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Original scientific paper 
Abstract: This paper modeled and solved an integrated multi-depot vehicle 
routing problem (MDVRP) with simultaneous pickup and delivery (SPD) with 
package layout under unpredictable pickup, delivery, and transfer costs. The 
model described in this paper is divided into two stages. In the first stage, the 
SCA algorithm is used to optimize the package dimensions (a collection of 
commodities consumers need). The NSGA II and MOALO algorithms are used in 
the second stage to optimize the three objective functions of 1 simultaneously) 
minimizing total costs, 2) minimizing co2 emissions, and 3) minimizing the 
maximum working hours of drivers based on the optimal dimensions (length, 
width, and height) obtained from solving the first stage model. Determining the 
quantity and ideal location of possible warehouses, the best route for trucks to 
take to deliver and collect customer items, and the distribution of customers to 
warehouses are the key goals of the second stage. Since the model is unclear, the 
problem's uncertainty parameters are controlled using a novel fuzzy-robust box 
optimization (FRBO) technique. This technique, which combines the advantages 
of fuzzy programming with robust box-based optimization, produces excellent 
results when used to optimize objective functions. The numerical calculations in 
the numerical example show that the total network costs and CO2 emissions 
increased in the second stage in the presented model with an increasing 
uncertainty rate. At the same time, the maximum working hours of drivers 
decreased due to the shortened communication route and the number of vehicles 
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increasing. Finally, the MOALO algorithm was used to resolve a case study at 
Safir Broadcasting Company because of its excellent efficiency in resolving the 
created model, the findings of which revealed the presence of 13 potential 
effective solutions. The quantity of greenhouse gas emissions rose by 1.11%, the 
overall expenditures climbed by 1.72%, and the number of hours that drivers 
worked fell by 11.98% when the uncertainty rate was raised from 0.5 to 0.7, 
according to research on the FRBO.  

Key words: MDVRP, SPD, package layout, MOALO, FRBO. 

1. Introduction 

 The movement of people and commodities is an issue whose complexity is 
continually rising due to the increasing expansion of urbanization, industries, and 
support industries. This has made the problem more challenging to solve. The growth of 
cities has led to an increase in the demand placed on the transportation sector. This, in 
turn, has led to a rise in the number of challenges faced by cities and large industries, 
including but not limited to traffic congestion; air pollution; the inefficiency of long 
journeys; increased fuel consumption; vehicle depreciation; and so on. It is necessary to 
have a transportation system that is both well-equipped and efficient to alleviate traffic 
difficulties and the subsequent economic, social, and environmental issues that they 
cause in big cities, manufacturing enterprises, and service-oriented businesses. The 
transportation industry is not only one of the most significant contributors to the overall 
cost of completed goods but also one of the most significant contributors to the overall 
economy of any nation. According to (Koç et al., 2020), one of the difficulties explored in 
the literature on operations, distribution of commodities, movement of people, and 
transportation is the problem of vehicle routing. In 1959, Dantzig and Ramser were the 
ones who first brought up the problem of vehicle routing (Dantzig & Ramser, 1959). This 
is a combination of the two problems of the traveling salesman and the packing of boxes, 
which involves attempting to optimally design a set of routes for the transport fleet so 
that a certain number of customers are served while also having a limited number of 
ancillary capabilities. Because there is such a wide range of distinct iterations of this 
issue, it is very challenging and time consuming to categorize the many ways in which it 
manifests and to explain the various stages in which it does so. An extended model of the 
research conducted by Dantzig and Ramser (1959) is the problem of MDVRP with SPD. 
This problem combines two problems, including potential warehouse location and 
vehicle routing (Ma et al., 2019). 

Because of the high costs involved, choosing possible warehouses is the most 
important strategic choice in a problem of this kind. Because of this, the aim in the first 
place is to pick potential warehouses as a strategic decision in the issue (Avci & 
Topaloglu, 2016). The second choice that had to be taken concerning this matter 
concerned the routing of customers who have needs for various commodities and want 
to provide consumables (Kartal et al., 2017). In this scenario, each vehicle chooses a path 
for its traffic to be able to meet the demand of a group of customers based on constraints 
such as vehicle capacity, time window restrictions, and other such constraints, as well as 
to pick up customers' discarded goods and again deliver those goods to the customers 
(Belgin et al., 2018; Lagos et al., 2018). As a result, judgments about MDVRP and strategic 
SPD are made, as well as decisions regarding strategic and tactical aspects. 
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In such situations, the objective is to cut down as much as possible on the overall cost 
of where the warehouse is located and how the vehicles get there. The majority of 
research done on vehicle navigation issues has focused on finding ways to cut the costs 
associated with logistics. However, the quantity of goods distribution trucks has 
increased CO2 emissions in the modern era. A lack of adequate planning has resulted in 
an imbalance in the time drivers spend working to transport and collect items from 
consumers. As a result, studies need to evaluate economic elements and pay greater 
attention to the model's capacity to maintain its stability. 

In light of the significance of considering social and environmental factors, the 
challenge of devising a sustainable truck routing that allows for SPD is investigated in 
this work. The volume of SPD from clients is another crucial aspect of vehicle routing 
that must be determined. It is difficult or impossible to determine the exact amount of 
SPD for the construction of storage warehouses and the allocation of vehicles due to the 
uncertainty in the real-world environment, which can lead to increased logistics costs in 
some cases. This makes it challenging to plan for the construction of storage warehouses. 
As a result, there will be a shift in the total number of packages put in vehicles whenever 
there is a change in the volume of SPD. As a result, various vehicles have to be employed 
following the kind of client orders and the quantity of those orders. Each client has its 
unique preferences for how Bytes should, after the review, be organized into delivering 
bundles and placed in the appropriate vehicles. Because of this problem, a two-stage 
model has been developed in this article. In the first stage, the items in the various 
packages are placed in such a manner as to obtain the most ideal dimensions possible. 
This is done following the client's demands (length, width, and height). 

After identifying the most efficient dimensions for each item concerning the capacity 
of the vehicles, the packages are reorganized inside the cars, and the most effective route 
for transportation is plotted out. 

As a result, the model examined in this study may be represented as follows in two 
stages: 
• The best product layout that can be SPD to customers in the first stage focuses on 

giving customers a priority.  
• The best placement of potential warehouses and the best routing of vehicles for 

SPD in the second stage, focusing on minimizing the problem's overall cost, 
minimizing the co2 emissions, and minimizing the maximum driving hours. 

Since there is uncertainty in the amount of SPD, the RFBO method is used. This 
method has the advantage of two fuzzy programming methods and a robust box 
optimization method in controlling uncertain parameters and optimizing the 
multiobjective model. 

As a result, in this article, a two-stage model of MDVRP and SPD is modeled and 
assessed. This model also includes modeling of the layout and position of vehicles. The 
history of the relevant study and modeling of the issue will be described in the following 
parts. The following is an outline of the article's structure: 

The second half of this analysis focuses on the literature review of the problem and 
the research gaps associated with the issue. In the third part of the article, there is a 
presentation of a two-stage model of MDVRP, which includes SPD. The fourth part 
discusses the problem's primary chromosome and the strategies employed to solve the 
problem. In the fifth section, we solve the issue by breaking it down into smaller pieces 
and looking at a case study with Safir Broadcasting Company. The last part is the 
conclusion, offering some ideas for further research. 
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2- Literature Review 

Because the problem of vehicle routing is so essential, it has received a great deal of 
attention and research in recent decades, leading to various breakthroughs and 
solutions. One of the topics lately studied about the problem of routing is the issue of 
green vehicle routing. This kind of routing aims to route cars to minimize their impact 
on the environment and their need for fuel. Concerns about the routing of 
environmentally friendly vehicles may be grouped into three categories: routing with 
optimum fuel usage, routing that considers environmental pollutants, and routing that 
involves a reverse supply chain. 

A model known as minimization of energy consumption in the problem of vehicle 
routing was presented on the topic of routing with fuel consumption optimization. This 
approach minimizes total energy use (Kara et al., 2007). The investigation's objective 
function was the product of the vehicle's weight, and the distance traveled. The issue of 
routing two-echelon vehicles with cross-docking in a supply chain network (suppliers, 
cross-warehouses, retailers). This was accomplished using the GA and the local search 
method (Ahmadizar et al., 2015). Kalayci and Kaya (2016) researched the ACO to 
identify the best solution to an issue with vehicle routing that included SPD. This 
research is being done to reduce the overall distance that freight trucks have to travel. 
Because better results presented in a shorter time in the benchmark data set are a good 
performance indicator, numerical results confirm that the developed method is 
powerful and very efficient regarding solution quality and CPU time. This is because 
better results are presented in the benchmark data set in a shorter time. 

When preparing potentially hazardous materials and transporting products to and 
from various warehouses and ultimately to end users, a fuzzy linear programming model 
was developed to reduce the associated risk as much as possible. PSO, GA, SA, and ACO 
were the four meta-heuristic methods used to find a solution to the issue. Numerical 
examples were used to compare the various suggested techniques (Du et al., 2017). 
Brandão (2018) created an open VRP with a time window in mind, and to solve it, he 
used an iterative local search approach. This approach was used for data sets of larger 
sizes and applied to 418 example issues throughout its implementation. According to 
Brandão (2018), the findings demonstrated that this algorithm is quite effective at 
resolving problems of a grander scale. 

