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 Original scientific paper 
Abstract: Selecting an MCDM method to use in any decision-making problem 
is always a difficult issue regarding that there is no agreement generally on 
which method is the most appropriate one. This paper addressed a proposal 
of a hybrid approach for this problem. Under the assumption that there is no 
superiority among well-established and accepted MCDM methods, we defined 
a minimax strategy based on the fact that the highest total rank deviation 
between MCDMs and the proposed hybrid approach in terms of alternative 
rankings should be as low as possible. Even though MCDM methods often rank 
the alternatives differently, many methods perform similar ranking due to 
sharing alike mathematical operations. To avoid positive bias towards these 
methods in an integrated approach, we focused on a prioritizing scheme that 
supports differentiated rankings from others. This prioritizing scheme also 
contributed to hindering the problem of selecting MCDMs with constraining 
the compound effect of similar rankings. We developed a hybrid decision-
making model combining different MCDM methods with prioritizing them by 
using a mixed-integer linear programming model. We compared the proposed 
approach with some well-known prioritizing methods and the results 
revealed that the proposed approach produced better outcomes in obtaining 
the desired outputs. 
 

Key words: Multiple Criteria Analysis; Aggregating MCDMs; Comparative 
Analysis; Minimax Strategy. 

1. Introduction 

Decision-making has always been an important part of everyone’s life. While some 
decisions need to be made daily, some others should be taken with long-term 
strategic considerations. If someone needs to address the problem through decision-
making, then it is called a decision problem. These problems become Multi-Criteria 
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Decision-Making (MCDM) problems when it is necessary to evaluate them according 
to more than one criterion. Solving MCDM problems require a process that involves 
determining the most appropriate alternative among several options with 
considering the perspective of decision-makers and all criteria. To use in this process, 
the MCDM methods that have their mathematical basis were developed. Some of the 
most common MCDM methods are Weighted Sum Model (WSM), Weighted Product 
Model (WPM), ELimination Et Choice Translating Reality (ELECTRE) by Roy (1968), 
Decision-Making Trial and Evaluation Laboratory (DEMATEL) by Gabus and Fontela 
(1972), Analytic Hierarchy Process (AHP) by Saaty (1980), Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS) by Hwang and Yoon (1981), 
Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) 
by Brans (1982), Compromise Ranking Method (VIKOR) by Opricovic (1998).  

Numerous MCDM methods have been proposed to assist decision-makers in 
solving MCDM problems. However, as Baydas et al. (2022) stated it is very 
complicated and difficult to choose an MCDM method for practitioners in their 
decision-making problems. These MCDM methods differ from each other in different 
aspects, such as using continuous or discrete data, qualitative or quantitative criteria, 
and in purpose like choosing, ranking, sorting the alternatives (Zavadskas et al. 
2014). Moreover, MCDM methods employ different techniques to normalize decision 
matrix and use those outcomes to calculate utility scores of alternatives by varied 
mathematical operations, such as addition, multiplication, exponentiation, or 
logarithm. Therefore, distinct MCDM methods often yield conflicting results. For 
example, Pamucar et al. (2021) used six different types of MCDM methods in their 
study and found six different rankings. Overcoming this problem is not an easy task 
because there is no theoretical superiority between any two MCDM methods. Baydas 
and Elma (2021) stated that the elements in every MCDM problem can vary and these 
changes affect the outcomes of an MCDM in different ways, and added that there can 
be no absolute superiority among the MCDM methods. Kou et al. (2012) offered using 
various MCDM methods instead of one, to get more trustful results. If we agree with 
this opinion, then a new question arises. How can we aggregate a group of MCDM 
methods? This question has attracted quite the attention of researchers.  

To answer this question, some combining methods have been proposed in which 
each of them used dissimilar perspectives, such as weighting MCDM methods with 
Spearman’s rank correlation coefficient introduced by Kou et al. (2012) and Peng 
(2015). Using alternatives’ utility scores, which were obtained by different MCDM 
methods, as input of response surface methodology to produce final rankings 
introduced by Wang et al. (2016). Employing Borda count method, in which rankings 
obtained by MCDMs are summed, by Barak and Mokfi (2019). Ranking alternatives 
with MULTIMOORA method that uses Delphi method and dominance theory to reach 
an agreement on the final ranking introduced by Brauers and Zavadskas (2010). 
Biswas (2020) used WSM to obtain a synthesized ranking of three equally weighted 
MCDM methods. Mohammadi and Rezaei (2020) used half-quadratic theory and 
consider an MCDM method that has a different ranking from the others as an 
exception and rated with a lower weight in their optimization model which evaluates 
the MCDM importance in the overall ranking. Pramanik et al. (2021) employed WSM 
to aggregate five MCDM methods that have been assessed of identical importance in 
the overall ranking. 

