Bat Algorithm (BA) 
(Saji & Riffi, 2016; Yang, 
2010) 

Salp Swarm Algorithm (SSA) (S. Mirjalili et al., 2017) 

Wolf Optimization (GWO) (Medjahed et al., 2016) 

Gorilla Troops Optimizer (GTO) (Ginidi et al., 2021) 

Grasshopper Optimization Algorithm 
(GOA) 

(S. Z. Mirjalili et al., 2018) 

 
 
 

Physics-based 
algorithms 

 

Simulated annealing (SA) (Kirkpatrick et al., 1987) 

Lichtenberg Algorithm (LA) (Pereira et al., 2021) 

Gravitational search algorithm (GSA) (Rashedi et al., 2009) 

Black hole algorithm (BB) (Abualigah et al., 2022) 

 
 

Evolutionary 
algorithms : 

Genetic Algorithm (GA) (Sun, 2015) 

Genetic Programming (GP) (Koza & Poli, 2005) 

Evolutionary programming (EP) (Opara & Arabas, 2019) 

Biogeography Based Optimizer 
(BBO) 

(Simon, 2008) 

Tree-Seed Algorithm (TS) (Cinar et al., 2020) 

 
Human 

algorithms 

Harmony Search (HS) (Lee & Geem, 2004) 

Imperialist Competitive Algorithm 
(ICA) 

(Atashpaz-Gargari & Lucas, 
2007) 

Tabu Search (TS) 
(Barbarosoglu & Ozgur, 
1999) 

Heat Exchange Optimization (TEO) (Kaveh & Dadras, 2017) 

 
The study of optimization and NP-hard problem-solving, including metaheuristics, 

has been influenced by the behavior of animals in nature (Tanaev et al., 1994). One 
well-known and extensively studied problem in this field is the traveling salesman 
problem (TSP) (Mzili et al., 2020), which belongs to the class of NP-hard optimization 
problems. The TSP involves finding the shortest route that visits a list of cities, passing 
through each city only once. While the problem may initially seem simple, no known 
algorithm can quickly find an exact solution for all cases. Furthermore, computational 
complexity increases exponentially with the number of cities, making it a useful test 
case for optimization techniques. The TSP has many practical applications, including 
in astronomy, logistics, transportation, telecommunications, and scheduling. 
Metaheuristic algorithms have successfully solved the TSP and other similar problems, 
demonstrating their versatility and effectiveness. These algorithms use search 
techniques to explore the search space efficiently, often focusing on specific areas of 
interest. 

The contributions of this paper are as follows: 
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- Presentation of the Rat Swarm Optimizer (RSO), a new robust optimizer 
inspired by wild rats' attack and hunting behavior, outperforms many known 
metaheuristics and effectively solves the discrete traveling salesman problem. 

- Proposed a hybrid approach using RSO to solve a widely applicable and 
influential combinatorial problem with potential applications in various 
domains. 

- Developed a uniform crossover and mutation operator mechanism to improve 
performance in the exploration phase, thereby conserving information 
throughout the search space and balancing exploration and exploitation. 

- Use local Lin-Kernighan searches to increase efficiency and an acceptance and 
solution search strategy to avoid getting stuck in local optima. 

- Introduction and testing of a new random parameter, T, to balance the 
workload of the auxiliary operators. 

- Tested the performance of the proposed algorithm on more than 26 instances 
of the TSPLIB library and used the parametric student's t-test and the non-
parametric Wilcoxon test to compare the proposed algorithm to other models. 

- Comparison of the proposed HDRSO algorithm with the baseline algorithm and 
five recently developed bio-inspired metaheuristics: DJAYA, RNN-SA, GGSC-
SSA, DSSA, and DSOS, to demonstrate its superior performance. 

This paper is structured as follows: Section 1 introduces the general topic. Section 
2 represents some related works; Section 3 discusses the Traveling Salesman Problem. 
Section 4 presents the Rat Swarm Optimizer. Section 5 proposes an improved and 
hybrid Rat Swarm Optimizer. Section 6 presents the results and discussion, and finally, 
the conclusion. 

2. Related works 

The Traveling Salesman Problem (TSP) is widely studied in optimization, with 
numerous algorithms being developed to solve it efficiently. The TSP seeks to find the 
shortest possible route for a salesman who must visit a set of cities exactly once and 
return to the starting city. The TSP is an NP-hard problem, meaning that its solution 
time grows exponentially as the size of the problem increases. Nevertheless, a vast 
literature on the TSP has many approaches to solving it using various algorithms. 

Swarm intelligence (SI) algorithms are a class of metaheuristic optimization 
techniques based on social animals' collective behavior. The intelligent behavior of 
social insects, such as ants, bees, and termites, inspires these algorithms. Serval swarm 
intelligence algorithms have been proposed to solve the TSP in recent years. Some of 
the popular swarm intelligence algorithms that have been used to solve the TSP 
include Ant Colony Optimization (ACO) (Dorigo & Gambardella, 1997), Particle Swarm 
Optimization (PSO) (Kennedy & Eberhart, 1995), Artificial Bee Colony (ABC)(Anuar et 
al., 2016), Firefly Algorithm (FA) (Yang, 2009), Bat Algorithm (BA) (Yang, 2010), 
Cuckoo Search (CS) (Yang & Deb, 2009), and Wolf Search Algorithm (WSA) (Medjahed 
et al., 2016). 

In addition to the swarm intelligence algorithms, other approaches have been 
proposed to solve the TSP. These approaches include Genetic Algorithms (GA), 
Simulated Annealing (SA) (Kirkpatrick et al., 1987), Tabu Search (TS) (Barbarosoglu 
& Ozgur, 1999), Iterated Local Search (ILS) (Lourenço et al., 2010) Variable 
Neighborhood Search (VNS)(Mladenović & Hansen, 1997), Memetic Algorithms 
(MA)(Cotta et al., 2018), and Hybrid Algorithms that combine different techniques. 
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Genetic Algorithm GA (Sun, 2015) is a popular optimization technique that mimics 
the process of natural selection. It has been used to solve the TSP, and several variants 
of GA have been proposed. SA is another optimization technique that simulates the 
process of annealing in metals. It has been applied to solve the TSP, and several 
variants of SA have been proposed. TS is another optimization technique that uses 
short-term memory to avoid visiting the same city twice. It has been applied to solve 
the TSP, and several variants of TS have been proposed. ILS is another optimization 
technique that combines local search with perturbation. It has been applied to solve 
the TSP, and several variants of ILS have been proposed. VNS is another optimization 
technique that uses a sequence of neighborhoods to explore the search space. It has 
been applied to solve the TSP, and several variants of VNS have been proposed. Finally, 
MA is another optimization technique combining local and global searches. 