In a publication by Polyakovskiy and M'Hallah (2018), the challenge of organizing 
goods in a two-dimensional space was investigated and modeled. To do this, they 
provided a complicated integer linear programming model and used CPLEX software to 
solve the model in various sizes. They also 

Ulmer et al. (2021) posed the challenge of determining the most efficient truck routes 
to fulfill meal requests from many establishments simultaneously. This article's 
objective is to provide a method for dynamically controlling the drivers' fleet in such a 
manner as to circumvent delays in customer rules. Two different things may go wrong. 
First, the client's identity is not determined until the order has been placed. Second, 
there is no way to find out how long it takes for the restaurant to prepare the dish. An 
ACA is being considered as a potential solution to these problems (Ulmer et al., 2021). 
Curtois et al. (2018) developed a local search approach as a solution to the issue of 
vehicle routing, taking into account SPD and a time window. This article aims to use the 
distance minimization function to determine how many depots there should be and how 
vehicles should be routed between them. The suggested algorithm design has resulted 
in a technique that is both effective and quick, which locates many of the most well-
known novel answers in a benchmark data set that is already well-known (Curtois et al., 
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2018). Dambakk (2019) modeled a naval routing issue in his dissertation by considering 
simultaneous delivery and pickup, adding time windows and cost limitations, and so on. 
In light of the NP-Hard character of the challenge, he offered a time-saving algorithm to 
solve his model. The findings demonstrated that his suggested solution method 
effectively resolved the issue(Dambakk, 2019). 

Another integer linear programming issue for a vehicle location-routing model with 
SPD was described by Hemmati Golsefidi and Akbari Jokar (2020). The model also 
considers the movement of goods in the opposite direction. The suggested model plans 
reproduction settings, reproduction amounts, retailer visits, supplier inventory 
management, retailer inventory management under vendor management, and retailer 
visits to reduce system costs. The problem of MDVRP with SPD was designed by 
Nadizadeh and Kafash (2019). They began with the premise that demand is 
unpredictable. They utilized the fuzzy programming method to control the demand 
parameter's unpredictability. The optimal values of two categories of model parameters, 
known as "vehicle indices" and "warehouse indices," were determined using numerical 
experiments, and the effects of these parameters on the overall solution were 
investigated. In a publication by Li et al. (2019), the primary objective was to identify the 
most efficient placement of warehouses and routes for delivery vehicles. They were able 
to resolve the issue by using the firewall algorithm. In a recent investigation, researchers 
Sadati et al. (2020) presented a skeleton game to determine the most cost-effective 
placement of warehouses and transportation routes to save expenses. At the first level, 
the decision maker acts as a leader to choose the best possible site for the facility. At the 
second level, the double decision maker serves as the leader in selecting the best 
possible route for the vehicles. 

Zhang et al. (2019) considered an issue with multi-depot green vehicle routing 
(MDGVRP).  As a solution to the problem, they suggested using an algorithm similar to 
that of an ACO. In this piece of research, a significant limitation, known as vehicle 
capacity, is included in the model to give it more significance and bring it closer to the 
actual world Dell'Amico et al. (2020) describe how the researchers solved their model 
by applying the precise branch and pricing method to their issue and analyzing it under 
a variety of conditions. Spencer et al. (2019) developed a scheme for organizing products 
into containers intended for cold things. The primary objective of these researchers in 
this article was to cut down on the number of packages utilized, lower the average 
beginning temperature of each shipment and reduce the time it took to deliver the 
product to the consumer. To solve their model, they used a greedy method. Wang and Lu 
(2021) found an optimal solution to the MDVRP by doing SPD. They created a model of 
the issue based on the clustering of consumer demand and the time frame limitations. 
They put their idea into action on a logistical network in China. Casazza et al. (2021) used 
a branch-and-price algorithm to handle the SPD issue that arose while trying to route 
vehicles. The findings indicate that the approach that they offered resulted in a decrease 
in the amount of time needed for computing. The MDVRP was established by Ky Phuc 
and Phuong Thao  (2021), who then used the ACO to find a solution to the model. They 
took into account the capacity limits of the fleet as well as the time frame. do C. Martins 
et al. (2021) worked on modeling and addressing an MDVRP with simultaneous pickup 
and delivery to cut down on the expenses associated with logistics. They offered a novel 
way and demonstrated that the method that was suggested leads to a decrease in the 
amount of computational volume. Ghahremani-Nahr et al. (2022) designed a combined 
transportation model for the fruit and vegetable supply chain network. They used SCA 
and GA algorithms to solve the model. 
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Table 1 investigates the research gap on two-stage MDVRP and SPD and the optimum 
placement of products in conveyors. This challenge requires modeling vehicle routing in 
two stages continuously. 

According to the research that has been done on the topic and the analysis of the gaps 
in the study, it is possible to conclude that there is no all-encompassing model that 
addresses both the issues of optimal arrangement of goods and MDVRP that involves 
SPD. As a result, a two-stage modeling of MDVRP that includes SPD, as well as the 
arrangement of items, is going to be presented in this study. Given the suggested NP-
Hard model, we will use the NSGA II, MOALO, and SCA to address the issue more 
comprehensively (Case study: Safir Broadcasting Company). In this research, the SCA 
obtains the proper arrangement of items inside the vehicle (first stage). The NSGA II and 
MOALO are used to find the best routing of vehicles that allows for SPD (second stage).  

3- Problem Definition 

This article discusses modeling and solving an integrated MDVRP with SPD and 
packet arrangement. Hence the primary purpose of the paper lies in strategic and tactical 
decisions. According to Figure 1, several customers have uncertain demands for 
different goods, and several vehicles have been used to meet their demands. Therefore, 
according to goals such as minimizing total costs, minimizing CO2 emissions and 
balancing drivers' working hours, each warehouse covers customers and demand by one 
or more vehicles and satisfies them. Therefore, the first strategic decision made in the 
network includes the selection of potential warehouses for the distribution of goods. 
After assigning the customers to each warehouse according to the stated restrictions and 
goals, the vehicles choose the best route between the customers and distribute the 
goods. In another decision, due to the vehicles' dimensionality, transferring all the 
customers' goods is impossible. Therefore the optimal arrangement of packages in their 
vehicles is of great importance, which is addressed in the presented model. The model 
under consideration considers two different issues simultaneously. In the first stage, the 
main objective is the optimal arrangement of the first-category products in packages. In 
the second stage, the main goal is the arrangement of packages in vehicles and the 
optimal routing of vehicle transportation. In addition to discussing routing, the issue of 
locating distribution centers to send packages is also addressed at this stage. 

 
 

 

 

 

 

 

 
 
 
 
 

Figure 1. MDVRP and SPD
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Table 1. Summary of research background in the field of vehicle routing and product layout 

Author Objective Function 
Exact/ 

Uncertain 
Warehouse Solving Method SPD 

Product 
Layout 

Social 
Responsibility 

Case Study 

Hadian et al. (2019)  
1. min cost 

2. min distance 
exact multi-warehouse MOICA - -  - 

Scheithauer (2018) min number of packages exact - hiuretic -  * - - 

Polyakovskiy and 
M’Hallah (2018) 

min delay time exact - Cplex -  * - - 

Curtois et al.  (2018) min distance exact - local search  * - - - 

Spencer et al.  
(2019) 

1. min number of 
packages 

2- min delay time 

exact - greedy algorithm -  *  * - 

Zhang et al.  (2019) min transfer time exact multi-warehouse ACA - SA - - - - 

Ulmer et al.  (2021) min distance uncertain - ACA  * - - restaurants 

Sadati et al.  (2020) min cost exact multi-warehouse silkworm algorithm - - - - 

Nadizadeh & Kafash 
(2019)  

min cost uncertain multi-warehouse CPLEX  * -  * - 

Dell'Amico et al. 
(2020) 

min number of packages exact - branches and prices -  * - - 

Fu & Banerjee 
(2020) 

min number of packages exact - GA - SA -  * - - 

Wang & Lu (2021) min cost exact multi-warehouse hybrid algorithm  * - - logistic 

Casazza et al.  (2021) min cost exact multi-warehouse branches and prices  * - - - 

