
Decision Making: Applications in Management and Engineering
Vol. 6, Issue 2, 2023, pp. 150-176.
ISSN: 2560-6018
eISSN: 2620-0104

 DOI: https://doi.org/10.31181/dmame622023644

* Corresponding author.
 E-mail addresses: mzili.t@ucd.ac.ma (T. Mzili), saidriffi@gmail.com (M.E. Riffi),
dr.mzili.ilyass@gmail.com (I. Mzili)

ARTIFICIAL RAT OPTIMIZATION WITH DECISION-
MAKING: A BIO-INSPIRED METAHEURISTIC ALGORITHM

FOR SOLVING THE TRAVELING SALESMAN PROBLEM

Toufik Mzili 1*, Ilyass Mzili2, and Mohammed Essaid Riffi 1

1 Department of Computer Science, Faculty of Science, Chouaib Doukkali, University, EI
Jadida , Morocco

2 Department of Management, Faculty of Economics and Management, Hassan First
University, Settat, Morocco

Received: 4 January 2023;
Accepted: 15 March 2023;
Available online: 11 April 2023.

Original scientific paper

Abstract: In this paper, we present the Rat Swarm Optimization with Decision
Making (HDRSO), a hybrid metaheuristic algorithm inspired by the hunting
behavior of rats, for solving the Traveling Salesman Problem (TSP). The TSP is
a well-known NP-hard combinatorial optimization problem with important
transportation, logistics, and manufacturing systems applications. To improve
the search process and avoid getting stuck in local minima, we added a natural
mechanism to HDRSO by incorporating crossover and selection operators. In
addition, we applied 2-opt and 3-opt heuristics to the best solution found by
HDRSO. The performance of HDRSO was evaluated on a set of symmetric
instances from the TSPLIB library, and the results demonstrated that HDRSO
is a competitive and robust method for solving the TSP, achieving better results
than the best-known solutions in some cases.

Key words: Bio-inspired; Metaheuristics; Rat Swarm Optimizer (RSO);
Combinatorial optimization; TSP; Artificial intelligence (AI); Swarm
intelligence (SI); Modeling systems.

1. Introduction

Optimization, planning, and decision-making in real-time are essential in every
aspect of our lives, from daily decision-making to the operations of large companies.
However, these decisions can often be complex, with multiple factors and potential
drawbacks. By looking at how large companies and mega-companies approach
decision-making, we can gain insight into how to make better choices. These
companies often face high stakes, with significant potential gains and losses. They use
various methods and tools to address these complex optimization problems, which

mailto:mzili.t@ucd.ac.ma
mailto:saidriffi@gmail.com
mailto:dr.mzili.ilyass@gmail.com

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

151

can be classified based on their computation time and solution quality. Some methods
prioritize speed and may not always find the optimal solution, while others prioritize
a very high solution quality, which may come at the cost of longer computational time.
Ultimately, the performance and efficiency of these methods depend on both their
optimality and the time required for implementation.

Combinatorial optimization problems (COPs) are an important area of study within
operations research, with applications in various fields such as industry, urban
management, biology, and technology (Peres & Castelli, 2021). When studying these
problems, it is important to consider factors such as the available time and resources,
the potential benefits of the study, and the available tools and computing power. To
solve COPs, there are several classes of methods, including exact and deterministic
methods (Chung & Freund, 2022). These methods typically involve enumerating the
possible solutions in the search space, using techniques such as boundary calculations
and heuristics to guide the search and improve efficiency. Traditional methods such
as separation and progressive evaluation techniques (SEP) or backtracking algorithms
fall under this category. While exact methods can be used to find optimal solutions for
problems of moderate size, their computational time tends to increase exponentially
with the size of the problem, making them less practical for larger applications.

When the need for an optimal solution is not as pressing, approximate approaches
can provide an efficient solution for large optimization problems. These techniques,
such as greedy approaches and iterative improvement, have been used by
practitioners for many years and have proven effective in various contexts. For
example, Lin and Kernighan's approach is widely considered the best algorithm for the
traveling salesman problem. These approximate methods can balance computational
time and solution quality for certain types of problems.

In recent years, significant progress has been in developing powerful and general
approximate methods known as metaheuristics. These methods, which include
neighborhood approaches such as simulated annealing and tabu search (Prajapati et
al., 2020) and evolutionary algorithms such as genetic algorithms (Sun, 2015) and
evolutionary strategies (Slowik & Kwasnicka, 2020), have enabled the development of
approximate solutions for large-scale classical optimization problems and previously
unmanageable applications (Ezugwu et al., 2021). Metaheuristics have gained
increasing attention in operations research and artificial intelligence in recent years.

There are several reasons why metaheuristics have become increasingly popular
in recent years:

- They have strategies in place to guide the search for optimal solutions.
- They can efficiently explore the search space to find (near) optimal solutions.
- The techniques that make up metaheuristic approaches range from simple

local search algorithms to complex learning processes.
- They have mechanisms to avoid getting stuck in suboptimal regions of the

search space.
- They can incorporate problem-specific heuristics into the search process, but

a higher-level strategy controls these.
- They can use the experience gained during the search process to guide the

remainder of the search better.
Table 1 provides a classification of several types of metaheuristics that can be

distinguished.

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

152

 Table 1. A brief review of metaheuristic algorithms

Type of
Metaheuristic

Metaheuristic Author and year

Algorithms
metaheuristics

Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995)

Firefly Algorithm (FA) (Xu et al., 2022; Yang, 2009)

Bat Algorithm (BA)
(Saji & Riffi, 2016; Yang,
2010)

Salp Swarm Algorithm (SSA) (S. Mirjalili et al., 2017)

Wolf Optimization (GWO) (Medjahed et al., 2016)

Gorilla Troops Optimizer (GTO) (Ginidi et al., 2021)

Grasshopper Optimization Algorithm
(GOA)

(S. Z. Mirjalili et al., 2018)

Physics-based
algorithms

Simulated annealing (SA) (Kirkpatrick et al., 1987)

Lichtenberg Algorithm (LA) (Pereira et al., 2021)

Gravitational search algorithm (GSA) (Rashedi et al., 2009)

Black hole algorithm (BB) (Abualigah et al., 2022)

Evolutionary
algorithms :

Genetic Algorithm (GA) (Sun, 2015)

Genetic Programming (GP) (Koza & Poli, 2005)

Evolutionary programming (EP) (Opara & Arabas, 2019)

Biogeography Based Optimizer
(BBO)

(Simon, 2008)

Tree-Seed Algorithm (TS) (Cinar et al., 2020)

Human

algorithms

Harmony Search (HS) (Lee & Geem, 2004)

Imperialist Competitive Algorithm
(ICA)

(Atashpaz-Gargari & Lucas,
2007)

Tabu Search (TS)
(Barbarosoglu & Ozgur,
1999)

Heat Exchange Optimization (TEO) (Kaveh & Dadras, 2017)

The study of optimization and NP-hard problem-solving, including metaheuristics,

has been influenced by the behavior of animals in nature (Tanaev et al., 1994). One
well-known and extensively studied problem in this field is the traveling salesman
problem (TSP) (Mzili et al., 2020), which belongs to the class of NP-hard optimization
problems. The TSP involves finding the shortest route that visits a list of cities, passing
through each city only once. While the problem may initially seem simple, no known
algorithm can quickly find an exact solution for all cases. Furthermore, computational
complexity increases exponentially with the number of cities, making it a useful test
case for optimization techniques. The TSP has many practical applications, including
in astronomy, logistics, transportation, telecommunications, and scheduling.
Metaheuristic algorithms have successfully solved the TSP and other similar problems,
demonstrating their versatility and effectiveness. These algorithms use search
techniques to explore the search space efficiently, often focusing on specific areas of
interest.

The contributions of this paper are as follows:

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

153

- Presentation of the Rat Swarm Optimizer (RSO), a new robust optimizer
inspired by wild rats' attack and hunting behavior, outperforms many known
metaheuristics and effectively solves the discrete traveling salesman problem.

- Proposed a hybrid approach using RSO to solve a widely applicable and
influential combinatorial problem with potential applications in various
domains.

- Developed a uniform crossover and mutation operator mechanism to improve
performance in the exploration phase, thereby conserving information
throughout the search space and balancing exploration and exploitation.

- Use local Lin-Kernighan searches to increase efficiency and an acceptance and
solution search strategy to avoid getting stuck in local optima.

- Introduction and testing of a new random parameter, T, to balance the
workload of the auxiliary operators.

- Tested the performance of the proposed algorithm on more than 26 instances
of the TSPLIB library and used the parametric student's t-test and the non-
parametric Wilcoxon test to compare the proposed algorithm to other models.