Recent research in the optimization field has focused on applying bio-inspired 
metaheuristics to solve real-world problems. Osaba et al. (2020) reviewed recent 
research on TSP and the application of bio-inspired metaheuristics in solving it. A. 
Kumar et al. (2021) provided a comprehensive overview of metaheuristic 
optimization techniques and their applications in engineering. A. Kumar et al. (2021) 
reviewed optimization techniques for petroleum engineering, while Uniyal et al. 
(2022) provided an overview of nature-inspired metaheuristic algorithms for 
optimization. A. Kumar et al. (2021) used nature-inspired optimization algorithms to 
optimize the availability-cost of a butter oil processing system, while Rawat et al. 
(2022) provided a state-of-the-art survey on the applications of the Analytical 
Hierarchy Process (AHP). Finally, J. Kumar et al. (2021) discussed the use of Multi-
Criteria Decision-Making (MCDM). 

3. The traveling salesman problem 

3.1. Introducing the traveling salesman problem 

The TSP is a classic and old NP-hard problem. The TSP problem consists in finding 
the smallest path to visit a list of cities by passing through a city only once and 
returning to the starting city. To help the commercial traveler to save more time. 
money. and effort. 

This problem can be defined mathematically as follows:  
C = {𝑐(1). 𝑐(2).... 𝑐(𝑖). ...𝑐(𝑛)} list of n cities (nodes). and a distance (weight) matrix  

D = (𝑑(𝑖.𝑗))𝑛×𝑛 where 𝑑(𝑖.𝑗) represents the Euclidean distance between the cities 𝑐(𝑖) 

and𝑐(𝑗). The goal of this problem is to find the shortest tour 𝜋 = (𝜋(1). 𝜋(2). … . 𝜋(𝑛)) ∈ L 

(L set of all possible tours) that minimizes the following cost function  

𝐹(𝜋) = 𝑀𝑖𝑛𝜋 ∈ 𝐿 (  ∑ 𝑑𝜋(𝑘)𝜋(𝑘+1) + d𝜋(𝑛)𝜋(1)

𝑛−1

𝑘=1

 )                                                                 (1) 

For a 2-dimensional case, the Euclidean distance between any two cities 𝑐(𝑖)  and 

𝑐(𝑗)  ∈ C is determined by:  

𝑑(𝑖.𝑗) = √(𝑥(𝑖) − 𝑥(𝑗))
2

+ (𝑦(𝑖) − 𝑦(𝑗))
2

                                                                                             (2)                                                                                                                                 

Where (𝑥(𝑖). 𝑦(𝑖)) and (𝑥(𝑗). 𝑦(𝑗)) are respectively the coordinates of cities 

𝑐(𝑖) and 𝑐(𝑗).  

We say that TSP is symmetrical if 𝑑(𝑖.𝑗) = 𝑑(𝑗.𝑖)   ∀𝑖. 𝑗 ∈ 𝑁. otherwise, if this equality 

is not satisfied is for at least a pair (𝑖. 𝑗) we call the problem asymmetric TSP (ATSP).  
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 3.2. Importance of solving the TSP 

The Traveling Salesman Problem (TSP) is a fundamental problem of finding the 
shortest possible route to visit a set of locations and return to the starting point. TSP 
has many applications in logistics, transportation, and manufacturing. Effective 
solutions to TSP can provide significant cost savings and efficiency improvements in 
these areas. 

In logistics, TSP is essential for determining the most efficient delivery routes for 
vehicles, which reduces travel time and distance. As a result, this can result in cost 
savings and improved customer satisfaction through shorter delivery times. 

Similarly, in transportation, TSP can help plan optimal routes for public 
transportation, including buses and trains, thereby reducing fuel consumption and 
emissions and improving the overall efficiency of the transportation system. 

In manufacturing, TSP is used to optimize the order in which tasks are processed 
on a production line, reducing overall processing time and minimizing machine idle 
time. These benefits can translate into increased productivity and significant cost 
savings for companies. Thus, the ability to effectively resolve TSP can profoundly 
impact decision-making in various areas, leading to improved efficiency and 
substantial cost savings. 

4. Presentation of rat swarm optimizer 

The Rat Swarm Optimizer (RSO) is a metaheuristic algorithm that uses the 
collective behavior of rats in a swarm as a model for optimization. The algorithm is 
inspired by the hunting and aggressive behavior of rats in the wild, which is used to 
model the exploration and exploitation phases of the search for solutions to 
optimization problems. RSO effectively solves various continuous optimization 
problems and has been used in many different applications. The hunting and 
aggressive behavior of rats in the wild is the main inspiration for the RSO algorithm, 
which mathematically models this behavior to optimize solutions to difficult 
problems. This behavior is characterized by the social intelligence and territoriality of 
rats and their ability to engage in complex behaviors such as jumping and running. 

The two main behaviors that are the basis of the RSO algorithm are: 
- Swarm hunting behavior: When rats think they have located their prey, they 

will designate a captain and follow him, allowing them to cover the entire 
search area. 

- Fighting behavior with prey: To hunt their prey, rats will enter conflict with 
them. This conflict may result in the death of some rats, which is modeled in the 
algorithm as the cancellation of a particular solution. These behaviors are used 
to guide the exploration and exploitation phases of the search for solutions in 
the RSO algorithm. 

Figure 1 shows the movement of rats around the prey in a 2D space. 
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Figure 1. Movement of rats in 2D 

4.1. Mathematical modeling of the RSO algorithm 

Pursuit of prey (Exploration phase): 
In this part of the rats' chasing and fighting behavior, the rats' exploration 

mechanism is described. Rats have powerful eyes that allow them to track and detect 
their prey, but sometimes the prey may not be visible. 

Due to their social behavior, rats often hunt in groups, which makes them highly 
effective at locating and capturing their prey. To model this behavior, we assume that 
the best searcher knows where the prey is located, and the other searchers can update 
this information based on their observations. 

This mechanism is described quantitatively using the following equations: 
𝐿𝑜𝑐 = 𝛿 × 𝐿𝑜𝑐𝑖 + 𝛽 × (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖)                                                                                      (3) 
 
Where 𝑙𝑜𝑐𝐵𝑒𝑠𝑡  denotes the best optimal solution and 𝑙𝑜𝑐𝑖+1 the locations of the rats. 
However, the parameters 𝜹 and 𝜷 are determined as follows: 

 

𝛿 = 𝑅 − 𝜌 (
𝑅

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

)   .   1 ≤ 𝑅 ≤ 5                                                                                   (4) 

 
𝜌 = 1.2.3. … . 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛                                                                                                              (5) 
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Therefore, throughout the iteration, parameters 𝜹 and 𝜷 are sensitive to good 
exploration and exploitation, while and are random values between [1. 5] and [0. 2]. 