Ky Phuc & Phuong 
Thao (2021) 

min cost exact multi-warehouse ant colony  * - - - 

do C. Martins et al. 
(2021) 

min cost exact multi-warehouse hiuretic  * - - - 

Current research MDVRP and SPD uncertain multi-warehouse 
NSGA II 

MOLAO - SCA 
 *  *  * 

safir 
broadcasting 

company 
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The primary purpose of the first modeling stage, as stated in the issue statement, is 
to reduce the dimensions (length, breadth, and height) of packages whose contents are 
goods with uncertain client demand. The primary goals of the second modeling stage are 
to focus on three sustainable aspects of the issue: social, economic, and environmental. 
The financial objective is to reduce the costs of locating distribution centers and 
transporting goods by vehicle (minimizing the maximum total working hours performed 
by each vehicle). Customer demand is one of the problem's uncertain characteristics; 
hence a novel technique for controlling uncertainty termed FRBO has been used. In this 
approach, the problem parameters are first considered fuzzy triangular numbers 
(optical and championship, 2019). The fuzzy model is then controlled using the robust-
box optimization approach to regulate the uncertainty rate parameter (Zahedi & Nahr, 
2020). The following suppositions may be used to describe the integrated MDVRP with 
SPD and package layout: 
• The problem is considered multi-products, 
• The sizes of the trucks used for the transportation of products are previously 

established and defined;  
• The bundles of items to be transferred are known in advance for their size,  
• Although the number of warehouses and their locations are unclear,  
• Uncertain parameters of the problem are considered fuzzy triangular numbers. 
• Uncertain demand parameter control is the FRBO method, 
• The center of coordinates for the arrangement of packages in vehicles as well as 

products in packages is point (0,0), 
• Uncertain customer demand for any product must be met, 
• All second-hand products of customers must be picked up by the same vehicle after 

delivery of first-class products. 
In the following, the parameters used in modeling are presented, and the final model 

is described: 

Sets 
𝑙 ∈ 𝐿 Distribution centers (warehouses) 

𝑚, 𝑐 ∈ 𝐶 Customers 
𝑝, 𝑝′ ∈ 𝑃 Products  

𝑣 ∈ 𝑉 Vehicle 
𝑛, 𝑛′ ∈ 𝑁 Nodes (distribution centers and customers) 

Parameters 
𝑊𝑐𝑝  The width of product 𝑝 for customer 𝑐 

𝐿𝑐𝑝  The length of product 𝑝 for customer 𝑐 

𝐻𝑐𝑝  The height of product 𝑝 for customer 𝑐 

𝑈𝑙  Cost of establishing distribution center 𝑙 
𝐹𝑣 The fixed cost of using vehicle v 

�̃�𝑐𝑝 The demand for product p to customer c (�̃�𝑐𝑝 = 𝐷𝑐𝑝
1 , 𝐷𝑐𝑝

2 , 𝐷𝑐𝑝
3 ) 

�̃�𝑐𝑝 Return of product p from customer c (�̃�𝑐𝑝 = 𝑅𝑐𝑝
1 , 𝑅𝑐𝑝

2 , 𝑅𝑐𝑝
3 ) 

𝐶𝑎𝑝𝑉𝑣  The capacity of vehicle v 
𝐶𝑎𝑝𝐿𝑙𝑝  The capacity of product p in the distribution center 𝑙 

𝐷𝑖𝑠𝑛𝑛′  The far between node 𝑛 and 𝑛′ 

𝑇�̃�𝑛𝑛′  
Non-deterministic transportation cost between node n and n'(𝑇�̃�𝑛𝑛′ =

𝑇𝑟𝑛𝑛′
1 , 𝑇𝑟𝑛𝑛′

2 , 𝑇𝑟𝑛𝑛′
3 ) 

𝑇𝑛𝑛′  Transport time between node 𝑛 and 𝑛′ 
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𝑆𝑐  Time to unload and load the vehicle at node 𝑐 
𝐶𝑙𝑝 Distribution cost of product p in distribution center l 

[𝐴𝑆𝑐 , 𝐵𝑆𝑐] The flexible time window for delivery and pickup of customer products c 
α Penalty cost for exceeding the soft time window 
H The amount of co2 gas emissions depends on the product 

𝑊𝑚𝑎𝑥𝑐  The optimal package width determined for the customer c 
𝐿𝑚𝑎𝑥𝑐  The optimal package length determined for the customer c 
𝐻𝑚𝑎𝑥𝑐  The optimal package height determined for the customer c 
𝑊𝐾𝑣 The width  of  vehicle v 
𝐿𝐾𝑣  The length  of vehicle v 
𝐻𝑘𝑣  The height  of vehicle v 

𝜌 Uncertainty rate 
𝑀 Non-negative large number 

Decision Variables 
𝑊𝑚𝑎𝑥𝑐  Optimum package width for the customer c 
𝐿𝑚𝑎𝑥𝑐  The optimal length of the package for customer c 
𝐻𝑚𝑎𝑥𝑐  The optimal height of the package for customer c 

𝑋𝑐𝑝 
The length starting point of the product p arrangement for the package of 
customer c 

𝑌𝑐𝑝 
The width starting point of the product p arrangement for the package of 
customer c 

𝑍𝑐𝑝 
The height starting point of the product p arrangement for the package of 
customer c 

𝑎𝑐𝑝𝑝′ {
1, If product p is placed in front of product p′ for the package  of customer c 

0, otherwise
 

𝑏𝑐𝑝𝑝′ {
1, If product p is placed to the right of product p′ for the package of customer c

0, otherwise
 

𝑐𝑐𝑝𝑝′ {
1, If product p is placed above product p′ for the package of customer c

0, otherwise
 

𝑋𝑙𝑐𝑝 {
1, If the length of the product p is parallel to the X axis for the package of customer c

0, otherwise
 

𝑍𝑙𝑐𝑝 {
1, If the length of the product p is parallel to the Z axis for the package of customer c

0, otherwise
 

𝑌𝑤𝑐𝑝 {
1, If the product width p is parallel to the Y axis for the package of customer c

0, otherwise
 

𝑍ℎ𝑟,𝑖 {
1, If the product height p is parallel to the Z axis for the package of customer c

0, otherwise
 

𝑉𝑙𝑝𝑣 Product p distributed from distribution center l by vehicle v 

𝑍𝑙 {
1, If the distribution center l is established

0, otherwise
 

𝑍𝑙𝑐𝑣 {
1, If distribution center l is assigned to customer c and vehicle v

0, otherwise
 

𝑋𝑛𝑛′𝑣 {
1, If node n′ is visited by vehicle v after node n

0, otherwise
 

𝑈𝑐𝑣 Auxiliary variable 

𝑇𝑐𝑙𝑐𝑣  
The time of vehicle v arriving at customer c and leaving the distribution 
center l 

𝑇𝑤𝑙𝑣 
The total time of the vehicle in picking up and delivering the goods to the 
assigned customers out of the distribution center l 
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𝐿𝑐𝑙𝑐𝑝𝑣  The amount of pickup product p by vehicle v at the customer node c  

𝑇𝑒𝑐𝑣 Exceeding the time window of vehicle v at customer c 

𝑌𝑐𝑝𝑣
′  {

1, If the product p of customer c is transported by vehicle v
0, otherwise

 

𝐴𝑙𝑐𝑣 {
1, If the package of customer c is assigned to vehicle v

0, otherwise
 

𝑋𝑙1𝑐 {
1, If the length of the customer package c is parallel to the X axis

0, otherwise
 

𝑌𝑙1𝑐 {
1, If the length of the customer package c is parallel to the Y axis

0, otherwise
 

𝑋𝑤1𝑐 {
1, If the width of the customer package c is parallel to the X axis

0, otherwise
 

𝑌𝑤1𝑐  {
1, If the width of the customer package c is parallel to the Y axis

0, otherwise
 

𝑂𝑣 {
1, If vehicle v is used

0, otherwise
 

𝑋1𝑐 
The length starting point of the arrangement of the package of customer c in 
the vehicle 

𝑌1𝑐 
The width starting point of the arrangement of the package of customer c in 
the vehicle 

𝑍1𝑐 
The height starting point of the arrangement of the package of customer c in 
the vehicle 

𝑎′
𝑐𝑚 {

1, If package c is placed on the left side of package m
0, otherwise

 

𝑏′
𝑐𝑚 {

1, If package c is placed on the left side of package m
0, otherwise

 

𝑐′
𝑐𝑚 {

1, If package c is placed behind package m
0, otherwise

 

𝑑′
𝑐𝑚 {

1, If package c is placed in front of package m
0, otherwise

 

𝑒′
𝑐𝑚 {

1, If package c is placed under package m
0, otherwise

 

𝑓′
𝑐𝑚

 {
1, If package c is placed above package m

0, otherwise
 

Mathematical Model of The First Stage 

(1) 𝑀𝑖𝑛𝑍 = ∑(𝑊𝑚𝑎𝑥𝑐 + 𝐻𝑚𝑎𝑥𝑐 + 𝐿𝑚𝑎𝑥𝑐)

𝐶

𝑐=1

 

 𝑠. 𝑡.: 

(2) 

𝑋𝑐𝑝 + 𝐿𝑐𝑝 . 𝑋𝑙𝑐𝑝 + 𝑊𝑐𝑝(𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝 + 𝑍ℎ𝑐𝑝)

+ 𝐻𝑐𝑝(1 − 𝑋𝑙𝑐𝑝 − 𝑍𝑙𝑐𝑝 + 𝑌𝑤𝑐𝑝 − 𝑍ℎ𝑐𝑝)

≤ 𝑋𝑐𝑝′ + 𝑀. (1 − 𝑎𝑐𝑝𝑝′),     ∀𝑐, 𝑝 ≠ 𝑝′    

(3) 
𝑌𝑐𝑝 + 𝑊𝑐𝑝 . 𝑌𝑤𝑐𝑝 + 𝐿𝑐𝑝(1 − 𝑋𝑙𝑐𝑝 − 𝑍𝑙𝑐𝑝) + 𝐻𝑐𝑝(𝑋𝑙𝑐𝑝 + 𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝)