- Comparison of the proposed HDRSO algorithm with the baseline algorithm and
five recently developed bio-inspired metaheuristics: DJAYA, RNN-SA, GGSC-
SSA, DSSA, and DSOS, to demonstrate its superior performance.

This paper is structured as follows: Section 1 introduces the general topic. Section
2 represents some related works; Section 3 discusses the Traveling Salesman Problem.
Section 4 presents the Rat Swarm Optimizer. Section 5 proposes an improved and
hybrid Rat Swarm Optimizer. Section 6 presents the results and discussion, and finally,
the conclusion.

2. Related works

The Traveling Salesman Problem (TSP) is widely studied in optimization, with
numerous algorithms being developed to solve it efficiently. The TSP seeks to find the
shortest possible route for a salesman who must visit a set of cities exactly once and
return to the starting city. The TSP is an NP-hard problem, meaning that its solution
time grows exponentially as the size of the problem increases. Nevertheless, a vast
literature on the TSP has many approaches to solving it using various algorithms.

Swarm intelligence (SI) algorithms are a class of metaheuristic optimization
techniques based on social animals' collective behavior. The intelligent behavior of
social insects, such as ants, bees, and termites, inspires these algorithms. Serval swarm
intelligence algorithms have been proposed to solve the TSP in recent years. Some of
the popular swarm intelligence algorithms that have been used to solve the TSP
include Ant Colony Optimization (ACO) (Dorigo & Gambardella, 1997), Particle Swarm
Optimization (PSO) (Kennedy & Eberhart, 1995), Artificial Bee Colony (ABC)(Anuar et
al., 2016), Firefly Algorithm (FA) (Yang, 2009), Bat Algorithm (BA) (Yang, 2010),
Cuckoo Search (CS) (Yang & Deb, 2009), and Wolf Search Algorithm (WSA) (Medjahed
et al., 2016).

In addition to the swarm intelligence algorithms, other approaches have been
proposed to solve the TSP. These approaches include Genetic Algorithms (GA),
Simulated Annealing (SA) (Kirkpatrick et al., 1987), Tabu Search (TS) (Barbarosoglu
& Ozgur, 1999), Iterated Local Search (ILS) (Lourenço et al., 2010) Variable
Neighborhood Search (VNS)(Mladenović & Hansen, 1997), Memetic Algorithms
(MA)(Cotta et al., 2018), and Hybrid Algorithms that combine different techniques.

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

154

Genetic Algorithm GA (Sun, 2015) is a popular optimization technique that mimics
the process of natural selection. It has been used to solve the TSP, and several variants
of GA have been proposed. SA is another optimization technique that simulates the
process of annealing in metals. It has been applied to solve the TSP, and several
variants of SA have been proposed. TS is another optimization technique that uses
short-term memory to avoid visiting the same city twice. It has been applied to solve
the TSP, and several variants of TS have been proposed. ILS is another optimization
technique that combines local search with perturbation. It has been applied to solve
the TSP, and several variants of ILS have been proposed. VNS is another optimization
technique that uses a sequence of neighborhoods to explore the search space. It has
been applied to solve the TSP, and several variants of VNS have been proposed. Finally,
MA is another optimization technique combining local and global searches.

Recent research in the optimization field has focused on applying bio-inspired
metaheuristics to solve real-world problems. Osaba et al. (2020) reviewed recent
research on TSP and the application of bio-inspired metaheuristics in solving it. A.
Kumar et al. (2021) provided a comprehensive overview of metaheuristic
optimization techniques and their applications in engineering. A. Kumar et al. (2021)
reviewed optimization techniques for petroleum engineering, while Uniyal et al.
(2022) provided an overview of nature-inspired metaheuristic algorithms for
optimization. A. Kumar et al. (2021) used nature-inspired optimization algorithms to
optimize the availability-cost of a butter oil processing system, while Rawat et al.
(2022) provided a state-of-the-art survey on the applications of the Analytical
Hierarchy Process (AHP). Finally, J. Kumar et al. (2021) discussed the use of Multi-
Criteria Decision-Making (MCDM).

3. The traveling salesman problem

3.1. Introducing the traveling salesman problem

The TSP is a classic and old NP-hard problem. The TSP problem consists in finding
the smallest path to visit a list of cities by passing through a city only once and
returning to the starting city. To help the commercial traveler to save more time.
money. and effort.

This problem can be defined mathematically as follows:
C = {𝑐(1). 𝑐(2).... 𝑐(𝑖). ...𝑐(𝑛)} list of n cities (nodes). and a distance (weight) matrix

D = (𝑑(𝑖.𝑗))𝑛×𝑛 where 𝑑(𝑖.𝑗) represents the Euclidean distance between the cities 𝑐(𝑖)

and𝑐(𝑗). The goal of this problem is to find the shortest tour 𝜋 = (𝜋(1). 𝜋(2). … . 𝜋(𝑛)) ∈ L

(L set of all possible tours) that minimizes the following cost function

𝐹(𝜋) = 𝑀𝑖𝑛𝜋 ∈ 𝐿 (∑ 𝑑𝜋(𝑘)𝜋(𝑘+1) + d𝜋(𝑛)𝜋(1)

𝑛−1

𝑘=1

) (1)

For a 2-dimensional case, the Euclidean distance between any two cities 𝑐(𝑖) and

𝑐(𝑗) ∈ C is determined by:

𝑑(𝑖.𝑗) = √(𝑥(𝑖) − 𝑥(𝑗))
2

+ (𝑦(𝑖) − 𝑦(𝑗))
2

 (2)

Where (𝑥(𝑖). 𝑦(𝑖)) and (𝑥(𝑗). 𝑦(𝑗)) are respectively the coordinates of cities

𝑐(𝑖) and 𝑐(𝑗).

We say that TSP is symmetrical if 𝑑(𝑖.𝑗) = 𝑑(𝑗.𝑖) ∀𝑖. 𝑗 ∈ 𝑁. otherwise, if this equality

is not satisfied is for at least a pair (𝑖. 𝑗) we call the problem asymmetric TSP (ATSP).

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

155

 3.2. Importance of solving the TSP

The Traveling Salesman Problem (TSP) is a fundamental problem of finding the
shortest possible route to visit a set of locations and return to the starting point. TSP
has many applications in logistics, transportation, and manufacturing. Effective
solutions to TSP can provide significant cost savings and efficiency improvements in
these areas.

In logistics, TSP is essential for determining the most efficient delivery routes for
vehicles, which reduces travel time and distance. As a result, this can result in cost
savings and improved customer satisfaction through shorter delivery times.

Similarly, in transportation, TSP can help plan optimal routes for public
transportation, including buses and trains, thereby reducing fuel consumption and
emissions and improving the overall efficiency of the transportation system.

In manufacturing, TSP is used to optimize the order in which tasks are processed
on a production line, reducing overall processing time and minimizing machine idle
time. These benefits can translate into increased productivity and significant cost
savings for companies. Thus, the ability to effectively resolve TSP can profoundly
impact decision-making in various areas, leading to improved efficiency and
substantial cost savings.

4. Presentation of rat swarm optimizer

The Rat Swarm Optimizer (RSO) is a metaheuristic algorithm that uses the
collective behavior of rats in a swarm as a model for optimization. The algorithm is
inspired by the hunting and aggressive behavior of rats in the wild, which is used to
model the exploration and exploitation phases of the search for solutions to
optimization problems. RSO effectively solves various continuous optimization
problems and has been used in many different applications. The hunting and
aggressive behavior of rats in the wild is the main inspiration for the RSO algorithm,
which mathematically models this behavior to optimize solutions to difficult
problems. This behavior is characterized by the social intelligence and territoriality of
rats and their ability to engage in complex behaviors such as jumping and running.

The two main behaviors that are the basis of the RSO algorithm are:
- Swarm hunting behavior: When rats think they have located their prey, they

will designate a captain and follow him, allowing them to cover the entire
search area.

- Fighting behavior with prey: To hunt their prey, rats will enter conflict with
them. This conflict may result in the death of some rats, which is modeled in the
algorithm as the cancellation of a particular solution. These behaviors are used
to guide the exploration and exploitation phases of the search for solutions in
the RSO algorithm.

Figure 1 shows the movement of rats around the prey in a 2D space.

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

156

Figure 1. Movement of rats in 2D

4.1. Mathematical modeling of the RSO algorithm

Pursuit of prey (Exploration phase):
In this part of the rats' chasing and fighting behavior, the rats' exploration

mechanism is described. Rats have powerful eyes that allow them to track and detect
their prey, but sometimes the prey may not be visible.