 
Fighting prey (exploitation phase): 
The rats attack the target prey detected in the previous phase. However, the prey 

often tries to escape dangerous situations or defend itself against this attack.  
In this case, a deadly battle ensues between the rats and the prey. In some cases, 

the battle ends with the death of some rats. 
Therefore, the fight between the rats and their prey is mathematically described 

by the formula below: 
𝐿𝑜𝑐𝑖+1 = |𝐿𝑜𝑐𝑏𝑒𝑠𝑡 − 𝐿𝑜𝑐𝑖|                                                                                                             (6) 

where 𝑌 𝑖+1 represents the most recently updated location of the rat. The ideal 
solution is saved, and the locations of the other search agents are changed relative to 
it. 

In general. The RSO algorithm is presented as follows: 

 

4.2. Discrete RSO method to solve the TSP problem 

The RSO (Rat Swarm Optimization) method is designed to solve continuous 
optimization problems. Therefore, it cannot be directly applied to solve discrete 
combinatorial optimization problems such as the traveling salesperson problem. To 
use the RSO method for the TSP, several modifications must be made to the algorithm 
to account for the discrete nature of the problem. These modifications may include 
changes to the search space, the evaluation function, and the exploration and 
exploitation strategies used by the algorithm. 

In the context of the traveling salesperson problem, each possible route can be 
represented as a list of cities or as a graph, with each city represented as a vertex and 
the edges between cities representing the distances between them (as shown in Figure 
2). 
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Figure 2. Example of a TSP trip 

In the context of using the RSO method to solve the traveling salesman problem, 
each rat can be associated with a random path (sequence of cities) representing a 
potential solution. During the optimization process, each rat's movement can involve 
making small changes or permutations to the order of cities in the path, applying 
minimal modifications to the current solution. The "fighting with the prey" process can 
be defined as a verification of the solution, where the solution is accepted if the rat 
wins and ignored if it does not. This can help to ensure that the algorithm can explore 
the search space effectively and find good solutions to the TSP. 

To adapt the RSO method for use with discrete combinatorial optimization 
problems such as the traveling salesperson problem, the continuous operators used in 
the original algorithm must be replaced with discrete counterparts. For example, the 
subtraction operator, which calculates the difference between two positions in the 
search space, can be defined as a set of permutations that can be performed on one of 
the positions to obtain a new closer to the other position. This allows the algorithm to 
explore the space of possible solutions and make changes to the current solution in a 
way appropriate for the problem's discrete nature. 

Example: the subtraction between two positions 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖  be defined as the set 
of permutations to be performed 𝑙𝑜𝑐𝑖  to obtain a new position  𝑙𝑜𝑐𝐵𝑒𝑠𝑡 . 

 

𝑙𝑜𝑐𝐵𝑒𝑠𝑡 = 

𝑄 = 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖 = 

𝑙𝑜𝑐𝑖 = 

 

𝑄 = 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖 ={(3.1). (2.4)} 

Similarly, the addition operator in the RSO method can be adapted for use with 
discrete optimization problems by defining it as a set of permutations that can be 
applied to a path (list of cities to visit) to modify the current position. This operator 
allows the algorithm to make changes to the current solution in a way that is 
appropriate for the problem's discrete nature and can help explore the space of 
possible solutions more effectively. For example, the operator could swap the 
positions of two cities in the path or insert a new city into the path at a specific 
position. Again, these changes can help the algorithm explore the search space and find 
good solutions to the TSP. 
  

1 2 3 4 

3 4 1 2 

3 4 1 2 
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𝑙𝑜𝑐𝐵𝑒𝑠𝑡 = 

     𝑁𝑒𝑤𝐿𝑜𝑐 = 𝑙𝑜𝑐𝑖 + Q′ = 

Q′ = {(1.2). (3.4)} 

 

𝑄 = 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖 = 

 

Finally, the multiplication operator in the RSO method can be defined as an 
operator that allows reducing the number of permutations applied to a path. This 
operator can be applied between a real number and a permutation list, allowing the 
algorithm to make more targeted changes to the current solution and avoid making 
unnecessary permutations. 

- 𝛽 × (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖). 

- Q′ = (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖) = {(1.2). (3.4)}    

- 𝛽 = 0.5 

- 𝛽 × (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖) = {(1.2)} 

To improve the quality of solutions to the traveling salesperson problem, various 
neighborhood search strategies can be used. One example of a reliable neighborhood 
search method for the TSP is the two-exchange function, which involves making small 
changes to the order of cities in the current solution to find a better solution. 

In this work, we will present two versions of the rat swarm optimization (RSO) 
algorithm for solving the TSP: the basic DRSO (Discrete Rat Swarm Optimization) 
algorithm and the improved hybrid HDRSO (Hybrid Discrete Rat Swarm Optimization) 
algorithm. The basic DRSO algorithm uses the RSO method in its original form, while 
the HDRSO algorithm incorporates additional techniques and modifications to 
improve its performance. 

Before presenting the developments and modifications to the RSO method, we will 
introduce the basic version of the algorithm and discuss its limitations. 

4.3. The limits of the basic discrete rat swarm optimizer 

The Discrete Rat Swarm Optimization (DRSO) algorithm, introduced by Mzili et al. 
(2022), emulates the behavior of rats in the wild, where they collaborate to search for 
prey. The population of the algorithm consists of rats, one of which is designated as 
the captain, responsible for leading the group to the prey. However, we found that the 
algorithm tends to converge to a local optimum after several iterations, which hurts 
its performance (as shown in Table 2). 

This behavior is because the captain rat does not have accurate information about 
the position of the prey, which can lead the whole group to be trapped in a false 
location, as rats do in the wild. Unfortunately, the captain is not replaced periodically, 
and the whole group suffers from having to start the search from the beginning, 
resulting in considerable delays. 

To address these limitations, we propose an improved hybrid version of the RSO 
algorithm that incorporates additional strategies and modifications to improve its 

1 2 3 4 

1 2 3 4 

2 1 4 3 
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performance. One strategy is to search for additional generations of rats during the 
prey search phase that can fight the prey and are more efficient, with varying 
information about the location of the prey through additional enhancement, growth 
and selection heuristics. The rats work together to guide the population to the optimal 
solution, and if a captain is trapped, another rat can take over. 

In addition, we suggest introducing a random mutation operator to allow the 
population to explore new solutions and escape from local optima. Applying this 
operator with a low probability avoids interfering with the algorithm's convergence. 
Moreover, we propose to incorporate a local search mechanism to refine the solutions 
found by the algorithm. This mechanism can be applied to the best solutions the 
algorithm finds to improve their quality further. The proposed hybrid version of the 
RSO algorithm combines multiple strategies to address its limitations, increase 
population diversity, improve exploration capabilities, and refine the algorithm's 
solutions. 