≤ 𝑌𝑐𝑝′ + 𝑀. (1 − 𝑏𝑐𝑝𝑝′),     ∀𝑐, 𝑝 ≠ 𝑝′ 
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(4) 
𝑍𝑐𝑝 + 𝐻𝑐𝑝 . 𝑍ℎ𝑐𝑝 + 𝑊𝑐𝑝(1 − 𝑍𝑙𝑐𝑝 − 𝑍ℎ𝑐𝑝) + 𝐿𝑐𝑝𝑍𝑙𝑐𝑝

≤ 𝑍𝑐𝑝′ + 𝑀. (1 − 𝑐𝑐𝑝𝑝′),     ∀𝑐, 𝑝 ≠ 𝑝′ 

(5) 
𝑋𝑐𝑝 + 𝐿𝑐𝑝 . 𝑋𝑙𝑐𝑝 + 𝑊𝑐𝑝(𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝 + 𝑍ℎ𝑐𝑝)

+ 𝐻𝑐𝑝(1 − 𝑋𝑙𝑐𝑝 − 𝑍𝑙𝑐𝑝 + 𝑌𝑤𝑐𝑝 − 𝑍ℎ𝑐𝑝) ≤ 𝐿𝑚𝑎𝑥𝑐 ,     ∀𝑐, 𝑝    

(6) 
𝑌𝑐𝑝 + 𝑊𝑐𝑝 . 𝑌𝑤𝑐𝑝 + 𝐿𝑐𝑝(1 − 𝑋𝑙𝑐𝑝 − 𝑍𝑙𝑐𝑝) + 𝐻𝑐𝑝(𝑋𝑙𝑐𝑝 + 𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝)

≤ 𝑊𝑚𝑎𝑥𝑐 ,     ∀𝑐, 𝑝    

(7) 𝑍𝑐𝑝 + 𝐻𝑐𝑝 . 𝑍ℎ𝑐𝑝 + 𝑊𝑐𝑝(1 − 𝑍𝑙𝑐𝑝 − 𝑍ℎ𝑐𝑝) + 𝐿𝑐𝑝 . 𝑍𝑙𝑐𝑝 ≤ 𝐻𝑚𝑎𝑥𝑐 ,     ∀𝑐, 𝑝 

(8) 𝑎𝑐𝑝𝑝′ + 𝑎𝑐𝑝′𝑝 + 𝑏𝑐𝑝𝑝′ + 𝑏𝑐𝑝′𝑝 + 𝑐𝑐𝑝𝑝′ + 𝑐𝑐𝑝′𝑝 ≥ 1,     ∀𝑐, 𝑝 ≠ 𝑝′ 

(9) 𝑋𝑙𝑐𝑝 + 𝑍𝑙𝑐𝑝 ≤ 1,     ∀𝑐, 𝑝 

(10) 𝑍𝑙𝑐𝑝 + 𝑍ℎ𝑐𝑝 ≤ 1,     ∀𝑐, 𝑝 

(11) 𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝 + 𝑍ℎ𝑐𝑝 ≤ 1,    ∀𝑐, 𝑝 

(12) 𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝 + 𝑍ℎ𝑐𝑝 ≥ 0,    ∀𝑐, 𝑝 

(13) 1 − 𝑋𝑙𝑐𝑝 − 𝑍𝑙𝑐𝑝 + 𝑌𝑤𝑐𝑝 − 𝑍ℎ𝑐𝑝 ≤ 1,     ∀𝑐, 𝑝 

(14) 1 − 𝑋𝑙𝑐𝑝 − 𝑍𝑙𝑐𝑝 + 𝑌𝑤𝑐𝑝 − 𝑍ℎ𝑐𝑝 ≥ 0,     ∀𝑐, 𝑝 

(15) 𝑋𝑙𝑐𝑝 + 𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝 ≤ 1,     ∀𝑐, 𝑝 

(16) 𝑋𝑙𝑐𝑝 + 𝑍𝑙𝑐𝑝 − 𝑌𝑤𝑐𝑝 ≥ 0,     ∀𝑐, 𝑝 

(17) 𝑊𝑚𝑎𝑥𝑐 , 𝐿𝑚𝑎𝑥𝑐 , 𝐻𝑚𝑎𝑥𝑐 , 𝑋𝑐𝑝 , 𝑌𝑐𝑝 , 𝑍𝑐𝑝 ≥ 0,     ∀𝑐, 𝑝 

(18) 𝑎𝑐𝑝𝑝′ , 𝑏𝑐𝑝𝑝′, 𝑐𝑐𝑝𝑝′, 𝑋𝑙𝑐𝑝 , 𝑍𝑙𝑐𝑝 , 𝑌𝑤𝑐𝑝, 𝑍ℎ𝑐𝑝 ∈ {0,1},     ∀𝑐, 𝑝, 𝑝′ 

 

The Second Stage, Mathematical Model 

(19) 𝑀𝑖𝑛𝜔1 

(20) 𝑀𝑖𝑛𝜔2 = ∑ ∑ ∑ ∑ 𝐻. 𝐷𝑖𝑠𝑛𝑛′𝐿𝑐𝑛𝑛′𝑝𝑣

𝑃

𝑝=1

𝑉

𝑣=1

𝑁

𝑛′=1

𝑁

𝑛=1

 

(21) 𝑀𝑖𝑛𝜔3 = 𝑚𝑎 𝑥{𝑇𝑤𝑙𝑣 ,    ∀𝑙 ∈ 𝐿, 𝑣 ∈ 𝑉} 

 𝑠. 𝑡.: 
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(22) 

∑ ∑ ∑ ((
𝑇𝑟𝑛𝑛′

1 + 2. 𝑇𝑟𝑛𝑛′
2 + 𝑇𝑟𝑛𝑛′

3

4
) 𝑋𝑛𝑛′𝑣 + 𝜂𝑛𝑛′𝑣)

𝑉

𝑣=1

𝑁

𝑛′=1

𝑁

𝑛=1

+ ∑ ∑ ∑ 𝐶𝑙𝑝𝑉𝑙𝑝𝑣

𝑉

𝑣=1

𝑃

𝑝=1

𝐿

𝑙=1

+ + ∑ ∑ 𝛼𝑇𝑒𝑐𝑣

𝑉

𝑣=1

𝐶

𝑐=1

≤ 𝜔1 − ∑ 𝐹𝑣𝑂𝑣

𝑉

𝑣=1

− ∑ 𝑈𝑙𝑍𝑙

𝐿

𝑙=1

 

(23) 𝜌 (
𝑇𝑟𝑛𝑛′

1 + 2. 𝑇𝑟𝑛𝑛′
2 + 𝑇𝑟𝑛𝑛′

3

4
) 𝑋𝑛𝑛′𝑣 ≤ 𝜂𝑛𝑛′𝑣 ,     ∀ 𝑛, 𝑛′, 𝑣 

(24) 𝜌 (
𝑇𝑟𝑛𝑛′

1 + 2. 𝑇𝑟𝑛𝑛′
2 + 𝑇𝑟𝑛𝑛′

3

4
) 𝑋𝑛𝑛′𝑣 ≥ −𝜂𝑛𝑛′𝑣,     ∀ 𝑛, 𝑛′, 𝑣 

(25) ∑ ∑ 𝑋𝑙𝑐𝑣

𝑁

𝑛=1

𝑉

𝑣=1

= 1,     ∀𝑐 

(26) ∑ ∑ ∑ [(1 − 𝜌) (
𝐷𝑐𝑝

1 + 𝐷𝑐𝑝
2

2
) + 𝜌 (

𝐷𝑐𝑝
2 + 𝐷𝑐𝑝

3

2
)] 𝑋𝑛𝑐𝑣

𝑃

𝑝=1

𝑁

𝑛=1

𝐶

𝑐=1

≤ 𝐶𝑎𝑝𝑉𝑣𝑂𝑣 ,     ∀𝑣 

(27) 𝑈𝑐𝑣 − 𝑈𝑚𝑣 + 𝐶. 𝑋𝑐𝑚𝑣 ≤ 𝐶 − 1,     ∀𝑚, 𝑐, 𝑣 

(28) ∑ 𝑋𝑛𝑐𝑣

𝑁

𝑛=1

= ∑ 𝑋𝑐𝑛𝑣

𝑁

𝑛=1

,     ∀𝑣, 𝑛 

(29) ∑ ∑ 𝑋𝑙𝑐𝑣

𝐶

𝑐=1

𝐿

𝑙=1

≤ 1,     ∀𝑣 

(30) −𝑍𝑙𝑐𝑣 + ∑(𝑋𝑙𝑛𝑣 + 𝑋𝑛𝑐𝑣)

𝑁

𝑛=1

≤ 1,     ∀𝑙, 𝑐, 𝑣 

(31) 𝑉𝑙𝑝𝑣 = ∑ [(1 − 𝜌) (
𝐷𝑐𝑝

1 + 𝐷𝑐𝑝
2

2
) + 𝜌 (

𝐷𝑐𝑝
2 + 𝐷𝑐𝑝

3

2
)]