Due to their social behavior, rats often hunt in groups, which makes them highly
effective at locating and capturing their prey. To model this behavior, we assume that
the best searcher knows where the prey is located, and the other searchers can update
this information based on their observations.

This mechanism is described quantitatively using the following equations:
𝐿𝑜𝑐 = 𝛿 × 𝐿𝑜𝑐𝑖 + 𝛽 × (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖) (3)

Where 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 denotes the best optimal solution and 𝑙𝑜𝑐𝑖+1 the locations of the rats.
However, the parameters 𝜹 and 𝜷 are determined as follows:

𝛿 = 𝑅 − 𝜌 (
𝑅

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

) . 1 ≤ 𝑅 ≤ 5 (4)

𝜌 = 1.2.3. … . 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (5)

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

157

Therefore, throughout the iteration, parameters 𝜹 and 𝜷 are sensitive to good
exploration and exploitation, while and are random values between [1. 5] and [0. 2].

Fighting prey (exploitation phase):
The rats attack the target prey detected in the previous phase. However, the prey

often tries to escape dangerous situations or defend itself against this attack.
In this case, a deadly battle ensues between the rats and the prey. In some cases,

the battle ends with the death of some rats.
Therefore, the fight between the rats and their prey is mathematically described

by the formula below:
𝐿𝑜𝑐𝑖+1 = |𝐿𝑜𝑐𝑏𝑒𝑠𝑡 − 𝐿𝑜𝑐𝑖| (6)

where 𝑌 𝑖+1 represents the most recently updated location of the rat. The ideal
solution is saved, and the locations of the other search agents are changed relative to
it.

In general. The RSO algorithm is presented as follows:

4.2. Discrete RSO method to solve the TSP problem

The RSO (Rat Swarm Optimization) method is designed to solve continuous
optimization problems. Therefore, it cannot be directly applied to solve discrete
combinatorial optimization problems such as the traveling salesperson problem. To
use the RSO method for the TSP, several modifications must be made to the algorithm
to account for the discrete nature of the problem. These modifications may include
changes to the search space, the evaluation function, and the exploration and
exploitation strategies used by the algorithm.

In the context of the traveling salesperson problem, each possible route can be
represented as a list of cities or as a graph, with each city represented as a vertex and
the edges between cities representing the distances between them (as shown in Figure
2).

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

158

Figure 2. Example of a TSP trip

In the context of using the RSO method to solve the traveling salesman problem,
each rat can be associated with a random path (sequence of cities) representing a
potential solution. During the optimization process, each rat's movement can involve
making small changes or permutations to the order of cities in the path, applying
minimal modifications to the current solution. The "fighting with the prey" process can
be defined as a verification of the solution, where the solution is accepted if the rat
wins and ignored if it does not. This can help to ensure that the algorithm can explore
the search space effectively and find good solutions to the TSP.

To adapt the RSO method for use with discrete combinatorial optimization
problems such as the traveling salesperson problem, the continuous operators used in
the original algorithm must be replaced with discrete counterparts. For example, the
subtraction operator, which calculates the difference between two positions in the
search space, can be defined as a set of permutations that can be performed on one of
the positions to obtain a new closer to the other position. This allows the algorithm to
explore the space of possible solutions and make changes to the current solution in a
way appropriate for the problem's discrete nature.

Example: the subtraction between two positions 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖 be defined as the set
of permutations to be performed 𝑙𝑜𝑐𝑖 to obtain a new position 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 .

𝑙𝑜𝑐𝐵𝑒𝑠𝑡 =

𝑄 = 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖 =

𝑙𝑜𝑐𝑖 =

𝑄 = 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖 ={(3.1). (2.4)}

Similarly, the addition operator in the RSO method can be adapted for use with
discrete optimization problems by defining it as a set of permutations that can be
applied to a path (list of cities to visit) to modify the current position. This operator
allows the algorithm to make changes to the current solution in a way that is
appropriate for the problem's discrete nature and can help explore the space of
possible solutions more effectively. For example, the operator could swap the
positions of two cities in the path or insert a new city into the path at a specific
position. Again, these changes can help the algorithm explore the search space and find
good solutions to the TSP.

1 2 3 4

3 4 1 2

3 4 1 2

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

159

𝑙𝑜𝑐𝐵𝑒𝑠𝑡 =

 𝑁𝑒𝑤𝐿𝑜𝑐 = 𝑙𝑜𝑐𝑖 + Q′ =

Q′ = {(1.2). (3.4)}

𝑄 = 𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖 =

Finally, the multiplication operator in the RSO method can be defined as an
operator that allows reducing the number of permutations applied to a path. This
operator can be applied between a real number and a permutation list, allowing the
algorithm to make more targeted changes to the current solution and avoid making
unnecessary permutations.

- 𝛽 × (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖).

- Q′ = (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖) = {(1.2). (3.4)}

- 𝛽 = 0.5

- 𝛽 × (𝑙𝑜𝑐𝐵𝑒𝑠𝑡 − 𝑙𝑜𝑐𝑖) = {(1.2)}

To improve the quality of solutions to the traveling salesperson problem, various
neighborhood search strategies can be used. One example of a reliable neighborhood
search method for the TSP is the two-exchange function, which involves making small
changes to the order of cities in the current solution to find a better solution.

In this work, we will present two versions of the rat swarm optimization (RSO)
algorithm for solving the TSP: the basic DRSO (Discrete Rat Swarm Optimization)
algorithm and the improved hybrid HDRSO (Hybrid Discrete Rat Swarm Optimization)
algorithm. The basic DRSO algorithm uses the RSO method in its original form, while
the HDRSO algorithm incorporates additional techniques and modifications to
improve its performance.

Before presenting the developments and modifications to the RSO method, we will
introduce the basic version of the algorithm and discuss its limitations.

4.3. The limits of the basic discrete rat swarm optimizer

The Discrete Rat Swarm Optimization (DRSO) algorithm, introduced by Mzili et al.
(2022), emulates the behavior of rats in the wild, where they collaborate to search for
prey. The population of the algorithm consists of rats, one of which is designated as
the captain, responsible for leading the group to the prey. However, we found that the
algorithm tends to converge to a local optimum after several iterations, which hurts
its performance (as shown in Table 2).

This behavior is because the captain rat does not have accurate information about
the position of the prey, which can lead the whole group to be trapped in a false
location, as rats do in the wild. Unfortunately, the captain is not replaced periodically,
and the whole group suffers from having to start the search from the beginning,
resulting in considerable delays.

To address these limitations, we propose an improved hybrid version of the RSO
algorithm that incorporates additional strategies and modifications to improve its

1 2 3 4

1 2 3 4

2 1 4 3

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

160

performance. One strategy is to search for additional generations of rats during the
prey search phase that can fight the prey and are more efficient, with varying
information about the location of the prey through additional enhancement, growth
and selection heuristics. The rats work together to guide the population to the optimal
solution, and if a captain is trapped, another rat can take over.

In addition, we suggest introducing a random mutation operator to allow the
population to explore new solutions and escape from local optima. Applying this
operator with a low probability avoids interfering with the algorithm's convergence.
Moreover, we propose to incorporate a local search mechanism to refine the solutions
found by the algorithm. This mechanism can be applied to the best solutions the
algorithm finds to improve their quality further. The proposed hybrid version of the
RSO algorithm combines multiple strategies to address its limitations, increase
population diversity, improve exploration capabilities, and refine the algorithm's
solutions.

Table 2. Results of the basic DRSO algorithm

Instance Opt Best Average Worst PDav PDbest Time(s) SD

eil51 426 426 432.57 442 1.54 0 6.76 4.34

berlin52 7542 7542 7788.79 8111 3.27 0 3.84 181.9

st70 675 675 685.46 699 1.55 0 9.39 7.68

Olivier30 420 420 421.62 426 0.38 0 0.39 2.72

eil76 538 549 569.5 591 5.85 2.00 13h35 16 775

kroA100 21282 21353 21748.4 21986 2.19 0.33 18.76 204.90

kroB100 22141 22337 23165.5 23929 2.62 0.87 9.50 644.91

Eil 101 629 653 672.62 696 6.93 3.67 0.39 15.17

ch130 6 110 6275 6507 6816 6.49 2.62 13.53 175.30

Rat99 1211 1229 1274.44 1308 5.23 1.46 0.39 27.98

D198 15780 16045 16517.8 16994 4.67 1.65 19.89 327.17

5. Proposed hybrid discrete rat swarm optimizer

To improve the basic version of the RSO algorithm and address its limitations, we
propose incorporating a mechanism common in many animal species: mating and
selection. To improve the next generation of any animal breed, animals (male or
female) will choose their life partner based on specific characteristics that are
distinctive for that type of animal to ensure the continuation of the desired qualities.
For example, in wild animals such as lions and wolves, females will choose the
strongest males, and sometimes this selection is made through mortal combat. On the
other hand, in animals that value aesthetics to preserve the beauty of the offspring,
females will choose the most beautiful, attractive, and elegant males.