Although many approaches have been developed to address the combining MCDM 
methods, these techniques have some issues to discuss. First, using only ranking 
without utility scores like in Borda count and dominance theory, the final rankings' 
precision and accuracy rates would be significantly decreased. Second, it is obvious 
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that MCDM methods with similar algorithms tend to produce more alike rankings. 
With that in mind, even assigning equal weights to all methods may prioritize the 
correlated ones and underrate the uncorrelated ones while achieving the final 
aggregate ranking. Under the assumption that there is no superiority among MCDM 
methods in terms of decision theory, we cannot let similar methods gain upper hand 
in the combined final rankings. Therefore, it will be a challenging issue to the 
determination of MCDM methods that will be chosen to form the appropriate 
combination that avoids the dominance of similar methods. At this point, the 
aggregation problem can be seen as an MCDM problem in which the best mixing ratio 
of the methods is the decision-making problem, and also the methods are the criteria. 
In this case, it is necessary to answer the question of how should the MCDM methods, 
which are expressed as criteria in the aggregation problem, be prioritized. 

In MCDM theory, we can categorize the criteria weighting approaches into three 
groups: subjective, objective, or combination of both of them. Subjective approaches 
such as point allocation by Doyle et al. (1997), direct rating by Bottomley and Doyle 
(2001), swing by Von Winterfeldt and Edwards (1986), a ranking method by 
Kirkwood and Corner (1993), pairwise comparison by Saaty (1980) has been widely 
popular in the real-world applications. Subjective approaches assume that the 
criteria weights can be predetermined by the decision-maker’s judgments which are 
based on their knowledge and expertise on the MCDM problem.  

However, if we cannot predetermine superiority among MCDM methods, then 
both the subjective approaches and the mixed ones that are all greatly based on 
predetermination and decision-makers preferences will have important 
shortcomings to use in the aggregation problem. As mentioned before, we defined the 
criteria of the aggregation problem as MCDM methods. So, the utility scores of 
alternatives obtained by each MCDM method in the actual problem can be put 
together into a whole to form the decision matrix of the aggregation problem. In this 
context, weighting MCDM methods according to utility scores would be specific to the 
dataset of the actual problem, and the general or individual judgments would not play 
a role in the process. Hence, these subjective approaches are inappropriate to use, as 
they rely heavily upon the decision-maker’s judgments. Meanwhile, there are 
significant numbers of objective methods which prioritize the criteria using only the 
decision matrix. Objective methods, such as the Entropy method by Deng et al. 
(2000), the Standard Deviation (SD) and the Criteria Importance through 
Intercriteria Correlation (CRITIC) methods by Diakoulaki et al. (1995), the 
Correlation Coefficient and Standard Deviation (CCSD) by Wang & Luo (2010), the 
Integrated Determination of Objective CRIteria Weights (IDOCRIW) by Zavadskas and 
Podvezko (2016) a modified Entropy used by Biswas et al. (2019), and the Entropy 
and Correlation Coefficients (EWM-Corr) by Mukhametzyanov (2021) stand out as 
the most notable ones.  

Although objective weighting methods are considered appropriate to prioritize 
MCDM methods, in this study, we proposed a new mixed-integer linear programming 
model that produces the importance level of each method for the aggregation 
problem in a better approach, intending to minimize the maximum total rank 
reversals from each ranking of MCDM methods in the final ranking. This would also 
maximize the lowest rank correlation between the final ranking and the rankings of 
the methods used in the final ranking. The main motivation of this study is the lack of 
an appropriate approach that eliminates the necessity of excessive pre-examination 
for choosing a group of MCDM methods that would be used to solve MCDM problems. 
So, the proposed direct prioritization scheme will consider the final ranking in a 
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better way with behaving fairly and equally for each MCDM method whether they 
have similar properties or not.   