𝐶

𝑐=1

𝑍𝑙𝑐𝑣 ,     ∀𝑙, 𝑝, 𝑣 

(32) ∑ 𝑉𝑙𝑝𝑣

𝑉

𝑣=1

≤ 𝐶𝑎𝑝𝐿𝑙𝑝𝑍𝑙 ,     ∀𝑙, 𝑝 

(33) 

𝐿𝑐𝑙𝑐𝑝𝑣 ≥ 𝑉𝑙𝑝𝑣 − [(1 − 𝜌) (
𝐷𝑐𝑝

1 + 𝐷𝑐𝑝
2

2
) + 𝜌 (

𝐷𝑐𝑝
2 + 𝐷𝑐𝑝

3

2
)]

+ [(1 − 𝜌) (
𝑅𝑐𝑝

1 + 𝑅𝑐𝑝
2

2
) + 𝜌 (

𝑅𝑐𝑝
2 + 𝑅𝑐𝑝

3

2
)]

− 𝑀. (1 − 𝑋𝑙𝑐𝑣),     ∀𝑙, 𝑝, 𝑐, 𝑣 
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(34) 

𝐿𝑐𝑙𝑚𝑝𝑣 ≥ 𝐿𝑐𝑙𝑐𝑝𝑣 − [(1 − 𝜌) (
𝐷𝑚𝑝

1 + 𝐷𝑚𝑝
2

2
) + 𝜌 (

𝐷𝑚𝑝
2 + 𝐷𝑚𝑝

3

2
)]

+ [(1 − 𝜌) (
𝑅𝑚𝑝

1 + 𝑅𝑚𝑝
2

2
) + 𝜌 (

𝑅𝑚𝑝
2 + 𝑅𝑚𝑝

3

2
)]

− 𝑀. (1 − 𝑋𝑐𝑚𝑣),     ∀𝑙, 𝑝, 𝑐, 𝑚, 𝑣 

(35) 𝑇𝑐𝑙𝑐𝑣 ≥ 𝑇𝑙𝑐 − 𝑀. (1 − 𝑋𝑙𝑐𝑣),     ∀𝑙, 𝑐, 𝑣 

(36) 𝑇𝑐𝑙𝑚𝑣 ≥ 𝑇𝑐𝑙𝑐𝑣 + 𝑇𝑐𝑚 + 𝑆𝑚 − 𝑀. (2 − 𝑋𝑐𝑚𝑣 − 𝑍𝑙𝑐𝑣),     ∀𝑙, 𝑐, 𝑚, 𝑣 

(37) 𝑇𝑒𝑐𝑣 ≥ 𝐴𝑆𝑐 . 𝑍𝑙𝑐𝑣 − 𝑇𝑐𝑙𝑐𝑣 ,     ∀𝑙, 𝑐, 𝑣 

(38) 𝑇𝑒𝑐𝑣 ≥ 𝑇𝑐𝑙𝑐𝑣 − 𝐵𝑆𝑐 . 𝑍𝑙𝑐𝑣 ,     ∀𝑙, 𝑐, 𝑣 

(39) 𝑇𝑤𝑙𝑣 ≥ 𝑇𝑐𝑙𝑐𝑣 + 𝑇𝑐𝑙 . 𝑋𝑐𝑙𝑣 ,     ∀𝑙, 𝑐, 𝑣 

(40) ∑ 𝐿𝑐𝑙𝑐𝑝𝑣

𝐿

𝑙=1

= 𝑌𝑐𝑝𝑣
′ ,     ∀𝑐, 𝑝, 𝑣 

(41) ∑ 𝑌𝑐𝑝𝑣
′

𝑃

𝑝=1

≤ 𝑀 ∗ 𝐴𝑙𝑐𝑣 ,     ∀𝑐, 𝑣 

(42) 𝑋1𝑐 + 𝐿𝑚𝑎𝑥𝑐𝑋𝑙1𝑐 + 𝑊𝑚𝑎𝑥𝑐(1 − 𝑋𝑙1𝑐) ≤  𝑋1𝑚 + 𝑀. (1 − 𝑎′
𝑐𝑚),     ∀𝑐 < 𝑚 

(43) 
𝑋1𝑚 + 𝐿𝑚𝑎𝑥𝑚𝑋𝑙1𝑚 + 𝑊𝑚𝑎𝑥𝑚(1 − 𝑋𝑙1𝑚) ≤  𝑋1𝑐 + 𝑀. (1 − 𝑏′

𝑐𝑚),     ∀𝑐
< 𝑚 

(44) 𝑌1𝑐 + 𝑊𝑚𝑎𝑥𝑐𝑋𝑙1𝑐 + 𝐿𝑚𝑎𝑥𝑐(1 − 𝑋𝑙1𝑐) ≤  𝑌1𝑚 + 𝑀. (1 − 𝑐′
𝑐𝑚),     ∀𝑐 < 𝑚 

(45) 
𝑌1𝑚 + 𝑊𝑚𝑎𝑥𝑚𝑋𝑙1𝑚 + 𝐿𝑚𝑎𝑥𝑚(1 − 𝑋𝑙1𝑚) ≤  𝑌1𝑐 + 𝑀. (1 − 𝑑′

𝑐𝑚),     ∀𝑐
< 𝑚 

(46) 𝑍1𝑐 + 𝐻𝑚𝑎𝑥𝑐 ≤  𝑍1𝑚 + 𝑀. (1 − 𝑒′
𝑐𝑚),     ∀𝑐 < 𝑚 

(47) 𝑍1𝑚 + 𝐻𝑚𝑎𝑥𝑚 ≤  𝑍1𝑐 + 𝑀. (1 − 𝑓′
𝑐𝑚

),     ∀𝑐 < 𝑚 

(48) 𝑎′
𝑐𝑚 + 𝑏′

𝑐𝑚 + 𝑐′
𝑐𝑚 + 𝑑′

𝑐𝑚 + 𝑒′
𝑐𝑚 + 𝑓′

𝑐𝑚
≥ 𝐴𝑙𝑐𝑣 + 𝐴𝑙𝑚𝑐 − 1,     ∀𝑣, 𝑐 < 𝑚 

(49) ∑ 𝐴𝑙𝑐𝑣

𝑉

𝑣=1

= 1,     ∀𝑐 

(50) 𝑋1𝑐 + 𝐿𝑚𝑎𝑥𝑐 . 𝑋𝑙1𝑐 + 𝑊𝑚𝑎𝑥𝑐 . 𝑋𝑤1𝑐 ≤  𝐿𝑘𝑣 + 𝑀. (1 − 𝐴𝑙𝑐𝑣),     ∀𝑐, 𝑣 

(51) 𝑌1𝑐 + 𝑊𝑚𝑎𝑥𝑐 . 𝑌𝑤1𝑐 + 𝐿𝑚𝑎𝑥𝑐 . 𝑌𝑙1𝑐 ≤  𝑊𝐾𝑣 + 𝑀. (1 − 𝐴𝑙𝑐𝑣),     ∀𝑐, 𝑣 
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(52) 𝑍1𝑐 + 𝐻𝑚𝑎𝑥𝑐 ≤  𝐻𝐾𝑣 + 𝑀. (1 − 𝐴𝑙𝑐𝑣),     ∀𝑐, 𝑣 

(53) ∑ 𝐴𝑙𝑐𝑣

𝐶

𝑐=1

≤ 𝑀. 𝑂𝑣,     ∀𝑣 

(54) 𝑌𝑙1𝑐 = 1 − 𝑋𝑙1𝑐 ,      ∀𝑐 

(55) 𝑋𝑤1𝑐 = 1 − 𝑋𝑙1𝑐 ,      ∀𝑐 

(56) 𝑌𝑤1𝑐 = 𝑋𝑙1𝑟 ,      ∀𝑐 

(57) 𝑉𝑙𝑝𝑣 , 𝑈𝑐𝑣 , 𝑇𝑐𝑙𝑐𝑣 , 𝑇𝑤𝑙𝑣 , 𝐿𝑐𝑙𝑐𝑝𝑣 , 𝑇𝑒𝑐𝑣 , 𝑋1𝑐 , 𝑌1𝑐 , 𝑍1𝑐 ≥ 0 

(58) 
𝑍𝑙 , 𝑍𝑙𝑐𝑣 , 𝑋𝑛𝑛′𝑣 , 𝐴𝑙𝑐𝑣 , 𝑌𝑙1𝑐 , 𝑋𝑙1𝑐 , 𝑋𝑤1𝑐 , 𝑌𝑤1𝑐 , 𝑂𝑣 , 𝑌𝑐𝑝𝑣

′ , 𝑎′
𝑐𝑚, 𝑏′

𝑐𝑚 , 𝑐′
𝑐𝑚 , 𝑑′

𝑐𝑚, 𝑒′
𝑐𝑚 , 𝑓′

𝑐𝑚

∈ {0,1} 

The objective function of the issue in the first phase is shown by Eq. (1). This function 
comprises reducing the package dimensions that have been developed for the layout of 
each customer's items as much as possible—the solution to Eqs. (2), (3), and (4) 
guarantees that the two products do not overlap with one another and do not overlap 
with one another. The constraints numbered five through seven ensure that the 
dimensions of the products remain unchanged; the only change that occurs is in the 
products' orientation concerning one another. The value of each product's location is 
indicated by the eighth constraint relating to the other nearby items. The constraints (9) 
to (16) ensure that each product's positioning inside the packaging is maintained 
following the planned dimensions. The choice variables' type and gender are denoted by 
the constraints (17) and (18), respectively.  