We adopt this mechanism in our rat swarm optimization algorithm, where rats can
mate after selecting the most intelligent and strongest elements that can find the
position of the prey and successfully attack it without dying. This mechanism
maintains the characteristics of the swarm and the group and generates stronger
solutions. Additionally, at each iteration, we can incorporate basic local improvement
heuristics such as 2-opt and 3-opt (Zhong, 2021).

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

161

However, the algorithms derived from the K-Opt algorithm have high complexity
in terms of time 𝜃(𝑛𝑘) and memory usage, so caution must be taken when using them.
For this reason, we have associated these algorithms with probability. A new random
parameter T is added at this level, and its value is between [0, 1]. We can choose which
operator to call at each iteration based on this value. This allows us to balance the
exploration and exploitation of the search space and improve the algorithm's overall
performance.

5.1. Crossover and selection operators

Crossover operations were first introduced in genetic algorithms to create a new
population. The idea behind crossover is to use each parent's best qualities through a
new production generation. Various crossover operators have been proposed in the
literature to solve the traveling salesman problem. This paper adopts the modified
unified intersection to improve the search strategy of DRSO. In this paper, the
crossover is performed as follows:

1) A son is matched with the best-found father, which can also be named Gbest to
generate another individual who can be better than both.

2) A and B, representing different solutions to the traveling sales problem, are
selected as parents for the crossover operation.

3) The modified unified intersection operator is applied to A and B to generate a
new individual, C. This operator combines the strengths of both parents and
generates a new solution that is better than both original solutions.

4) C is then compared to the current Gbest, which represents the best solution
found so far by the algorithm, and if it is better, it becomes the new Gbest.

5) This process is repeated until a new population of solutions is generated, with
each new solution being generated through the RSO Crossover operator.

The advantage of using the RSO Crossover operator is that it allows for a more
efficient and effective search strategy for solving the traveling sales problem. By
combining the strengths of both parents and generating a new individual with the best
qualities of both, the algorithm can explore a wider range of solutions and find better
solutions more quickly. This leads to improved performance and better solutions to
the traveling sales problem.

5.2. 2-Opt move algorithm

The 2-opt algorithm is a local search algorithm that is commonly used to improve
the quality of solutions to the traveling sales problem. It works by iteratively removing
and reconnecting pairs of edges in the current solution to improve the cost of the
solution. This is done by removing intersecting edges and applying the triangle
inequality to ensure the solution is valid.

The 2-opt algorithm is applied in the last step of the RSO Crossover operator after
a new population of solutions has been generated. This allows the algorithm to further
improve the quality of the solutions by removing any remaining intersections and
ensuring that the solutions are valid. Overall, using the RSO Crossover operator
combined with the 2-opt algorithm allows for a more efficient and effective search
strategy for solving the traveling sales problem.

In Figure 3, the route <a; b; c; d> is changed to <a; c; b; d> by reversing the order of
visiting cities b and d. This involves removing the edges (a, b) and (c, d) and
reconnecting them in the new order (a, c) and (b, d).

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

162

Figure 3. 2-Opt move

The 2-opt algorithm is a special case of the more general k-opt algorithm, where k
is the number of edges that are removed and reconnected at each step. The 2-opt
algorithm specifically considers k = 2, meaning that only two edges are swapped at
each step (Figure 4). While it is possible to generalize the 2-opt algorithm to consider
higher values of k, such as the 3-opt (Figure 5) algorithm, which considers k = 3, this
is generally not necessary. This is because increasing k leads to a more complex search
space and a higher computational cost without necessarily significantly improving the
quality of the solutions.

Figure 4. 2-Opt swap example

Fig.5. 3-Opt swap example

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

163

5.3. Modification and adjustment of basic parameters

Our approach has several variables that play important roles in the optimization
process.
- C is a variable that helps to correctly explore the discrete case's search space

correctly. It determines the number of permutations performed on a path (city
sequence) to find a potentially optimal solution. If C < 1, we can generate a
different path. If C=1, we get the same path.

- δ is a variable that controls the adjustment of the objective function in the
continuous case or the modification of the entire trajectory in the discrete case.

- T is a variable that plays a crucial role in balancing the use of auxiliary operators.
At each iteration, T takes on a random value.
• T < 0.5, we perform permutations on the path according to a certain equation.
• 0.5 <= T <= 0.9, we select a solution for the crossover using the crossover

operator (a crossover between a solution and the best solution found so far).
T > 0.9, we apply the local heuristic 3-OPT, which has high complexity in terms of

time and memory but can quickly converge to a local optimum. We call it a low
probability due to its high complexity.

6. Experimental results and comparison

The basic and improved hybrid algorithms, HDRSO (Hybrid Discrete Swarm
Optimizer Search), are applied to solve the traveling salesperson problem. They are
tested on several TSP instances (benchmarks) from the public electronic library
TSPLIB of TSP problems. Each TSP instance provides a list of cities with their
coordinates (x and y) (as shown in Figure 6).

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

164

Figure 6. Example of berlin52 instance

The instance name represents its name in TSPLIB concatenated with the number
of cities in the instance: the instance named st70 has 70 cities. Euclidean distances of
these TSP instances are used for experiments and comparisons. The basic and
improved algorithm is tested using C++ as a programming language under the 64-bit
Windows 10 operating system. The tests are performed on a Dell laptop with a 2.00
GHz Intel Core i5 processor and 16 GB of RAM. The values of the parameters of the
proposed algorithm are chosen based on some preliminary tests. Then, the
comparison is made based on the following criteria: 1) The Best Value, which
designates the best solution obtained by each algorithm; 2) The mean value designates
the average value of the 20 solutions obtained after 20 executions of an algorithm; 3)
The worst value is the worst value obtained by an algorithm; 4) PDav(%) designates
the percentage of deviation of the average length of the solution from the optimal
solution of 20 executions:

average-opt

opt
×100 (7)

5) The STD is the standard deviation; finally, 6) the Time value is the average time
in seconds of the 20 executions.

The proposed HDRSO algorithm is compared with the basic algorithm and five
recently developed bio-inspired metaheuristics: DJAYA, RNN-SA, GGSC-SSA, DSSA, and
DSOS. The DJAYA algorithm (Gunduz & Aslan, 2021) is a population-based approach
proposed to solve constrained and unconstrained optimization problems. RNN-SA
(Rahman & Parvez, 2021) is an extension of the well-known Nearest Neighbor
algorithm, designed to build routes efficiently. GGSC-SSA (Wu et al., 2021) is inspired
by the foraging behavior of sparrows, while DSSA (Bas & Ülker, 2021) is based on the
behavior of spiders. Finally, DSOS (Ezugwu & Adewumi, 2017) is a metaheuristic
algorithm that takes inspiration from the symbiotic interactions among organisms in
nature.

The performance of these algorithms is compared on a set of TSP instances from
the TSPLIB library using the Euclidean distance. By comparing the algorithms on this
benchmark dataset, we can gain insights into their relative performance and efficiency
for solving the traveling salesperson problem.

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

165

Table 3. Initial parameter for HDRSO

parameter value

Population size 100

R Radom N in [1. 5]

C Radom N in [0. 1]

T Radom N in [0. 1]

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1000

6.1. Comparison between the base DRSO result and the HDRSO

In this section, we will compare the basic version of DRSO with the HDRSO and
examine the impact of altering parameters and introducing a new type of motion.

Table 4 compares the results of the basic DRSO and the HDRSO.