Table 2. Results of the basic DRSO algorithm 

Instance Opt Best Average Worst PDav  PDbest  Time(s) SD 

eil51 426 426 432.57 442 1.54 0 6.76 4.34 

berlin52 7542 7542 7788.79 8111 3.27 0 3.84 181.9 

st70 675 675 685.46 699 1.55 0 9.39 7.68 

Olivier30 420 420 421.62 426 0.38 0 0.39 2.72 

eil76 538 549 569.5 591 5.85 2.00 13h35 16 775 

kroA100 21282 21353 21748.4 21986 2.19 0.33 18.76 204.90 

kroB100 22141 22337 23165.5 23929 2.62 0.87 9.50 644.91 

Eil 101 629 653 672.62 696 6.93 3.67 0.39 15.17 

ch130 6 110 6275 6507 6816 6.49 2.62 13.53 175.30 

Rat99 1211 1229 1274.44 1308 5.23 1.46 0.39 27.98 

D198 15780 16045 16517.8 16994 4.67 1.65 19.89 327.17 

5. Proposed hybrid discrete rat swarm optimizer 

To improve the basic version of the RSO algorithm and address its limitations, we 
propose incorporating a mechanism common in many animal species: mating and 
selection. To improve the next generation of any animal breed, animals (male or 
female) will choose their life partner based on specific characteristics that are 
distinctive for that type of animal to ensure the continuation of the desired qualities. 
For example, in wild animals such as lions and wolves, females will choose the 
strongest males, and sometimes this selection is made through mortal combat. On the 
other hand, in animals that value aesthetics to preserve the beauty of the offspring, 
females will choose the most beautiful, attractive, and elegant males. 

We adopt this mechanism in our rat swarm optimization algorithm, where rats can 
mate after selecting the most intelligent and strongest elements that can find the 
position of the prey and successfully attack it without dying. This mechanism 
maintains the characteristics of the swarm and the group and generates stronger 
solutions. Additionally, at each iteration, we can incorporate basic local improvement 
heuristics such as 2-opt and 3-opt (Zhong, 2021). 
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However, the algorithms derived from the K-Opt algorithm have high complexity 
in terms of time 𝜃(𝑛𝑘) and memory usage, so caution must be taken when using them. 
For this reason, we have associated these algorithms with probability. A new random 
parameter T is added at this level, and its value is between [0, 1]. We can choose which 
operator to call at each iteration based on this value. This allows us to balance the 
exploration and exploitation of the search space and improve the algorithm's overall 
performance. 

5.1. Crossover and selection operators 

Crossover operations were first introduced in genetic algorithms to create a new 
population. The idea behind crossover is to use each parent's best qualities through a 
new production generation. Various crossover operators have been proposed in the 
literature to solve the traveling salesman problem. This paper adopts the modified 
unified intersection to improve the search strategy of DRSO. In this paper, the 
crossover is performed as follows:  

1) A son is matched with the best-found father, which can also be named Gbest to 
generate another individual who can be better than both. 

2) A and B, representing different solutions to the traveling sales problem, are 
selected as parents for the crossover operation. 

3) The modified unified intersection operator is applied to A and B to generate a 
new individual, C. This operator combines the strengths of both parents and 
generates a new solution that is better than both original solutions. 

4) C is then compared to the current Gbest, which represents the best solution 
found so far by the algorithm, and if it is better, it becomes the new Gbest. 

5) This process is repeated until a new population of solutions is generated, with 
each new solution being generated through the RSO Crossover operator. 

The advantage of using the RSO Crossover operator is that it allows for a more 
efficient and effective search strategy for solving the traveling sales problem. By 
combining the strengths of both parents and generating a new individual with the best 
qualities of both, the algorithm can explore a wider range of solutions and find better 
solutions more quickly. This leads to improved performance and better solutions to 
the traveling sales problem. 

5.2. 2-Opt move algorithm 

The 2-opt algorithm is a local search algorithm that is commonly used to improve 
the quality of solutions to the traveling sales problem. It works by iteratively removing 
and reconnecting pairs of edges in the current solution to improve the cost of the 
solution. This is done by removing intersecting edges and applying the triangle 
inequality to ensure the solution is valid. 

The 2-opt algorithm is applied in the last step of the RSO Crossover operator after 
a new population of solutions has been generated. This allows the algorithm to further 
improve the quality of the solutions by removing any remaining intersections and 
ensuring that the solutions are valid. Overall, using the RSO Crossover operator 
combined with the 2-opt algorithm allows for a more efficient and effective search 
strategy for solving the traveling sales problem.  

In Figure 3, the route <a; b; c; d> is changed to <a; c; b; d> by reversing the order of 
visiting cities b and d. This involves removing the edges (a, b) and (c, d) and 
reconnecting them in the new order (a, c) and (b, d). 
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Figure 3. 2-Opt move 

The 2-opt algorithm is a special case of the more general k-opt algorithm, where k 
is the number of edges that are removed and reconnected at each step. The 2-opt 
algorithm specifically considers k = 2, meaning that only two edges are swapped at 
each step (Figure 4). While it is possible to generalize the 2-opt algorithm to consider 
higher values of k, such as the 3-opt (Figure 5) algorithm, which considers k = 3, this 
is generally not necessary. This is because increasing k leads to a more complex search 
space and a higher computational cost without necessarily significantly improving the 
quality of the solutions. 

 

 

Figure 4. 2-Opt swap example 

 

 

Fig.5. 3-Opt swap example 
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5.3. Modification and adjustment of basic parameters 

Our approach has several variables that play important roles in the optimization 
process.  
- C is a variable that helps to correctly explore the discrete case's search space 

correctly. It determines the number of permutations performed on a path (city 
sequence) to find a potentially optimal solution. If C < 1, we can generate a 
different path. If C=1, we get the same path. 

- δ is a variable that controls the adjustment of the objective function in the 
continuous case or the modification of the entire trajectory in the discrete case.  

- T is a variable that plays a crucial role in balancing the use of auxiliary operators. 
At each iteration, T takes on a random value. 
• T < 0.5, we perform permutations on the path according to a certain equation.  
• 0.5 <= T <= 0.9, we select a solution for the crossover using the crossover 

operator (a crossover between a solution and the best solution found so far). 
T > 0.9, we apply the local heuristic 3-OPT, which has high complexity in terms of 

time and memory but can quickly converge to a local optimum. We call it a low 
probability due to its high complexity. 

 

6. Experimental results and comparison 

The basic and improved hybrid algorithms, HDRSO (Hybrid Discrete Swarm 
Optimizer Search), are applied to solve the traveling salesperson problem. They are 
tested on several TSP instances (benchmarks) from the public electronic library 
TSPLIB of TSP problems. Each TSP instance provides a list of cities with their 
coordinates (x and y) (as shown in Figure 6). 
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Figure 6. Example of berlin52 instance 

The instance name represents its name in TSPLIB concatenated with the number 
of cities in the instance:  the instance named st70 has 70 cities. Euclidean distances of 
these TSP instances are used for experiments and comparisons. The basic and 
improved algorithm is tested using C++ as a programming language under the 64-bit 
Windows 10 operating system. The tests are performed on a Dell laptop with a 2.00 
GHz Intel Core i5 processor and 16 GB of RAM. The values of the parameters of the 
proposed algorithm are chosen based on some preliminary tests. Then, the 
comparison is made based on the following criteria: 1) The Best Value, which 
designates the best solution obtained by each algorithm; 2) The mean value designates 
the average value of the 20 solutions obtained after 20 executions of an algorithm; 3) 
The worst value is the worst value obtained by an algorithm; 4) PDav(%) designates 
the percentage of deviation of the average length of the solution from the optimal 
solution of 20 executions: 

average-opt

opt 
×100                                                                                                                            (7) 

5) The STD is the standard deviation; finally, 6) the Time value is the average time 
in seconds of the 20 executions. 