The output of the aforementioned model in the first stage consists of first-hand goods 
of consumers packaged in containers with dimensions that are ideal for arrangement 
inside the vehicle. The model's second step covers determining the number of 
distribution centers, vehicle problem routing, and the organization of packets inside 
vehicles. This is done to achieve optimum package dimensions. The issue's first objective 
is to minimize the overall expenses of developing the supply chain vehicle routing 
network (19). This function seeks the optimal solution. These expenditures include the 
distribution center's building, transportation, and distribution. These costs include 
starting and running the vehicle and penalties for exceeding the time limit. Eq. (20) 
illustrates the second objective function of the issue, which entails reducing the total 
quantity of greenhouse gas emissions caused by the vehicle's load to the lowest possible 
value. The third objective function of the problem is represented by Eq. (21), and it 
includes the optimization of the standard time of vehicle traffic in the delivery and 
collection of the same products. Additionally, it minimizes the maximum traffic time of 
vehicles leaving each distribution center. Through the use of a solid box approach, the 
Eqs. (22) through (25) regulate the unknown parameters of the shipping cost. Eq. (26) 
ensures that each distribution center can only be assigned to one customer. Eq. (27) 
demonstrates the maximum amount of product that can be transported by a vehicle at 
any given time. Restriction (28) the limitation was put in place since the net that was 
underneath was removed. The vehicle can only enter and depart each client node once, 
as Constraint (29) stipulated, which guarantees this. Eq. (30) assures that only one 
vehicle can be allocated to each route generated by limiting the number of possible 



Khodashenas et al./Decis. Mak. Appl. Manag. Eng. 6 (2) (2023) 372-403 

386 

vehicles. Eq. (31) illustrates the process of assigning each customer to a particular 
distribution center and also indicates that the vehicle must return to the distribution 
center after the process of visiting the client nodes has been completed. The answer to 
this question may be found in Eq. (32), which displays the total quantity of distribution 
carried out by each distribution center and vehicle. The solution to Eq. (33) ensures that 
the distribution center capacity will not be used until the center has been built. The 
quantity of load carried by each truck when it departs each distribution center for the 
first client visit is represented by Eq. (34). The Eq. (35) will tell you how much cargo is 
in each truck (the total number of deliveries and pickups) while you are traveling to 
different client nodes and then heading back to the distribution center. The time the 
truck arrived at the first client node after leaving the distribution center is represented 
by equation (36), which may be found below. The truck's arrival time at each client node 
is calculated using Eq. (37), which considers the time spent loading and unloading and 
the amount of time spent in traffic between the nodes. The length of time that the Eqs 
represent the vehicle overstays at each client node in the soft timeline. (38) and (39), 
which may be found below. Using Eq. (40), one may determine how long the truck will 
take to return to the distribution center after delivering and picking up the products. 

The distribution of each package to each vehicle is computed using Eqs. (41) and (42), 
respectively. Eqs. (43) to (48) make sure that none of the packets overlap and that they 
cannot be stuffed inside one another. Eq. (49) guarantees that each packet may only be 
adjacent to the other individual packet in one of the six possible orientations. Eq. (50) 
demonstrates that each parcel can only be transported in a single automobile. The 
solutions to Eqs. (51) to (53) demonstrate that the packages' length, width, and height 
cannot exceed the vehicle's dimensions. The kind of loaded vehicle may be determined 
using Eq. (54). If Eqs. (55), (56), and (57) are followed, then the size of the packages will 
remain the same throughout loading, and the only thing that will vary is the kind of 
placement. Relationships (58) and (59) demonstrate the different types of choice factors 
broken down by gender. 

Taking into account the one objective function of the mathematical model presented 
in the first stage as well as the three objective functions of the mathematical model 
shown in the second stage, the SCA Mirjalili (2016) was used to achieve a value of the 
objective function that was close to optimal in the first stage. The NSGA II and MOALO 
(Mirjalili, 2015) were utilized to achieve the Pareto front by solving the second-stage 
model. The parameters of the meta-heuristic algorithms used to solve the issue will be 
set in the following.  

4. Solving Methods 

This section sets the parameters and the chromosome design of the two-stage model 
presented in this paper. The problem optimization in the first stage with SCA and Pareto 
front formation in the second stage with MOALO and NSGA II are discussed. 

4.1. Parameterization of Meta-Heuristic Algorithms 

Parameters tuning of meta-heuristic approach to increase their efficiency in 
problem-solving in a shorter time and with greater accuracy. Therefore, each algorithm 
has its initial parameters that Bytes put in their best combination to solve the problem. 
Thus, Table 2 shows the basic parameters of each SCA, NSGA II, and MOALO. SCA 
determines the dimensions of packages to be sent to customers, and NSGA II and MOLAO 
are used to optimize the three-objective model in the second stage. 
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Table 2. Initial parameters tuning by the Taguchi method 

L3 L2 L1 Factor 
Solution 
Method 

200 150 100 max it 
SCA 200 150 100 N pop 

3 2 1 a 

200 150 100 max it 

NSGA II 
200 150 100 N pop 

0.7 0.5 0.2 Pc 
0.7 0.5 0.2 Pm 
200 150 100 max it 

MOALO 
200 150 100 Npop 

3 2 1 A 
3 2 1 C 

After determining the initial levels of each parameter, parameter tuning is done by 
the Taguchi method and based on predetermined tests. After performing each test with 
different combinations of the levels stated in Table 2, the mean of means and the mean 
of the S/N ratio has been obtained as described in Figures 2 to 4. The basis for choosing 
the optimal parameter levels and their value is the maximum level of each factor in the 
average S/N ratio diagram. 
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Figure 2. The mean of means and mean of S/N ratio for SCA 
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Figure 3. The mean of means and mean of S/N ratio for NSGA II 
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Figure 4. The mean of means and mean of S/N ratio for MOALO 

The parameters' best level and value to increase their effectiveness in finding the 
optimum solution or the Pareto front are given in Table 3 format according to Figures 2 
to 4. 

Table 3. Levels and value of optimal parameters of meta-heuristic 

algorithms 

Value Level Parameter Algorithm 

200 L3 max it 
SCA 150 L2 N pop 

1 L1 a 
200 L3 max it 

NSGA II 
150 L2 N pop 
0.7 L3 Pc 
0.7 L3 Pm 
200 L3 max it 

MOALO 
200 L3 Npop 

1 L1 A 
2 L2 C 

4.2. Initial Solution of The Problem 

The problem being studied in this article has two phases. The SCA method is used to 
optimize the packet dimensions. The first stage is to optimize the dimensions of each 
package for the customer. Consider a hypothetical scenario with two clients and three 
items to demonstrate how the chromosome is decoded. The sizes of each item the buyer 
wanted are shown in Table 4.  

Table 4. Dimensions of products 

 Product 
Customer 1 2 3 

1 (1,2,1) (2,1,3) (3,2,2) 

2 (3,1,3) (2,1,2) (2,1,3) 
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The first segment of the chromosome is concerned with how the items are arranged 
in each package, considering that six varied dimensions are within each package. 
Consequently, each client generates three random numbers (1, 2, and 3). The x-axis is 
represented by the number 1, the y-axis by the number 2, and the z-axis by the number 
3. For instance, the dimensions of product 2 for the client are 1 (2,1,3), meaning that the 
product is two units in length, one unit in breadth, and three units in height. Take 
chromosome 3-1-2, which was chosen at random for this product. Because the number 
1 chromosome is recorded on the y-axis, this chromosome is taken to mean that the 
length of the final product must be along that axis. Because the number 2 chromosome 
is recorded on the x-axis, the product's width should be along that axis. Additionally, the 
product's height should be along the z-axis. As a result, Table 5 may be used to specify 
the chromosomal intended for Table 4. 

Table 5.  The first step initial solution 

Customer 
 Product  

1 2 3 
1 1-2-3 2-1-3 3-2-1 

2 1-3-2 1-3-2 1-2-3 

 

1 (1,2,1) (1,2,3) (2,2,3) 

    
2 (3,3,1) (2,2,1) (2,1,3) 

Chromosome decoding requires the same procedure. The items of each client are first 
classified according to their maximum volume. Table 6 illustrates product volume 
sorting. 