Table 4. Comparison between the hybrid version of DRSO and the base

version

 Basic DRSO

Instance Opt best Average PDav PDbest SD Time(s) Best

eil51 426 426 432.57 1.54 0 4.34 6.76 426

berlin52 7542 7542 7788.79 3.27 0 181.9 3.84 7542

st70 675 675 685.46 1.55 0 7.68 9.39 675

Oliver30 420 420 421.62 0.38 0 2.72 0.39 420

seil76 538 549 569.5 5.85 2.00 16.775 13.35 538

kroA100 21282 21353 21748.4 2.19 0.33 204.90 18.76 21282

kroB100 22141 22337 23165.5 2.62 0.87 644.91 9.50 22141

eil101 629 653 672.62 6.93 3.67 15.17 0.39 633

ch130 6.110 6275 6507 6.49 2.62 175.30 13.53 6105

Rat99 1211 1229 1274.44 5.23 1.46 27.98 0.39 1211

D198 15780 16045 16517.8 4.67 1.65 327.17 19.89 15874

Table 4 (Continuous). Comparison between the hybrid version of DRSO

and the base version

 HDRSO

Instance Opt best Average PDav PDbest SD Time(s)
T-

value
Sig WSR

eil51 426 426 426.5 0.11 0 0.53 5.63 16.67 +++ =
berlin52 7542 7542 7542 0 0 0 0.8 6.07 +++ =

st70 675 675 676.25 0.18 0 2.37 8.72 14.55 +++ =
Oliver30 420 420 420 0 0 0 0.11 2.67 ++ =

eil76 538 549 541.33 0.61 0 4.17 10.57 7.29 +++ +
kroA100 21282 21353 21295 0.06 0 28.77 28.55 28.77 +++ +
kroB100 22141 22337 22142.78 0.01 0 5.33 14.75 7.09 +++ +

eil101 629 653 637.6 1.36 0.63 4.44 34.5 9.91 +++ +
ch130 6.110 6275 6143 0.54 -0.08 42.73 44.89 9.02 +++ +
Rat99 1211 1229 1212.25 0.10 0 1.25 34.04 9.93 +++ +
D198 15780 16045 15956 1.11 0.95 69.93 101.3 7.51 +++ +

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

166

Figure 7. Convergence PDAV(%) graph of basic and hybrid DRSO

Figure 8. Comparison of the number of iterations necessary to obtain the best
solution for eil51(opt=426) and Eil76(opt=538)

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

167

6.2. Comparison between the HDRSO and other recently developed

metaheuristics

This section will compare the hybrid HDRSO metaheuristic with several other
techniques developed in 2020 to evaluate its ability to solve TSPLIB instances. To do
this, we ran HDRSO on 26 TSPLIB instances with 20 independent runs and used a
parametric test to analyze the results. It's worth noting that the experiments were
conducted on different computers and platforms, so we will not be making runtime
comparisons.

In Experiment 1, HDRSO is compared with the basic DRSO and DJAYA, RNN-SA,
GGSC-SSA, DSSA, and DSOS on a set of 26 symmetric TSP instances. The results of this
comparison are listed in Tables 4-9, which show the mean, best value, standard
deviation, and average performance time for each algorithm. The best results and
averages are highlighted in bold.

To determine significant differences between the results, we performed a student's
t-test for each algorithm compared to HDRSO. The t-values were computed using the
standard deviation and mean of 20 independent runs for each problem.

The t-test results can be found in the "T-value" and "Sig." columns of the tables.
To test for significant differences between HDRSO and the other techniques, we

derived five significant levels using critical values at the 95% confidence level (t0.05 =

Figure 9. Average convergence curves of all comparison algorithms

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

168

1.960) and the 99% confidence level (t0.01 = 2.576). The "Sig." significance levels are
defined as follows:

- t > 2.756: +++ (Extremely significant)
- 1.960 < t ⩽ 2.756: ++ (Significant)
- 0 < t ⩽ 1.960: + (Slightly significant)
- t = 0: = (Equal)
- 1.960 ⩽ t < 0: - (Insignificant)

The WSR column represents the sign of the difference between each pair of paired
observations. The smaller of the two rank sums, one for positive values WSR+ and one
for negative values WSR-, is used as the test statistic for Wilcoxon hypothesis tests.

Table 5. Comparison of the experimental results of the HDSRO with the DSSA
 HDRSO DSSA (2021)

Instance Opt Best Average PDav(%) SD Time Best Average PDav(%) SD
T-

value
sig WSR

Eil51 426 426 426.5 0.11 0.53 5.63 431.87 431.87 0.65 2.8 8.43 +++ +

Berlin52 7542 7542 7542 0 0 0.8 7659 7659 1.55 117 4.47 +++ +

Eil76 538 538 541.33 0.61 4.17 10.57 559.31 559.31 3.96 0.4 19.19 +++ +

Pr76 108 159 108159 108206.2 0.04 82.51 8.76 108880
108
880

0.66 721 4.15 +++ +

Rat99 1211 1211 1212.25 0.10 1.25 34.04 1221 1221 0.82 dix 3.88 +++ +

Rd100 7910 7905 7916.6 0.08 17h55 19.69 8120 8120 2.65 210 4.35 +++ +

KroA100 21 282 21282 21295 0.06 28.77 28.55 21363 21 363 0.38 81 3.54 +++ +

KroB100 22 141 22141 22142.78 0.008 5.33 14.75 22347 22 347 0.93 206 4.43 +++ +

KroC100 20 749 20749 20752.33 0.01 8.16 14.52 20997 20 997 1.19 248 4.41 +++ +

KroD100 21 294 21294 21313.89 0.09 38.58 21.82 21552 21 552 1.21 258 4.08 +++ +

KroE100 22 068 22068 22113 0.20 30.27 31.92 22407 22 407 1.53 339 3.86 +++ +

Lin105 14 379 14379 14379 0 0 15h44 14502 14 502 0.85 123 4.47 +++ +

Pr107 44 303 44303 44351.67 0.10 80.56 30.08 44346 44 346 0.09 43 0.28 + +

Pr124 59 030 59030 59039.2 0.01 19.39 13.07 59087 59 087 0.09 57 3.56 +++ +

Pr136 96 772 96785 97128.3 0.36 414 65.21 103460
103
460

6.91 6688 4.23 +++ +

Pr144 58 537 58537 58537 0 0 24.73 58669 58 669 0.22 132 4.47 +++ +

KroA150 26.524 26579 26741 0.81 144.10 40.24 27.027 27.027 1.59 503 2.44 ++ +

Pr152 73.682 73682 73761.45 0.10 222.19 14.33 74.462 74.462 1.05 780 3.86 +++ +

Rat195 2323 2344 2360.71 1.62 12.53 114.81 2353 2353 1.29 30 1.06 + +

Table 6. Comparison of experimental results of HDSRO with RNN-SA

 HDRSO RNN-SA (2021)

instances opt Best Average PDav(%) SD Time Best Average SD PDav(%) T-value Sig WSR

eil51 426 426 426.5 0.11 0.53 5.63 428.87 429.44 0.52 0.81 17.7080 +++ +

berlin52 7542 7542 7542 0 0 0.8 7544.37 7544.37 1.3 0.03 8.1530 +++ +

st70 675 675 676.25 0.18 2.37 8.72 677.11 679.33 3.04 0.64 3.5734 +++ +

eil76 538 538 541.33 0.61 4.17 10.57 544.37 549.16 4.40 2.07 5.7764 +++ +

rat99 1211 1211 1212.25 0.10 1.25 34.04 1219.24 1229.29 5.68 1.51 13.1029 +++ +

kroA100 21 282 21282 21295 0.06 28.77 28.55 21285.44 285.44 0.20 0.02 1.4860 + +

kroE100 22 068 22068 22113 0.20 30.27 31.92 22119.90 164.92 58.65 0.44 3.5180 +++ +

eil101 629 633 637.6 1.36 4.44 34.5 644.92 652.31 5.39 3.71 9.4204 +++ +

bier127 118 282 118599 118681.3 0.33 90.45 42.16 119331.15 849.69 294.00 1.33 16.9870 +++ +

ch130 6110 6105 6143 0.54 42.73 44.89 6171.87 6249.18 66.31 2.28 6.0195 +++ +

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

169

 HDRSO RNN-SA (2021)

instances opt Best Average PDav(%) SD Time Best Average SD PDav(%) T-value Sig WSR

pr136 96 772 96785 97128.3 0.36 414 65.21 96922.41
100

335.16
1979.60 3.68 7.0912 +++ +

ch150 6528 6548 6560.16 0.49 12.92 49.66 6552.30 6553.94 1.58 0.40 2.1371 ++ +

kroA150 26 524 26579 26741 0.81 144.10 40.24 26821.83 27008.24 194.18 1.83 4.9425 +++ +

kroB150 26.130 26137 26183.5 0.20 80.74 51.83 26327.09 26.577.15 232.5 1.71 7.1528 +++ +

pr152 73.682 73682 73761.45 0.10 222.19 14.33 73843.09 74669.58 836.59 1.34 4.6919 +++ +

u159 42 080 42080 42140.75 0.14 119.06 12.35 42162.75 547.66 90.57 1.11 12.1647 +++ +

rat195 2323 2344 2360.71 1.62 12.53 114.81 2348.70 2361.50 11h49 1.66 0.2078 + +

kroA200 29 368 29434 29525.67 0.53 86.55 82.03 29541.83 29626.42 73.01 0.88 3.9792 +++ +

kroB200 29 437 29479 29509.33 0.24 34.11 121.4 29825.16 30033.03 163.02 2.02 14.0622 +++ +

pr264 49 135 49135 49135 0 0 69.19 49197.32 49375.75 232.85 0.49 4.6239 +++ +

lin318 42 029 42253 42706.67 1.46 343.37 130.33 42862.50 43041.10 122.01 2.71 4.1043 +++ +