The main purpose of this study is to aggregate the scores of MCDM methods with 
a unique perspective aiming to minimize the maximum total rank deviations between 
any single MCDM ranking and the final aggregated ranking. So, the proposed 
approach which is called Aggregation with Minimax Total Rank Deviation (AMTRD) 
was compared with some well-known objective weighting methods to reveal its 
performance on attaining the goals in two different MCDM problems. We selected a 
group of distinguished MCDM methods to illustrate the performance of the AMTRD 
approach in acquiring an aggregated ranking. There is no limitation to selecting 
another group of MCDM methods. Therefore the practitioners can form different 
groups of MCDM with the AMTRD approach. 

The remainder of this paper is organized as follows. In section 2 a brief 
explanation of the novel reconciling process of the AMTRD and some MCDM methods 
that were used to illustrate the proposed approach.  Two different illustrative 
examples are presented in section 3, followed by the comparative analysis and 
further analysis in sections 4 and 5 and the conclusion is the final part of the paper. 

2. Methodology 

MCDM methods are the specifically produced tools aiming to assess MCDM 
problems. Before using these methods, we should form a decision matrix. In this 
matrix, we generally present alternatives on rows and criteria on columns. First, all 
methods deal with the normalization of the decision matrix according to the type of 
criteria. Each method has its normalization procedure for the decision matrix and 
also handles cost and benefit criteria differently. Then, the methods assess the 
alternatives according to criteria. Finally, we obtain ranking/utility values/scores of 
the alternatives. In this study, we emphasize the AMTRD approach to aggregate a 
group of MCDM methods. The point to be underlined here is the proposed method 
focuses on the final scores of the MCDM methods and does not relies on specific 
MCDMs. However, to elucidate the AMTRD we used some well-known MCDM 
methods as an example. These methods and our proposed AMTRD approach are 
mentioned as follows. 

2.1. CRITIC Method  

In decision-making problems where there is more than one criterion, the 
importance of the criteria should be determined. A significant number of techniques 
have been developed to make this assessment, although most of them are subjective 
approaches. However, by using these subjective techniques, different criteria weights 
can be obtained from the same decision-maker. In addition, different decision-makers 
can make different evaluations with the same method (Diakoulaki et al., 1995). 

Addressing these shortcomings of subjective methods, Diakoulaki et al. (1995) 
proposed an objective approach known as CRITIC. This method depends on both 
correlation coefficients between criteria and standard deviations of criteria. CRITIC 
can be applied with the following steps (Jahan et al. 2012): 

First, a decision matrix
( )ij nxm

X x should be obtained for 

( 1,..., )iA i n alternatives and ( 1,..., )jC j m  criteria, and then we have to 

normalize criteria using Eqs. (1) and (2) where min

jx and max

jx are minimum and 
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maximum elements of criterion j . Second, Eqs. (3) and (4) provided correlation 

coefficients and standard deviations, respectively. Finally, with Eqs. (5) and (6), the 
importance levels of criteria jw  are obtained. 
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2.2. ARAS Method 

ARAS (A new additive ratio assessment) depends on comparing values of 
alternatives to optimum values which are added by decision-makers. The MCDM 
approach of ARAS was proposed by Zavadskas and Turskis (2010). They first formed 
the decision matrix X  in Eq. (8) using Eq. (7) as follows; 

max minbenefit criteria and cost criteriaodj j jx x if j x if j      (7) 

1 2
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Afterward, they normalized the decision matrix using Eqs. (9) and (10) for benefit 
and cost criteria, respectively. They obtained a criteria weighted matrix by using jw  
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and Eq. (11). Lastly, the optimality function values and the utility degree of 

alternatives are calculated using Eqs. (12) and (13). The higher iK scores represent 

more favorable results. 
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2.3. COPRAS Method 

The MCDM approach COPRAS (complex proportional assessment method) was 
firstly proposed by Zavadskas and Kaklauskas (1996). Later, the method was 

undergone some changes by Podvezko (2011). The decision matrix 
( )ij nxm

X x  can 

be normalized and weighted simultaneously by Eq. (14). The score values for the 
alternatives are obtained by using Eqs. (15) or (16) depends on whether the criterion 
is benefit (j=1,..,k) or cost (j=g+1,..,m) type, respectively. The relative importance 
levels of alternatives can be calculated by Eq. (17) and the performance index values 
of alternatives can be computed by Eq. (18), as well. The alternative with the highest 
performance index is determined as the best alternative.  
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2.4. EDAS Method 