Table 6.  Sort the volume of the products in the first step initial solution 

Customer 
 Product  

1 2 3 
1 2 4 12 

2 9 4 6 

 

1 3 2 1 

2 1 3 2 

Following sorting, the lower-left corner of the box is put with the priority of customer 
1, which is product 3, according to the altered measurements in Table 6. The first 
product is in package one, as seen in Figure 5. 
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(c) (b) (a) 

Figure 5.  The example of the first product arrangement in the first step 

initial solution 

Based on Table 6's priority, it can be shown from Figure 5(a) that 3 points, A, B, and 
C are eligible for the following product, i.e., product number 2. The SCA randomly 
chooses one of the valid sites to place the second product within the package. Figure 5(b) 
depicts the positioning of product 2. (for example, the SCA selects point A).  Four 
additional positions, A, B, C, and D, will become eligible for the subsequent product when 
the second product is positioned on the length of the y-axis. The third product is 
arranged in this part using the SCA, which randomly chooses one of four acceptable 
places (such as B). The positioning of the third product in package number 1 is seen in 
Figure 5(c). The ideal length, width, and height values are established once all the items 
have been placed within the package; for example, the ideal closed dimensions for 
customer 1 are 3 * 4 * 2 longitudinal units.  

The second modeling stage aims to identify prospective distribution locations and 
VRP after reaching the ideal dimensions of items to be delivered to the consumer. To 
create the Pareto front, NSGA II and MOALO are employed. The basic chromosome is 
therefore shown in this section following Table 7, assuming five clients, three central 
warehouses, and one central warehouse. The designed chromosome may alternatively 
be divided into two sections, depending on the problem. Natural numbers are replaced 
for the total number of clients in the first level of the supply chain network and the total 
number of distribution centers in the second level.  

Table 7.  The initial solution to the problem 

1 2 4 3 5 
Initial Solution 

(Step 1) 

2 3 1 
Initial Solution 

(Step 2) 

The assignment of clients to each of the distribution centers is the next step in the 
chromosomal design process. As a result, the total number of clients is randomly 
allocated to the total number of distribution centers. The vehicle's routing is determined 
by the numbers produced by the first level of the chromosome's initial response. On the 
chromosome in Figure 6, Table 8 depicts how consumers are allocated to distribution 
facilities and VRP. 
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Table 8.  Decoding of the initial solution to the problem 

1 2 4 3 5 
Initial Solution 

(Step 1) 

 

2 3 1 
Initial Solution 

(Step 2) 

Customers five and three are assigned to distribution center 1, customer four is 
assigned to distribution center 3, and customers two and one are designated to 
distribution center 2. This is shown in Figure 7. Additionally, VRP from distribution 
centers 1, 3, and 2 is L1 → C5 → C3 → L1, L1 → C5 → C3 → L1, and VRP from 
distribution center 2 is L2 → C2 → C1 → L2. Other problem limitations are then 
sequentially explored after allocating clients to distribution locations. The penalty 
function governs the limitation if the problem does not satisfy certain criteria. 

5. Analysis of the Results 

First, a small numerical example has been designed to analyze the problem, and the 
effectiveness of meta-heuristic algorithms compared to exact methods has been 
investigated. In the second part of the analysis of the results, a real study problem has 
been presented in Etka Broadcasting Company. 

5.1. Small Size Sample Problem 

This section examines a sample problem with three distribution facilities, six end 
users, two goods, and four vehicles to evaluate the developed model's performance. 
Table 9 provides a thorough breakdown of the issue parameters' range restrictions in 
accordance with the uniform distribution function. 

Table 9. Problem parameters based on uniform distribution 

Parameter 
Parameter Range 

Limits 
Parameter 

Parameter Range 
Limits 

Ul ~U(10000,12000) Trnn′  ~U(30,40) 
Fv ~U(300,400) Tnn′  ~U(15,20) 

Dcp ~U(20,30) Sc ~U(2,5) 
Rcp ~U(10,15) Clp ~U(2,3) 

CapVv ~U(100,120) [ASc, BSc] ~U(20,50) 
CapLlp ~U(200,220) α 6 
Disnn′  ~U(10,100) H 3 

Considering the two-stage model presented in this article, firstly, by using GAMS 
software and SCA, the dimensions of packages that can be sent to customers have been 
optimized. Each package contains two products; the optimal dimensions of each package 
are shown in Table 10. 
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Table 10. Packages Dimensions that can be delivered to customers in the 

first stage 

Package  Customer 
GAMS SCA 

Length Width Height Length Width Height 
1 1 12.26 4.39 5.27 4.39 5.27 12.26 

2 2 11.67 4.66 4.19 4.66 11.67 4.19 

3 3 11.96 4.76 5.67 5.67 4.96 10.94 

4 4 4.03 11.67 5.03 5.03 12.01 4.12 

5 5 4.68 12.37 4.87 4.69 4.87 12.37 

6 6 12.25 5.03 5.22 5.24 5.26 12.40 

The optimal value of the objective function obtained by GAMS software was equal to 
563.26 units in 49.37 seconds. Meanwhile, the objective function obtained by the SCA in 
5 executions and 150 consecutive iterations was 564.39 units in 12.18 seconds. By 
comparing the relative difference of the objective functions obtained from the first stage, 
it can be seen that the SCA has reached the objective function value with a difference of 
0.2 in a much shorter period. The convergence of the SCA in 5 executions to achieve the 
near-optimal value is shown in Figure 6. 

After determining the optimal dimensions of each package that can be sent to 
customers by different solution methods, selecting warehouses and choosing the 
optimal route for transporting products to customers by different vehicles have been 
discussed in the second stage. In this step, NSGA II, MOALO, and the precise LP metric 
method have been used. Due to the uncertainty of the value of delivery, pickup, and 
transfer cost parameters, the value of uncertainty rate ρ=0.5 has been used to determine 
the Pareto front. Based on this, the different efficient solutions obtained from other 
solution methods are shown in Table 11, and the Pareto front is formed in the numerical 
example in Figure 7. 

Figure 6. Convergence of SCA in solving the model 
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Table 11. Efficient solutions obtained in small size 

Efficient 
Solution 

LP-Metrics NSGA II MOLAO 
W1 W2 W3 W1 W2 W3 W1 W2 W3 

1 
1316
5.18 

5816
7.16 

176.
32  

13270.
78  

63551.
32  

180.
38  

13380.
38  

59898.
23  

192.
64  

2 
1321
9.23 

5615
6.64 

168.
54  

13474.
05  

62655.
70  

180.
15  

13383.
19  

57913.
75  

187.
26  

3 
1349
8.57 

4315
7.76 

163.
98  

13522.
32  

61422.
46  

176.
02  

13423.
16  

57415.
06  

187.
55  

4 
1381
2.50 

3816
3.91 

159.
79  

13967.
72  

60862.
22  

175.
06  

13467.
01  

53725.
52  

184.
56  

5 
1403
5.64 

3723
6.46 

152.
56  

14098.
36  

52432.
08  

174.
59  

13551.
53  

52534.
19  

182.
24  

6 
1426
8.90 

3529
7.38 

144.
13  

14113.
36  

49686.
92  

167.
33  

13707.
62  

51729.
27  

180.
89  

7 
1452
8.16 

3132
6.26 

141.
45  

14318.
42  

48810.
48  

164.
91  

13880.
86  

51630.
88  

180.
87  

8 
1461
7.03 

3015
6.17 

136.
87  

14494.
42  

43783.
82  

161.
46  

14033.
40  

51519.
91  

177.
01  

9 
1498
7.15 

2916
5.64 

130.
32  

14824.
98  

43253.
79  

160.
93  

14579.
52  

51347.
26  

175.
86  

10 
1507
3.27 

2816
5.66 

129.
52  

14932.
45  

42697.
88  

154.
82  

14672.
08  

50219.
29  

174.
31  

11 
1525
6.64 

2798
4.03 

128.
93  

15050.
91  

37433.
53  

150.
43  

14806.
26  

48745.
29  

169.
05  

12 - - - 
15422.

84  

37411.
53  

147.
18  

14937.
12  

46763.
43  

162.
88  

13 - - - 
15623.

48  

36321.
93  

143.
29  

14973.
28  

46000.
39  

162.
43  

14 - - - 
16366.

49  

32899.
29  

135.
66  

15371.
41  

45261.
51  

160.
47  

15 - - - 
16709.

50  

32211.
50  

130.
68  

15743.
80  

43550.
60  

159.
32  

16 - - - - - - 
15983.

11  

42357.
52  

140.
63  

17 - - - - - - 
16078.

47  

40013.
58  

139.
47  

18 - - - - - - 
16124.

25  

34029.
83  

134.
27  

19 - - - - - - 
16387.

67  

32778.
71  

131.
71  
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Table 11 shows that the comprehensive benchmark method has 11 effective 
solutions, the NSGA II has 15 effective solutions, and the MOALO has obtained 19 
effective solutions. Also, by examining each of the effective solutions, it can be said that 
with the increase in the costs of the entire network, including the construction of more 
warehouses, the distance between the warehouses and customers will decrease, and this 
will lead to a decrease in the number of CO2 emissions. As a result, a reduction of the 
number of working hours of drivers due to The distance traveled is reduced. 