Table 7. Comparison of experimental results of HDSRO with DJAYA
 HDRSO DJAYA

instances opt Best Average PDav(%) PDbest(%) SD Time Best PDbest(%) SD T-value Sig WSR

oliver30 420 420 420 0 0 0 0.39 426.88 0.74 2.74 11.2293 +++ +

eil51 426 426 426.5 0.11 0 0.53 5.63 440.18 2.64 4.95 12.2891 +++ +

berlin52 7542 7542 7542 0 0 0 0.8 7580 0.48 80.60 2.1085 ++ +

st70 675 675 676.25 0.18 0 2.37 8.72 702.30 3.72 9.56 11.7177 +++ +

eil76 538 538 541.33 0.61 0 4.17 10.57 573.17 5.10 6.33 18.7851 +++ +

pr76 108 159 108159 108206.2 0.04 0 82.51 8.76 113258.29 4.71 1711.93 13.1825 +++ +

eil101 629 633 637.6 1.36 0.63 4.44 34.5 677.37 5.46 4.87 26.9882 +++ +

ch150 6 528 6548 6560.16 0.49 0.30 12.92 49.66 6638.63 1.63 52.79 6.4571 +++ +

kroa100 21 282 21282 21295 0.06 0 28.77 28.55 21735.31 2.13 331.33 5.9208 +++ +

krob100 22 141 22141 22142.78 0.008 0 5.33 14.75 22973.73 3.76 234.79 15.8233 +++ +

kroc100 20 749 20749 20752.33 0.01 0 8.16 14.52 21702.02 4.59 186.32 22.7731 +++ +

krod100 21 294 21294 21313.89 0.09 0 38.58 21.82 22631.25 6.28 487.62 12.0443 +++ +

kroe100 22 068 22068 22113 0.20 0 30.27 31.92 22582.47 2.33 252.07 8.2698 +++ +

Table 8. Comparison of experimental results of HDSRO with GGSC-SSA
 HDRSO GGSC-SSA(2021)

Instance Opt Best Average PDav(%) PDbest(%) SD Time(s) Best PDav(%) Time(s) WSR

ulysses22 75.67 71 71.8 -5.09 -6.57 0.40 0.003 75.24 0.00 1.95 +

eil51 426 426 426.5 0.11 0 0.53 5.63 426 0.00 3.87 =
berlin52 7542 7542 7542 0 0 0 0.8 7542 0.00 9.48 =
st70 675 675 676.25 0.18 0 2.37 8.72 676.96 0.29 8.26 +

pr76 108159 108159 108206.2 0.04 0 82.51 8.76 109170.3 0.94 15.13 +

eil76 538 538 541.33 0.61 0 4.17 10.57 539.79 0.33 9.32 +
rat99 1211 1211 1212.25 0.10 0 1.25 34.04 1211 0.00 11.4 =

kroA100 21282 21282 21295 0.06 0 28.77 28.55 20989.04 0.00 19.88 +

kroB100 22140 22141 22142.78 0.008 0 5.33 14.75 22152 0.05 11.5 +

kroC100 20749 20749 20752.33 0.01 0 8.16 14.52 21346.53 2.88 11.92 +

kroD100 21294 21294 21313.89 0.09 0 38.58 21.82 22138.53 3.97 16.48 +

rd100 7910 7905 7916.6 0.08 -0.06 17.55 19.69 7951.28 0.52 15.34 +
eil101 629 633 637.6 1.36 0.63 4.44 34.5 638 1.43 11.75 +

lin105 14379 14379 14379 0 0 0 15.44 14543.56 1.14 15.95 +

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

170

pr124 59030 59030 59039.2 0.01 0 19.39 13.07 59607.74 0.98 17.68 +

ch130 6110.86 6105 6143 0.54 -0.08 42.73 44.89 6115.25 0.07 15.59 +

pr144 58537 58537 58537 0 0 0 24.73 58862.09 0.56 20.05 +

d198 15780 15874 15956 1.11 0.95 69.93 101.3 15951.29 1.09 74.85 +

kroA200 29368 29434 29525.67 0.53 0.22 86.55 82.03 29507.35 0.47 49.31 +

kroB200 29437 29479 29.509.33 0.24 0.14 34.11 121.4 29678.92 0.82 64.37 +

pr226 80369 80369 80372.73 0.004 0 12.36 27.04 81361.17 1.23 35.63 +

lin318 42090 42253 42706.67 1.46 0.38 343.37 130.33 43023.73 2.22 184.73 +

fl417 11861 11857 11876 0.12 -0.03 20.84 212.95 11936.25 0.63 257.88 +

pr439 107217 108647 109 687.5 2.30 1.31 1124.87 226.31 113074.47 5.46 86.09 +

Table 9. Comparison of the experimental results of the Hybrid DSRO with the DSOS.
 HDRSO DSOS (2017)

Instance Opt Best Average PDav(%) PDbest(%) SD Time(s) Best Average PDav(%) PDbest(%) WSR

eil51 426 426 426.5 0.11 0 0.53 5.63 426 427.90 0.45 0 =

berlin52 7542 7542 7542 0 0 0 0.8 7 542 7 542.60 0.01 0 =

st70 675 675 676.25 0.18 0 2.37 8.72 675 679.20 0.62 0 =

eil76 538 538 541.33 0.61 0 4.17 10.57 542 547.40 1.75 0.74 +

rat99 1211 1211 1212.25 0.10 0 1.25 34.04 1235 1 240.74 2.46 1.98 +

kroA100 21 282 21282 21295 0.06 0 28.77 28.55 21282 21 409.50 0.60 0 =

kroB100 22 140 22141
22142.7

8
0.008 0 5.33 14.75 22140 22 339.20 0.90 0 -

kroC100 20 749 20749
20752.3

3
0.01 0 8.16 14.52 20749 20 881.60 0.64 0 =

kroD100 21 294 21294
21313.8

9
0.09 0 38.58 21.82 21294 21 493.10 0.94 0 =

kroE100 22 068 22068 22113 0.20 0 30.27 31.92 22068 22 231.10 0.74 0 =

eil101 629 633 637.6 1.36 0.63 4.44 34.5 640 650.60 3.43 1.75 +

pr107 44 303 44303
44351.6

7
0.10 0 80.56 30.08 44314 44 445.10 0.32 0.02 +

pr124 59 030 59030 59039.2 0.01 0 19.39 13.07 59030 59 429.10 0.68 0 =

pr136 96 772 96785 97128.3 0.36 0.01 414 65.21 97437 97 673.20 0.93 0.69 +

pr144 58 537 58537 58537 0 0 0 24.73 58565 58 817.10 0.49 0.05 +

6.3. Analysis and discussion

To further verify the effectiveness of the proposed algorithm, we conducted a
comparative analysis with several state-of-the-art metaheuristic algorithms published
from 2020 to 2022 using a non-parametric statistical test. This allowed us to evaluate
the performance of our proposed algorithm and its improvements to these other
approaches. The first comparison is with the basic RSO algorithm to see the effects of
changes and improvements, followed by a complete comparison with other
metaheuristics.

Tables 4-9 show the experimental results of the HDRSO algorithm compared to the
DJAYA (2021), DSSA (2021), DSOS (2017), RNNA-SA (2021), and GGSC-SSA (2021)
methods. The statistical criteria chosen for this comparison are to show the difference
in the obtained values, the mean, the deviation, and the computation time. The tables
show that our HDRSO algorithm obtained the optimum several times compared to the
other metaheuristics. The minimal values of STD and Pdav(%) can justify that HDRSO
could obtain the optimum several times compared to the other metaheuristics. In the
first table, we can see that the statistical values are minimal in the improved version.

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

171

This indicates that the hybridization and improvement strategy chosen was able to
create a very robust new algorithm that could solve many other combinatorial
problems.

In this section, we chose to make a statistical evaluation using a student parametric
test (T-test) by comparing the results of HDRSO and the Basic DRSO. The t-test results
presented in Table 4 show that HDRSO is 100% superior to the basic DRSO in all test
cases (11 out of 11 assessments). In addition, the t-test results between HDRSO and
DSSA are also presented individually in Table 5. HDRSO is highly significant in 84.21%
(16 out of 19 assessments) and either significantly better in 5.26% (1 out of 19
assessments) or slightly better in 10.52% (2 out of 19 assessments) of the cases, as
reflected in the differences in results. Table 6 shows that HDRSO outperforms RNN-SA
in 86.22% (19 out of 22 evaluations) of the cases and is either significantly better in
4.54% (1 out of 22 evaluations) or slightly better in 9.09% (2 out of 22) of the
evaluations.