The proposed HDRSO algorithm is compared with the basic algorithm and five 
recently developed bio-inspired metaheuristics: DJAYA, RNN-SA, GGSC-SSA, DSSA, and 
DSOS. The DJAYA algorithm (Gunduz & Aslan, 2021) is a population-based approach 
proposed to solve constrained and unconstrained optimization problems. RNN-SA 
(Rahman & Parvez, 2021) is an extension of the well-known Nearest Neighbor 
algorithm, designed to build routes efficiently. GGSC-SSA (Wu et al., 2021) is inspired 
by the foraging behavior of sparrows, while DSSA (Bas & Ülker, 2021) is based on the 
behavior of spiders. Finally, DSOS (Ezugwu & Adewumi, 2017) is a metaheuristic 
algorithm that takes inspiration from the symbiotic interactions among organisms in 
nature. 

The performance of these algorithms is compared on a set of TSP instances from 
the TSPLIB library using the Euclidean distance. By comparing the algorithms on this 
benchmark dataset, we can gain insights into their relative performance and efficiency 
for solving the traveling salesperson problem. 
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Table 3. Initial parameter for HDRSO 

parameter value 

Population size 100 

R Radom N in [1. 5] 

C Radom N in  [0. 1] 

T Radom N in [0. 1] 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  1000 

6.1. Comparison between the base DRSO result and the HDRSO 

In this section, we will compare the basic version of DRSO with the HDRSO and 
examine the impact of altering parameters and introducing a new type of motion. 

Table 4 compares the results of the basic DRSO and the HDRSO. 

Table 4. Comparison between the hybrid version of DRSO and the base 

version 

 Basic DRSO 

Instance Opt best Average PDav  PDbest  SD Time(s) Best 

eil51 426 426 432.57 1.54 0 4.34 6.76 426 

berlin52 7542 7542 7788.79 3.27 0 181.9 3.84 7542 

st70 675 675 685.46 1.55 0 7.68 9.39 675 

Oliver30 420 420 421.62 0.38 0 2.72 0.39 420 

seil76 538 549 569.5 5.85 2.00 16.775 13.35 538 

kroA100 21282 21353 21748.4 2.19 0.33 204.90 18.76 21282 

kroB100 22141 22337 23165.5 2.62 0.87 644.91 9.50 22141 

eil101 629 653 672.62 6.93 3.67 15.17 0.39 633 

ch130 6.110 6275 6507 6.49 2.62 175.30 13.53 6105 

Rat99 1211 1229 1274.44 5.23 1.46 27.98 0.39 1211 

D198 15780 16045 16517.8 4.67 1.65 327.17 19.89 15874 

Table 4 (Continuous). Comparison between the hybrid version of DRSO 

and the base version 

 HDRSO 

Instance Opt best Average PDav  PDbest SD Time(s) 
T-

value 
Sig WSR 

eil51 426 426 426.5 0.11 0 0.53 5.63 16.67 +++ = 
berlin52 7542 7542 7542 0 0 0 0.8 6.07 +++ = 

st70 675 675 676.25 0.18 0 2.37 8.72 14.55 +++ = 
Oliver30 420 420 420 0 0 0 0.11 2.67 ++ = 

eil76 538 549 541.33 0.61 0 4.17 10.57 7.29 +++ + 
kroA100 21282 21353 21295 0.06 0 28.77 28.55 28.77 +++ + 
kroB100 22141 22337 22142.78 0.01 0 5.33 14.75 7.09 +++ + 

eil101 629 653 637.6 1.36 0.63 4.44 34.5 9.91 +++ + 
ch130 6.110 6275 6143 0.54 -0.08 42.73 44.89 9.02 +++ + 
Rat99 1211 1229 1212.25 0.10 0 1.25 34.04 9.93 +++ + 
D198 15780 16045 15956 1.11 0.95 69.93 101.3 7.51 +++ + 
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Figure 7. Convergence PDAV(%) graph of basic and hybrid DRSO 

 

Figure 8. Comparison of the number of iterations necessary to obtain the best 
solution for eil51(opt=426) and Eil76(opt=538) 
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6.2. Comparison between the HDRSO and other recently developed 

metaheuristics 

This section will compare the hybrid HDRSO metaheuristic with several other 
techniques developed in 2020 to evaluate its ability to solve TSPLIB instances. To do 
this, we ran HDRSO on 26 TSPLIB instances with 20 independent runs and used a 
parametric test to analyze the results. It's worth noting that the experiments were 
conducted on different computers and platforms, so we will not be making runtime 
comparisons. 

In Experiment 1, HDRSO is compared with the basic DRSO and DJAYA, RNN-SA, 
GGSC-SSA, DSSA, and DSOS on a set of 26 symmetric TSP instances. The results of this 
comparison are listed in Tables 4-9, which show the mean, best value, standard 
deviation, and average performance time for each algorithm. The best results and 
averages are highlighted in bold. 

To determine significant differences between the results, we performed a student's 
t-test for each algorithm compared to HDRSO. The t-values were computed using the 
standard deviation and mean of 20 independent runs for each problem.  

The t-test results can be found in the "T-value" and "Sig." columns of the tables. 
To test for significant differences between HDRSO and the other techniques, we 

derived five significant levels using critical values at the 95% confidence level (t0.05 = 

Figure 9. Average convergence curves of all comparison algorithms  
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1.960) and the 99% confidence level (t0.01 = 2.576). The "Sig." significance levels are 
defined as follows: 

- t > 2.756: +++ (Extremely significant) 
- 1.960 < t ⩽ 2.756: ++ (Significant) 
- 0 < t ⩽ 1.960: + (Slightly significant) 
- t = 0: = (Equal) 
- 1.960 ⩽ t < 0: - (Insignificant) 

The WSR column represents the sign of the difference between each pair of paired 
observations. The smaller of the two rank sums, one for positive values WSR+ and one 
for negative values WSR-, is used as the test statistic for Wilcoxon hypothesis tests. 