Figure 7. Pareto front obtained from solving the numerical example with 

different solution methods 

Due to the difference in effective solutions obtained from each method and the 
impossibility of comparing two by two effective solutions, the comparison indexes of 
effective solutions have been used. Figure 8 shows the set of indicators obtained from 
solving the numerical example. 
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Figure 8. Indicators of comparison of effective solutions between 

different solution methods in solving the numerical example of the second 

stage 

Because it is accurate, the LP metric approach acquired the lowest average values of 
the target functions, shown in Figure 8. This can be observed by referring to the findings 
that are presented there. Finally, the MOALO has obtained favorable results in getting 
the NPF, MID, and computing time. The NSGA II has obtained better results in obtaining 
the indicators of MSI and SM, and the MOALO has obtained favorable results in obtaining 
these three metrics. The TOPSIS was utilized to select the solution method that proved 
the most effective in getting various indicators. This was done because each solution 
method demonstrated its efficacy in obtaining its unique indicator. The findings of this 
approach indicated that the MOALO scored 0.6182, and the NSGA II scored 0.3818. As a 
result, the MOALO is displayed as the most effective approach for the proposed model's 
solution when applied to larger sizes. 

5.2. Problem Sensitivity Analysis 

When the values of the problem's parameters are altered, the problem's objective 
functions and output variables also experience shifts in their respective values. This is 
because the values of the problem's parameters are intertwined. Therefore, it is vital to 
examine their influence on the objective functions by modifying the various factors of 
the issue and seeing how this affects the objective functions. The value of 𝛼=0.5 was 
utilized to manage the parameters because of the indeterminacy of the mathematical 
model and the use of the novel FRBO approach. Both of these factors contributed to the 
development of the method. As a result, it is essential to ascertain the impact of the shift 
in the uncertainty rate on the objective functions to solve it. 
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Consequently, the impact of the uncertainty rate on the delivery amount, the effect of 
the uncertainty rate on the pickup amount, and its simultaneous effect on the SPD 
amounts were investigated. The findings are shown in Figures 9 and respectively 11. 
Assuming a rise in the rate of uncertainty in the total quantity of delivery and pickup 
simultaneously, Figure 11 shows: The effect of the uncertainty rate on the values of the 
objective functions shown in Figures 10 and 11, respectively. In Figure 10, the authors 
assume an increase in the uncertainty rate in the delivery amount while assuming that 
the pickup amount will remain constant. In Figure 11, the authors consider increasing 
the uncertainty rate in the pickup amount while thinking that the delivery amount will 
remain constant.  

 

Figure 9. Sensitivity analysis on simultaneous changes in delivery and 
pickup amount 

 
Figure 10. Sensitivity analysis on changes in the delivery amount and harvest 

stability 
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Figure 11. Sensitivity analysis on simultaneous changes in pickup 

amount and delivery stability 

According to the findings presented in Figures 9 to 11, it is clear that as the rate of 
uncertainty rises as a consequence of an increase in the number of deliveries and 
pickups, and as the capacity of distribution centers and vehicles remains the same, there 
is a growing demand for an increase in the number of vehicles used for transportation, 
which in turn results in an increase in both the cost of transportation and the amount of 
gas emissions. It has been converted into a greenhouse. In addition, due to the rise in the 
number of cars, the total number of hours spent in vehicles has reduced, which 
correlates negatively with the increase in uncertainty. It shows the effect of the 
uncertainty rate on the values of the objective functions in Figures 9, 10, and 11, where 
Figure 9 assumes an increase in the uncertainty rate in the amount of delivery and 
withdrawal at the same time; Figure 10 assumes an increase in the uncertainty rate in 
the delivery amount, and the constancy of the withdrawal amount; and Figure 11 takes 
an increase in the uncertainty rate in the withdrawal amount and an endurance in the 
delivery amount. All of these figures are based on the assumption that the uncertainty 

Table 12. General information about the problem 

Number  

Periods 
Twelve months from 2019 are included in the total number of 

periods for solving the problem. 

Suppliers 
Forty-seven firms provide the goods of Golrang Broadcasting 

Company. 

Distribution 
Centers 

There are 12 major distribution facilities for Golrang Broadcasting 
Company spread throughout the nation's regions. Only Tehran's 

sales distribution hub has been considered in this concept. 
Customer 
Clusters 

The demand regions are chosen in ten clusters adjacent to one 
another due to the limitations of the sales distribution center. 

Products 
Due to the Golrang Broadcasting Company's overwhelming 

product selection, 76 goods in 27 groups were chosen for this 
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project based on the highest sales (90%) and were then utilized to 
solve the model. 

Transport 
Fleets 

According to information from 2019, the firm owns 2 Isuzu and 2 
Alvand vehicles, while 6 Nissan and 1 Isuzu vehicle. 

5.3. Case Study 

It is a case study that Etka Holding conducted. It is made up of a collection of 
businesses that are involved in manufacturing and distribution. Safir Etka Broadcasting 
Company is a connection between Etka Group's manufacturing firms and its merchants. 
This position is one of the most significant and critical roles the company performs 
among these other companies, each with its objective. When implemented in this firm, 
this article will result in a dependable and comprehensive optimization of the set of 
processes associated with this company. This optimization will finally clarify the 
procedures and the existing situation, ultimately leading to improved efficiency and 
reduced expenses. The results of this article can potentially empower this company, 
which plays an essential role in the overall complex. Considering the novelty of this 
project in the country, it has the potential to put it in a better position. This is in 
consideration of the current competitive conditions, which are becoming more sensitive 
daily due to the liberalization of economic borders. Supplied for this business compared 
to those offered by local and international rivals. Table 12 provides a portion of the data 
required to address the challenge posed by the real-world case study.  

After applying the MOALO to the abovementioned issue, 13 effective solutions were 
produced in 276.26 seconds. This result represents the Pareto front, and the practical 
solutions are detailed in the following paragraphs.  

Table 13. Efficient solutions obtained from solving the real sample 

problem 

Efficient 
Solution 

OBF1 (100000*) OBF2 OBF3 

1 21920.63 129940.23 8.30 
2 22632.01 128806.47 8.49 

3 25190.37 122321.32 8.69 

4 25302.38 108496.39 8.92 

5 27860.78 101477.99 9.3 

6 28053.16 94947.19 9.38 

7 30659.45 88979.58 9.56 

8 30663.61 77378.16 9.68 

9 31358.32 76578.61 9.90 

10 31424.17 76122.87 10.11 

11 32232.88 75166.32 10.71 

12 36740.21 73320.94 10.82 

13 37627.15 67119.05 10.94 
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Figure 12. Pareto front obtained from solving the real study at different 

rates of uncertainty 

The efficient solution obtained from Table 13 has been checked at the uncertainty 
rate of ρ=0.5. Therefore, Figure 12 examines the Pareto front obtained at different 
uncertainty rates. 

6. Conclusion and Future Suggestions 

While focusing on the fact that environmental concerns and reducing fuel 
consumption are seen as fundamental goals for the global community, and even though 
in observing the records, mainly separately and in some cases, the combination of some 
items, there is no history of integrated research concerning environmental concerns and 
reducing fuel consumption, the issue of vehicle routing plays a significant role in logistics 
and its supply chain at the operational levels as of. It consists of a group of companies 
engaged in production and distribution. The Safir Etka Broadcasting Company links the 
merchants and the industrial companies of the Etka Group. Among these different 
businesses, each of which has its own goal, this one plays one of the most vital functions 
for the organization. An accurate and thorough optimization of the processes related to 
this organization has been achieved thanks to the implementation of this research in this 
corporation. This optimization will eventually clarify the procedures and situation, 
ultimately enhancing efficiency and saving costs. Given the importance of this company's 
function in the whole complex and the fact that this strategy is relatively new to the 
nation, it has the potential to put it in an increasingly advantageous position. These 
arguments are pertinent given the current competitive environment, which is becoming 
more delicate daily as economic boundaries are opened. In this article, a mathematical 
model of truck routing with simultaneous delivery and pickup with several warehouses 
is suggested for Safir Broadcasting Company in contrast to those provided by local and 
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worldwide competitors. The Safir Broadcasting Company is the intended use of this 
model, which is divided into two stages: the first stage discusses the location of potential 
product distributor warehouses and the best transportation routing for these products 
using different vehicles, and the second stage deals with the arrangement of goods and 
products inside vehicles. The goal of the objective functions that will be presented in this 
article's first stage is to optimize package dimensions, and the purpose of the objective 
functions that will be shown in the second stage is to simultaneously minimize the costs 
of routing and location, the amount of greenhouse gas emissions, and the maximum 
driving time. 

In conclusion, this study discusses NSGA II, MOALO, and SCA. The model of a larger 
scale is solved using these approaches (case study). According to the study's results, 
there is a link between rising rates of uncertainty and higher prices and amounts of 
greenhouse gas emissions, as well as a decline in the number of hours drivers put in at 
work due to rising rates of uncertainty. Demand is at its highest in a gloomy scenario, 
which increases the requirement for vehicles to transport goods and services. Therefore, 
the cost and volume of greenhouse gas emissions rise. The results show that the MOALO 
is better than the NSGA II technique when successfully addressing small-scale 
difficulties. This strategy was adopted to address the problem of the too-large size. There 
are thirteen workable solutions to the issue, according to the research into how it may 
be used on a larger scale (the Ettaka case study).  
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