For the comparison with DJAYA, we will see that our algorithm is significantly
better than Djaya's in almost all test cases (92.30% or 12 out of 13 evaluations) and
7.69% significantly better (1 out of 13 assessments). The algorithms that do not have
enough information to make a statistical comparison according to the student's T-test
are compared based on the average time and their ability to obtain the optimal value.
Regarding the comparison between HDRSO and GGSC-SSA, we can see that HDRSO
obtained the optimum at 70.83% (17 tests out of 24) and exceeded the optimum at
16.66% (4 tests out of 24). On the other hand, GGSC-SSA obtained the optimum at only
16.66% (4 tests out of 24), which is significantly weaker compared to HDRSO.

Finally, in the comparison between HDRSO and DSOS, we can see that HDRSO
obtained the optimum in 86.66% (13 tests out of 15), while DSOS obtained the
optimum in 60% (9 tests out of 15) with a 26.66% difference compared to HDRSO.
Furthermore, when we analyze the average values of PDav(%), we can see that the
PDav of HDRSO is lower than that of DSOS at 100% (15 tests out of 15), which can
justify that for each test, the solutions of the 20 executions made by HDRSO are very
close to the optimum, whereas those of DSOS are not.

In some tests, the HDRSO exceeded the optimal value proposed by the TSPLIB
library. Moreover, for four instances (ch130, rd100, fl417, ulysse22), see Table 9.
These new values obtained can be new references for future research.

We will also confirm our analysis and comparison with a non-parametric Wilcoxon
test (Fix & Hodges Jr, 1955) with a 95% confidence interval (α=0.05) to compare our
optimizer and other metaheuristics.

This test was applied to compare the difference between the best-Obt value in two
algorithms for comparison and ranking.

N denotes the number of test cases, and W+ represents the scores of the cases with
the best performance in the proposed algorithm (sums of WSR+). While W- represents
the sum of the scores of the cases where the proposed algorithm performs worse than
the comparative algorithm (sums of WSR-), and the p-value is compared to a critical
value α =0.05 in the Wilcoxon signed-rank test. If the p-value ≤ α, it indicates a
significant difference between the performance of the two algorithms. However, if the
p-value > α, then there is no significant difference between the performance of the two
algorithms.

Table 10. Results of the Wilcoxon signed-rank test for the comparison of the

best-obtained solution of HDRSO with other metaheuristics

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

172

Comparison Dimension N W- W+ P-value
Significantly

(P < 0.05)?

HDRSO vs Basic 11 -56,00 0 0,016 YES

HDRSO vs DSSA 19 37,00 153 0,018 YES

DRSO vs RNN-SA 21 0 131 <0,001 YES

DRSO vs GGSC-SSA 24 -16 278 <0,001 YES

DRSO vs DSOS 15 -9 75 0,031 YES

In this table 10, the Wilcoxon test allows us to see that the difference between

DRSO and the other metaheuristics is statistically significant. According to these
evaluations, the proposed algorithm, which uses the hybridization mechanism,
crossover operators, and the 2-opt and 3-opt local search algorithms, outperformed
other metaheuristics regarding solution quality and the ability to obtain the optimum.
The hybrid HDRSO algorithm is a promising approach for solving the TSP and other
combinatorial optimization problems.

7. Conclusion

This paper proposes a new optimization algorithm called the hybridized and
discrete rat swarm optimization (HDRSO) algorithm. This algorithm is an improved
version of the standard rat swarm optimization (RSO) algorithm and has been adapted
to solve the Symmetric Traveler Problem (TSP), a combinatorial optimization
problem. Our HDRSO algorithm uses new motion types, mathematical operators, and
heuristics, such as basic genetics and K-OPT, to reconstruct its population and
introduce a new, more intelligent class of RSO. In addition, the algorithm is inspired
by natural rat behavior, such as hunting and chasing prey, and has been discretized for
improved performance.

We compare the performance of our HDRSO algorithm to several recently
developed metaheuristics, including DJAYA, DSSA, DSOS, RNNA-SA, and GGSC-SSA.
The comparison results show that our HDRSO algorithm is more efficient than the
other methods in solving TSP problems. The main contributions of this work are the
development of a new optimization strategy based on group behavior and other
robust mechanisms, as well as the use of a local search heuristic to improve the quality
of solutions. This new optimization strategy is applied to the traveling salesman
problem, and experimental results show that it outperforms classical heuristics in
terms of computational efficiency and solution quality. This method can be useful for
real-time decision-making in high-volume logistics transportation, especially in
complex and dynamic environments. It can help significantly reduce salesmen's
working time and travel costs.

The Discrete Rat Swarm Optimization (DRSO) algorithm is effective in solving the
Traveling Salesman Problem (TSP). It can be extended to solve a wide range of other
combinatorial optimization problems, such as the Quadratic Assignment Problem
(QAP), the Vehicle Routing Problem (VRP), the Job Scheduling Problem (JSSP), and the
Knapsack Problem (KP).

DRSO offers several advantages that make it well-suited for these problems. First,
it excels at handling discrete optimization problems with a large search space where
other optimization methods may have difficulty finding optimal solutions. Second, it
uses a natural mechanism that mimics rats' behavior in nature, allowing it to avoid

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

173

local optima and identify promising solutions. Finally, DRSO can be easily adapted to
different problems by adjusting its parameters, such as population size, crossover rate,
and mutation rate. Therefore, it is a versatile algorithm that can be applied to various
fields, such as logistics, transportation, manufacturing systems, artificial intelligence,
and machine learning applications.

In future work, the proposed algorithm can be extended to solve more advanced
discrete optimization problems, such as the Quadratic Assignment Problem (QAP), the
Job Shop Scheduling Problem (JSSP), and the Vehicle Routing Problem (VRP). In
addition, the algorithm can be generalized to handle a larger number of discrete
optimization problems. Further studies will evaluate the algorithm's performance on
these more complex problems and explore its potential applications in various fields.

Author contributions: Research problem, M.R., T.M. and I.M.; Conceptualization, M.R.,
T.M. and I.M.; Methodology, M.R., T.M., and I.M.; Formal analysis, M.R., T.M.; Resources,
M.R., I.M.; Original drafting, M.R. and T.M.; Reviewing and editing, M.R., T.M.,I.M;
Project administration, M.R., T.M.,IM; Supervision, M.R., I.M.

Funding: This research received no external funding.

Data Availability Statement: The data used to support the findings of this study are
included within the article.

Conflicts of Interest: The authors declare that they have no known competing
financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

References

Abualigah, L., Elaziz, M. A., Sumari, P., Khasawneh, A. M., Alshinwan, M., Mirjalili, S.,
Shehab, M., Abuaddous, H. Y., & Gandomi, A. H. (2022). Black hole algorithm: A
comprehensive survey. Applied Intelligence, 52(10), 11892–11915.

Anuar, S., Selamat, A., & Sallehuddin, R. (2016). A modified scout bee for artificial bee
colony algorithm and its performance on optimization problems. Journal of King Saud
University - Computer and Information Sciences, 28(4), 395–406.

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm
for optimization inspired by imperialistic competition. 2007 IEEE Congress on
Evolutionary Computation, 4661–4667. https://doi.org/10.1109/CEC.2007.4425083

Barbarosoglu, G., & Ozgur, D. (1999). A tabu search algorithm for the vehicle routing
problem. Computers & Operations Research, 26(3), 255–270.

BAŞ, E., & ÜLKER, E. (2021). Dıscrete socıal spıder algorıthm for the travelıng salesman
problem. Artificial Intelligence Review, 54(2), 1063–1085.

Chung, S. W., & Freund, J. B. (2022). An optimization method for chaotic turbulent flow.
Journal of Computational Physics, 457, 111077.
https://doi.org/10.1016/j.jcp.2022.111077

Cinar, A. C., Korkmaz, S., & Kiran, M. S. (2020). A discrete tree-seed algorithm for solving
symmetric traveling salesman problem. Engineering Science and Technology, an
International Journal, 23(4), 879–890.

https://doi.org/10.1109/CEC.2007.4425083
https://doi.org/10.1016/j.jcp.2022.111077

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

174

Cotta, C., Mathieson, L., & Moscato, P. (2018). Memetic Algorithms. In Handbook of
Heuristics (pp. 607–638). Springer International Publishing.
https://doi.org/10.1007/978-3-319-07124-4_29

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53–66.