Table 5. Comparison of the experimental results of the HDSRO with the DSSA 
    HDRSO DSSA (2021) 

Instance Opt Best Average PDav(%) SD Time Best Average PDav(%) SD 
T-

value 
sig WSR 

Eil51 426 426 426.5 0.11 0.53 5.63 431.87 431.87 0.65 2.8 8.43 +++ + 

Berlin52 7542 7542 7542 0 0 0.8 7659 7659 1.55 117 4.47 +++ + 

Eil76 538 538 541.33 0.61 4.17 10.57 559.31 559.31 3.96 0.4 19.19 +++ + 

Pr76 108 159 108159 108206.2 0.04 82.51 8.76 108880 
108 
880 

0.66 721 4.15 +++ + 

Rat99 1211 1211 1212.25 0.10 1.25 34.04 1221 1221 0.82 dix 3.88 +++ + 

Rd100 7910 7905 7916.6 0.08 17h55 19.69 8120 8120 2.65 210 4.35 +++ + 

KroA100 21 282 21282 21295 0.06 28.77 28.55 21363 21 363 0.38 81 3.54 +++ + 

KroB100 22 141 22141 22142.78 0.008 5.33 14.75 22347 22 347 0.93 206 4.43 +++ + 

KroC100 20 749 20749 20752.33 0.01 8.16 14.52 20997 20 997 1.19 248 4.41 +++ + 

KroD100 21 294 21294 21313.89 0.09 38.58 21.82 21552 21 552 1.21 258 4.08 +++ + 

KroE100 22 068 22068 22113 0.20 30.27 31.92 22407 22 407 1.53 339 3.86 +++ + 

Lin105 14 379 14379 14379 0 0 15h44 14502 14 502 0.85 123 4.47 +++ + 

Pr107 44 303 44303 44351.67 0.10 80.56 30.08 44346 44 346 0.09 43 0.28 + + 

Pr124 59 030 59030 59039.2 0.01 19.39 13.07 59087 59 087 0.09 57 3.56 +++ + 

Pr136 96 772 96785 97128.3 0.36 414 65.21 103460 
103 
460 

6.91 6688 4.23 +++ + 

Pr144 58 537 58537 58537 0 0 24.73 58669 58 669 0.22 132 4.47 +++ + 

KroA150 26.524 26579 26741 0.81 144.10 40.24 27.027 27.027 1.59 503 2.44 ++ + 

Pr152 73.682 73682 73761.45 0.10 222.19 14.33 74.462 74.462 1.05 780 3.86 +++ + 

Rat195 2323 2344 2360.71 1.62 12.53 114.81 2353 2353 1.29 30 1.06 + + 

Table 6. Comparison of experimental results of HDSRO with RNN-SA 

  HDRSO RNN-SA (2021) 

instances opt Best Average PDav(%) SD Time Best Average SD PDav(%) T-value Sig WSR 

eil51 426 426 426.5 0.11 0.53 5.63 428.87 429.44 0.52 0.81 17.7080 +++ + 

berlin52 7542 7542 7542 0 0 0.8 7544.37 7544.37 1.3 0.03 8.1530 +++ + 

st70 675 675 676.25 0.18 2.37 8.72 677.11 679.33 3.04 0.64 3.5734 +++ + 

eil76 538 538 541.33 0.61 4.17 10.57 544.37 549.16 4.40 2.07 5.7764 +++ + 

rat99 1211 1211 1212.25 0.10 1.25 34.04 1219.24 1229.29 5.68 1.51 13.1029 +++ + 

kroA100 21 282 21282 21295 0.06 28.77 28.55 21285.44 285.44 0.20 0.02 1.4860 + + 

kroE100 22 068 22068 22113 0.20 30.27 31.92 22119.90 164.92 58.65 0.44 3.5180 +++ + 

eil101 629 633 637.6 1.36 4.44 34.5 644.92 652.31 5.39 3.71 9.4204 +++ + 

bier127 118 282 118599 118681.3 0.33 90.45 42.16 119331.15 849.69 294.00 1.33 16.9870 +++ + 

ch130 6110 6105 6143 0.54 42.73 44.89 6171.87 6249.18 66.31 2.28 6.0195 +++ + 
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  HDRSO RNN-SA (2021) 

instances opt Best Average PDav(%) SD Time Best Average SD PDav(%) T-value Sig WSR 

pr136 96 772 96785 97128.3 0.36 414 65.21 96922.41 
100 

335.16 
1979.60 3.68 7.0912 +++ + 

ch150 6528 6548 6560.16 0.49 12.92 49.66 6552.30 6553.94 1.58 0.40 2.1371 ++ + 

kroA150 26 524 26579 26741 0.81 144.10 40.24 26821.83 27008.24 194.18 1.83 4.9425 +++ + 

kroB150 26.130 26137 26183.5 0.20 80.74 51.83 26327.09 26.577.15 232.5 1.71 7.1528 +++ + 

pr152 73.682 73682 73761.45 0.10 222.19 14.33 73843.09 74669.58 836.59 1.34 4.6919 +++ + 

u159 42 080 42080 42140.75 0.14 119.06 12.35 42162.75 547.66 90.57 1.11 12.1647 +++ + 

rat195 2323 2344 2360.71 1.62 12.53 114.81 2348.70 2361.50 11h49 1.66 0.2078 + + 

kroA200 29 368 29434 29525.67 0.53 86.55 82.03 29541.83 29626.42 73.01 0.88 3.9792 +++ + 

kroB200 29 437 29479 29509.33 0.24 34.11 121.4 29825.16 30033.03 163.02 2.02 14.0622 +++ + 

pr264 49 135 49135 49135 0 0 69.19 49197.32 49375.75 232.85 0.49 4.6239 +++ + 

lin318 42 029 42253 42706.67 1.46 343.37 130.33 42862.50 43041.10 122.01 2.71 4.1043 +++ + 

Table 7. Comparison of experimental results of HDSRO with DJAYA 
  HDRSO DJAYA 

instances opt Best Average PDav(%) PDbest(%) SD Time Best PDbest(%) SD T-value Sig WSR 

oliver30 420 420 420 0 0 0 0.39 426.88 0.74 2.74 11.2293 +++ + 

eil51 426 426 426.5 0.11 0 0.53 5.63 440.18 2.64 4.95 12.2891 +++ + 

berlin52 7542 7542 7542 0 0 0 0.8 7580 0.48 80.60 2.1085 ++ + 

st70 675 675 676.25 0.18 0 2.37 8.72 702.30 3.72 9.56 11.7177 +++ + 

eil76 538 538 541.33 0.61 0 4.17 10.57 573.17 5.10 6.33 18.7851 +++ + 

pr76 108 159 108159 108206.2 0.04 0 82.51 8.76 113258.29 4.71 1711.93 13.1825 +++ + 

eil101 629 633 637.6 1.36 0.63 4.44 34.5 677.37 5.46 4.87 26.9882 +++ + 

ch150 6 528 6548 6560.16 0.49 0.30 12.92 49.66 6638.63 1.63 52.79 6.4571 +++ + 

kroa100 21 282 21282 21295 0.06 0 28.77 28.55 21735.31 2.13 331.33 5.9208 +++ + 

krob100 22 141 22141 22142.78 0.008 0 5.33 14.75 22973.73 3.76 234.79 15.8233 +++ + 

kroc100 20 749 20749 20752.33 0.01 0 8.16 14.52 21702.02 4.59 186.32 22.7731 +++ + 

krod100 21 294 21294 21313.89 0.09 0 38.58 21.82 22631.25 6.28 487.62 12.0443 +++ + 

kroe100 22 068 22068 22113 0.20 0 30.27 31.92 22582.47 2.33 252.07 8.2698 +++ + 

 

Table 8. Comparison of experimental results of HDSRO with GGSC-SSA 
 HDRSO  GGSC-SSA(2021) 

Instance Opt Best Average PDav(%) PDbest(%) SD Time(s) Best PDav(%) Time(s) WSR 

ulysses22 75.67 71 71.8 -5.09 -6.57 0.40 0.003 75.24 0.00 1.95 + 

eil51 426 426 426.5 0.11 0 0.53 5.63 426 0.00 3.87 = 
berlin52 7542 7542 7542 0 0 0 0.8 7542 0.00 9.48 = 
st70 675 675 676.25 0.18 0 2.37 8.72 676.96 0.29 8.26 + 

pr76 108159 108159 108206.2 0.04 0 82.51 8.76 109170.3 0.94 15.13 + 

eil76 538 538 541.33 0.61 0 4.17 10.57 539.79 0.33 9.32 + 
rat99 1211 1211 1212.25 0.10 0 1.25 34.04 1211 0.00 11.4 = 

kroA100 21282 21282 21295 0.06 0 28.77 28.55 20989.04 0.00 19.88 + 

kroB100 22140 22141 22142.78 0.008 0 5.33 14.75 22152 0.05 11.5 + 

kroC100 20749 20749 20752.33 0.01 0 8.16 14.52 21346.53 2.88 11.92 + 

kroD100 21294 21294 21313.89 0.09 0 38.58 21.82 22138.53 3.97 16.48 + 

rd100 7910 7905 7916.6 0.08 -0.06 17.55 19.69 7951.28 0.52 15.34 + 
eil101 629 633 637.6 1.36 0.63 4.44 34.5 638 1.43 11.75 + 

lin105 14379 14379 14379 0 0 0 15.44 14543.56 1.14 15.95 + 
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pr124 59030 59030 59039.2 0.01 0 19.39 13.07 59607.74 0.98 17.68 + 

ch130 6110.86 6105 6143 0.54 -0.08 42.73 44.89 6115.25 0.07 15.59 + 

pr144 58537 58537 58537 0 0 0 24.73 58862.09 0.56 20.05 + 

d198 15780 15874 15956 1.11 0.95 69.93 101.3 15951.29 1.09 74.85 + 

kroA200 29368 29434 29525.67 0.53 0.22 86.55 82.03 29507.35 0.47 49.31 + 

kroB200 29437 29479 29.509.33 0.24 0.14 34.11 121.4 29678.92 0.82 64.37 + 

pr226 80369 80369 80372.73 0.004 0 12.36 27.04 81361.17 1.23 35.63 + 

lin318 42090 42253 42706.67 1.46 0.38 343.37 130.33 43023.73 2.22 184.73 + 

fl417 11861 11857 11876 0.12 -0.03 20.84 212.95 11936.25 0.63 257.88 + 

pr439 107217 108647 109 687.5 2.30 1.31 1124.87 226.31 113074.47 5.46 86.09 + 

Table 9. Comparison of the experimental results of the Hybrid DSRO with the DSOS. 
 HDRSO DSOS (2017) 

Instance Opt Best Average PDav(%) PDbest(%) SD Time(s) Best Average PDav(%) PDbest(%) WSR 

eil51 426 426 426.5 0.11 0 0.53 5.63 426 427.90 0.45 0 = 

berlin52 7542 7542 7542 0 0 0 0.8 7 542 7 542.60 0.01 0 = 

st70 675 675 676.25 0.18 0 2.37 8.72 675 679.20 0.62 0 = 

eil76 538 538 541.33 0.61 0 4.17 10.57 542 547.40 1.75 0.74 + 

rat99 1211 1211 1212.25 0.10 0 1.25 34.04 1235 1 240.74 2.46 1.98 + 

kroA100 21 282 21282 21295 0.06 0 28.77 28.55 21282 21 409.50 0.60 0 = 

kroB100 22 140 22141 
22142.7

8 
0.008 0 5.33 14.75 22140 22 339.20 0.90 0 - 

kroC100 20 749 20749 
20752.3

3 
0.01 0 8.16 14.52 20749 20 881.60 0.64 0 = 

kroD100 21 294 21294 
21313.8

9 
0.09 0 38.58 21.82 21294 21 493.10 0.94 0 = 

kroE100 22 068 22068 22113 0.20 0 30.27 31.92 22068 22 231.10 0.74 0 = 

eil101 629 633 637.6 1.36 0.63 4.44 34.5 640 650.60 3.43 1.75 + 

pr107 44 303 44303 
44351.6

7 
0.10 0 80.56 30.08 44314 44 445.10 0.32 0.02 + 

pr124 59 030 59030 59039.2 0.01 0 19.39 13.07 59030 59 429.10 0.68 0 = 

pr136 96 772 96785 97128.3 0.36 0.01 414 65.21 97437 97 673.20 0.93 0.69 + 

pr144 58 537 58537 58537 0 0 0 24.73 58565 58 817.10 0.49 0.05 + 

6.3. Analysis and discussion 

To further verify the effectiveness of the proposed algorithm, we conducted a 
comparative analysis with several state-of-the-art metaheuristic algorithms published 
from 2020 to 2022 using a non-parametric statistical test. This allowed us to evaluate 
the performance of our proposed algorithm and its improvements to these other 
approaches. The first comparison is with the basic RSO algorithm to see the effects of 
changes and improvements, followed by a complete comparison with other 
metaheuristics. 

Tables 4-9 show the experimental results of the HDRSO algorithm compared to the 
DJAYA (2021), DSSA (2021), DSOS (2017), RNNA-SA (2021), and GGSC-SSA (2021) 
methods. The statistical criteria chosen for this comparison are to show the difference 
in the obtained values, the mean, the deviation, and the computation time. The tables 
show that our HDRSO algorithm obtained the optimum several times compared to the 
other metaheuristics. The minimal values of STD and Pdav(%) can justify that HDRSO 
could obtain the optimum several times compared to the other metaheuristics. In the 
first table, we can see that the statistical values are minimal in the improved version. 
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This indicates that the hybridization and improvement strategy chosen was able to 
create a very robust new algorithm that could solve many other combinatorial 
problems. 