Ezugwu, A. E.-S., & Adewumi, A. O. (2017). Discrete symbiotic organisms search
algorithm for travelling salesman problem. Expert Systems with Applications, 87, 70–78.

Ezugwu, A. E., Shukla, A. K., Nath, R., Akinyelu, A. A., Agushaka, J. O., Chiroma, H., &
Muhuri, P. K. (2021). Metaheuristics: a comprehensive overview and classification along
with bibliometric analysis. Artificial Intelligence Review, 54(6), 4237–4316.

Ginidi, A., Ghoneim, S. M., Elsayed, A., El-Sehiemy, R., Shaheen, A., & El-Fergany, A. (2021).
Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar
Photovoltaic Systems. Sustainability, 13(16), 9459.
https://doi.org/10.3390/su13169459

Gunduz, M., & Aslan, M. (2021). DJAYA: A discrete Jaya algorithm for solving traveling
salesman problem. Applied Soft Computing, 105, 107275.
https://doi.org/10.1016/j.asoc.2021.107275

Kaveh, A., & Dadras, A. (2017). A novel meta-heuristic optimization algorithm: Thermal
exchange optimization. Advances in Engineering Software, 110, 69–84.

Kennedy, J., & Eberhart, R. (n.d.). Particle swarm optimization. Proceedings of ICNN'95 -
International Conference on Neural Networks, 1942–1948.
https://doi.org/10.1109/ICNN.1995.488968

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1987). Optimization by Simulated Annealing.
In Readings in Computer Vision (pp. 606–615). Elsevier. https://doi.org/10.1016/B978-
0-08-051581-6.50059-3

Koza, J. R., & Poli, R. (2005). Genetic Programming. In E. K. Burke & G. Kendall (Eds.),
Search Methodologies: Introductory Tutorials in Optimization and Decision Support
Techniques (pp. 127–164). Springer US. https://doi.org/10.1007/0-387-28356-0_5

Kumar, A., Vohra, M., Pant, S., & Singh, S. K. (2021). Optimization techniques for
petroleum engineering: A brief review. International Journal of Modelling and
Simulation, 41(5), 326–334.

Kumar, J., Kumar Singh, A., Mohan, A., & Buyya, R. (2021). Metaheuristic Optimization
Algorithms. In Machine Learning for Cloud Management (pp. 59–74). Chapman and
Hall/CRC. https://doi.org/10.1201/9781003110101-4

Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on the
harmony search algorithm. Computers & Structures, 82(9–10), 781–798.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated Local Search: Framework and
Applications (pp. 363–397). https://doi.org/10.1007/978-1-4419-1665-5_12

Medjahed, S. A., Ait Saadi, T., Benyettou, A., & Ouali, M. (2016). Gray Wolf Optimizer for
hyperspectral band selection. Applied Soft Computing, 40, 178–186.

https://doi.org/10.1007/978-3-319-07124-4_29
https://doi.org/10.3390/su13169459
https://doi.org/10.1016/j.asoc.2021.107275
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/B978-0-08-051581-6.50059-3
https://doi.org/10.1016/B978-0-08-051581-6.50059-3
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1201/9781003110101-4
https://doi.org/10.1007/978-1-4419-1665-5_12

Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm…

175

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp
Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances
in Engineering Software, 114, 163–191.

Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2018). Grasshopper
optimization algorithm for multi-objective optimization problems. Applied Intelligence,
48(4), 805–820.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers &
Operations Research, 24(11), 1097–1100.

Mzili, T., Riffi, M. E., Mzili, I., & Dhiman, G. (2022). A novel discrete Rat swarm
optimization (DRSO) algorithm for solving the traveling salesman problem. Decision
Making: Applications in Management and Engineering, 5(2), 287–299.

Opara, K. R., & Arabas, J. (2019). Differential Evolution: A survey of theoretical analyses.
Swarm and Evolutionary Computation, 44, 546–558.

Osaba, E., Yang, X.-S., & Del Ser, J. (2020). Traveling salesman problem: a perspective
review of recent research and new results with bio-inspired metaheuristics. In Nature-
Inspired Computation and Swarm Intelligence (pp. 135–164). Elsevier.
https://doi.org/10.1016/B978-0-12-819714-1.00020-8

Pereira, J. L. J., Francisco, M. B., Diniz, C. A., Antônio Oliver, G., Cunha, S. S., & Gomes, G. F.
(2021). Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global
optimization. Expert Systems with Applications, 170, 114522.
https://doi.org/10.1016/j.eswa.2020.114522

Peres, F., & Castelli, M. (2021). Combinatorial Optimization Problems and
Metaheuristics: Review, Challenges, Design, and Development. Applied Sciences, 11(14),
6449. https://doi.org/10.3390/app11146449

Prajapati, V. K., Jain, M., & Chouhan, L. (2020). Tabu Search Algorithm (TSA): A
Comprehensive Survey. 2020 3rd International Conference on Emerging Technologies
in Computer Engineering: Machine Learning and Internet of Things (ICETCE), 1–8.
https://doi.org/10.1109/ICETCE48199.2020.9091743

Rahman, Md. A., & Parvez, H. (2021). Repetitive Nearest Neighbor Based Simulated
Annealing Search Optimization Algorithm for Traveling Salesman Problem. OALib,
08(06), 1–17. https://doi.org/10.4236/oalib.1107520

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search
Algorithm. Information Sciences, 179(13), 2232–2248.

Rawat, S. S., Pant, S., Kumar, A., Ram, M., Sharma, H. K., & Kumar, A. (2022). A State-of-
the-Art Survey on Analytical Hierarchy Process Applications in Sustainable
Development. International Journal of Mathematical, Engineering and Management
Sciences, 7(6), 883–917.

Saji, Y., & Riffi, M. E. (2016). A novel discrete bat algorithm for solving the travelling
salesman problem. Neural Computing and Applications, 27(7), 1853–1866.

Simon, D. (2008). Biogeography-Based Optimization. IEEE Transactions on Evolutionary
Computation, 12(6), 702–713.

Slowik, A., & Kwasnicka, H. (2020). Evolutionary algorithms and their applications to
engineering problems. Neural Computing and Applications, 32(16), 12363–12379.

https://doi.org/10.1016/B978-0-12-819714-1.00020-8
https://doi.org/10.1016/j.eswa.2020.114522
https://doi.org/10.3390/app11146449
https://doi.org/10.1109/ICETCE48199.2020.9091743
https://doi.org/10.4236/oalib.1107520

 Mzili et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 150-176

176

Sun, L. (2015). Genetic Algorithm for TSP Problem. https://doi.org/10.2991/iiicec-
15.2015.319

Tanaev, V. S., Gordon, V. S., & Shafransky, Y. M. (1994). NP-Hard Problems. In Scheduling
Theory. Single-Stage Systems (pp. 253–311). Springer Netherlands.
https://doi.org/10.1007/978-94-011-1190-4_5

Uniyal, N., Pant, S., Kumar, A., & Pant, P. (2022). Nature-inspired metaheuristic
algorithms for optimization. In Meta-heuristic Optimization Techniques (pp. 1–10). De
Gruyter. https://doi.org/10.1515/9783110716214-001

Wu, C., Fu, X., Pei, J., & Dong, Z. (2021). A Novel Sparrow Search Algorithm for the
Traveling Salesman Problem. IEEE Access, 9, 153456–153471.

Xu, G.-H., Zhang, T.-W., & Lai, Q. (2022). A new firefly algorithm with mean condition
partial attraction. Applied Intelligence, 52(4), 4418–4431.

Yang, X.-S. (2009a). Firefly Algorithms for Multimodal Optimization (pp. 169–178).
https://doi.org/10.1007/978-3-642-04944-6_14

Yang, X.-S. (2009b). Firefly Algorithms for Multimodal Optimization (pp. 169–178).
https://doi.org/10.1007/978-3-642-04944-6_14

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm (pp. 65–74).
https://doi.org/10.1007/978-3-642-12538-6_6

Yang, X.-S., & Deb, S. (2009). Cuckoo Search via Lévy flights. 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC), 210–214.
https://doi.org/10.1109/NABIC.2009.5393690

Zhong, X. (2021). On the approximation ratio of the 3-Opt algorithm for the (1,2)-TSP.
Operations Research Letters, 49(4), 515–521.

© 2023 by the authors. Submitted for possible open access publication under the

terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.2991/iiicec-15.2015.319
https://doi.org/10.2991/iiicec-15.2015.319
https://doi.org/10.1007/978-94-011-1190-4_5
https://doi.org/10.1515/9783110716214-001
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1109/NABIC.2009.5393690