In this section, we chose to make a statistical evaluation using a student parametric 
test (T-test) by comparing the results of HDRSO and the Basic DRSO. The t-test results 
presented in Table 4 show that HDRSO is 100% superior to the basic DRSO in all test 
cases (11 out of 11 assessments). In addition, the t-test results between HDRSO and 
DSSA are also presented individually in Table 5. HDRSO is highly significant in 84.21% 
(16 out of 19 assessments) and either significantly better in 5.26% (1 out of 19 
assessments) or slightly better in 10.52% (2 out of 19 assessments) of the cases, as 
reflected in the differences in results. Table 6 shows that HDRSO outperforms RNN-SA 
in 86.22% (19 out of 22 evaluations) of the cases and is either significantly better in 
4.54% (1 out of 22 evaluations) or slightly better in 9.09% (2 out of 22) of the 
evaluations. 

For the comparison with DJAYA, we will see that our algorithm is significantly 
better than Djaya's in almost all test cases (92.30% or 12 out of 13 evaluations) and 
7.69% significantly better (1 out of 13 assessments). The algorithms that do not have 
enough information to make a statistical comparison according to the student's T-test 
are compared based on the average time and their ability to obtain the optimal value. 
Regarding the comparison between HDRSO and GGSC-SSA, we can see that HDRSO 
obtained the optimum at 70.83% (17 tests out of 24) and exceeded the optimum at 
16.66% (4 tests out of 24). On the other hand, GGSC-SSA obtained the optimum at only 
16.66% (4 tests out of 24), which is significantly weaker compared to HDRSO. 

Finally, in the comparison between HDRSO and DSOS, we can see that HDRSO 
obtained the optimum in 86.66% (13 tests out of 15), while DSOS obtained the 
optimum in 60% (9 tests out of 15) with a 26.66% difference compared to HDRSO. 
Furthermore, when we analyze the average values of PDav(%), we can see that the 
PDav of HDRSO is lower than that of DSOS at 100% (15 tests out of 15), which can 
justify that for each test, the solutions of the 20 executions made by HDRSO are very 
close to the optimum, whereas those of DSOS are not. 

In some tests, the HDRSO exceeded the optimal value proposed by the TSPLIB 
library. Moreover, for four instances (ch130, rd100, fl417, ulysse22), see Table 9. 
These new values obtained can be new references for future research. 

We will also confirm our analysis and comparison with a non-parametric Wilcoxon 
test (Fix & Hodges Jr, 1955) with a 95% confidence interval (α=0.05) to compare our 
optimizer and other metaheuristics. 

This test was applied to compare the difference between the best-Obt value in two 
algorithms for comparison and ranking.  

N denotes the number of test cases, and W+ represents the scores of the cases with 
the best performance in the proposed algorithm (sums of WSR+). While W- represents 
the sum of the scores of the cases where the proposed algorithm performs worse than 
the comparative algorithm (sums of WSR-), and the p-value is compared to a critical 
value α =0.05 in the Wilcoxon signed-rank test. If the p-value ≤ α, it indicates a 
significant difference between the performance of the two algorithms. However, if the 
p-value > α, then there is no significant difference between the performance of the two 
algorithms. 

Table 10. Results of the Wilcoxon signed-rank test for the comparison of the 

best-obtained solution of HDRSO with other metaheuristics 
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Comparison Dimension N W- W+ P-value 
Significantly 

(P < 0.05)? 

HDRSO vs Basic 11 -56,00 0 0,016 YES 

HDRSO vs DSSA 19 37,00 153 0,018 YES 

DRSO vs RNN-SA 21 0 131 <0,001 YES 

DRSO vs GGSC-SSA 24 -16 278 <0,001 YES 

DRSO vs DSOS 15 -9 75 0,031 YES 

 
In this table 10, the Wilcoxon test allows us to see that the difference between 

DRSO and the other metaheuristics is statistically significant. According to these 
evaluations, the proposed algorithm, which uses the hybridization mechanism, 
crossover operators, and the 2-opt and 3-opt local search algorithms, outperformed 
other metaheuristics regarding solution quality and the ability to obtain the optimum. 
The hybrid HDRSO algorithm is a promising approach for solving the TSP and other 
combinatorial optimization problems. 

7. Conclusion 

This paper proposes a new optimization algorithm called the hybridized and 
discrete rat swarm optimization (HDRSO) algorithm. This algorithm is an improved 
version of the standard rat swarm optimization (RSO) algorithm and has been adapted 
to solve the Symmetric Traveler Problem (TSP), a combinatorial optimization 
problem. Our HDRSO algorithm uses new motion types, mathematical operators, and 
heuristics, such as basic genetics and K-OPT, to reconstruct its population and 
introduce a new, more intelligent class of RSO. In addition, the algorithm is inspired 
by natural rat behavior, such as hunting and chasing prey, and has been discretized for 
improved performance. 

We compare the performance of our HDRSO algorithm to several recently 
developed metaheuristics, including DJAYA, DSSA, DSOS, RNNA-SA, and GGSC-SSA. 
The comparison results show that our HDRSO algorithm is more efficient than the 
other methods in solving TSP problems. The main contributions of this work are the 
development of a new optimization strategy based on group behavior and other 
robust mechanisms, as well as the use of a local search heuristic to improve the quality 
of solutions. This new optimization strategy is applied to the traveling salesman 
problem, and experimental results show that it outperforms classical heuristics in 
terms of computational efficiency and solution quality. This method can be useful for 
real-time decision-making in high-volume logistics transportation, especially in 
complex and dynamic environments. It can help significantly reduce salesmen's 
working time and travel costs. 

The Discrete Rat Swarm Optimization (DRSO) algorithm is effective in solving the 
Traveling Salesman Problem (TSP). It can be extended to solve a wide range of other 
combinatorial optimization problems, such as the Quadratic Assignment Problem 
(QAP), the Vehicle Routing Problem (VRP), the Job Scheduling Problem (JSSP), and the 
Knapsack Problem (KP). 

DRSO offers several advantages that make it well-suited for these problems. First, 
it excels at handling discrete optimization problems with a large search space where 
other optimization methods may have difficulty finding optimal solutions. Second, it 
uses a natural mechanism that mimics rats' behavior in nature, allowing it to avoid 
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local optima and identify promising solutions. Finally, DRSO can be easily adapted to 
different problems by adjusting its parameters, such as population size, crossover rate, 
and mutation rate. Therefore, it is a versatile algorithm that can be applied to various 
fields, such as logistics, transportation, manufacturing systems, artificial intelligence, 
and machine learning applications. 

In future work, the proposed algorithm can be extended to solve more advanced 
discrete optimization problems, such as the Quadratic Assignment Problem (QAP), the 
Job Shop Scheduling Problem (JSSP), and the Vehicle Routing Problem (VRP). In 
addition, the algorithm can be generalized to handle a larger number of discrete 
optimization problems. Further studies will evaluate the algorithm's performance on 
these more complex problems and explore its potential applications in various fields. 
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