Keshavarz Ghorabaee et al. (2015) proposed the EDAS (Evaluation based on 
Distance from Average Solution), which depends on the average values of criteria. 
They first calculate the mean values for each criterion using the decision matrix 

( )ij nxm
X x in Eq. (19). Then the positive and negative distance from average 

matrices PDA and NDA can be calculated for benefit criteria using Eqs. (20) and (21), 
for cost criteria employing Eqs. (22) and (23). 
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Positive sums and negative sums for the alternatives are obtained by using 
criteria weight jw  in Eqs. (24) and (25), respectively. 
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Thereafter, normalized SP and SN values can be acquired by utilizing Eqs. (26) 
and (27), respectively. Lastly, the assessment values are obtained by employing Eq. 
(28) and EDAS ends with ranking alternatives in a decrescent manner. 
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 
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2.5. MOOSRA Method 

MOOSRA (multiobjective optimization based on simple ratio analysis) was 
developed by Das et al. (2012) to overcome the problems found in other MCDM 
techniques. Das et al. (2015) used MOOSRA for evaluating performance in the 

education system. They initially formed the 
( )ij nxm

X x  decision matrix and 

normalized it using Eq. (29). Subsequently, they weighted the normalized matrix with 
criteria weight jw and acquired the performance scores of alternatives in Eq. (30) 

according to benefit (j=1,..,g) and cost (j=g+1,..,m) criteria. Finally, the decision-
making process ends with ranking alternatives in descending order. 

2

1

ij

ij
n

ij

i

x
r

x






         (29) 

1

1

g

j ij

j

i m

j ij

j g

w r

PS

w r



 






              (30) 

2.6. WASPAS Method 

Zavadskas et al. (2012) proposed WASPAS (The weighted aggregated sum 
product assessment) which is consists of both weighted sum and weighted product 

model. The decision matrix 
( )ij nxm

X x  can be normalized by employing Eqs. (31) 

and (32). Weighted sum model and weighted product model can be acquired by using 
criteria weight jw and calculating Eqs. (33) and (34) as follows: 
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Lastly, the alternatives are ranked in descending order according to performance 
scores acquired by Eq. (35). 
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 
1
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2

i i iQ WSM WPM i n            (35) 

2.7. The Proposed AMTRD Method 

Suppose there is a decision matrix 
( )ij nxm

X x  that includes MCDM methods as 

criteria 
1,..., mC C  and also alternatives as

1,..., nA A where ijx denotes the scores of 
iA in 

terms of jC . The decision matrix that has only benefit criteria can be normalized by 

using Eq. (1). Afterward, the aggregated scores can be calculated from the normalized 

score matrix
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Z z . However, the weights of methods also have to be defined 

before obtaining the final scores of alternatives. Since the proposed AMTRD approach 
aimed to minimize the maximum rank reversals from each ranking of MCDM 
methods, we suggested using the most common and basic MCDM technique as WSM 
to acquire the final ranking. 

The WSM obtain the
iS , the overall scores of alternative i , as follows (Fishburn, 

1967): 
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The decision variable called the Dev is used to ensure that the maximum sum of 

deviations between the ranking of any MCDM method and the aggregated AMTRD 
ranking is minimized.  

 
Suppose that t  is also an MCDM method as j . We sorted rows of 

( )ij nxm
Z z according to scores of alternatives for each MCDM method ( 1,...,t m ) in 

a descended manner as 1 2 3 ...t t t t
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ij
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In Eq. (37) and Eq. (38), using greater or equal and lesser or equal types of 

constraints can lead both iktY and iktV  are equal to 0, when 
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i kScore Score and t t

i kScore Score . To overcome this issue we can use a 

very small but also meaningful constant number N with the value of 0.0001 and turn 

the greater or equal and lesser or equal types of constraints into greater and lesser 
types, respectively. Here H , which is a sufficiently large number and used as 1000 to 
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guarantee that the constraints hold. Since in some cases, the value of 1 for iktY or 

iktV cannot be adequate to run the necessary restrictions correctly. 

Eq. (39) would constraints that Dev will be greater than the each number of rank 

deviations between methods and the AMTRD approach. Since, the sum of rank 
deviation between the method t  and the AMTRD approach is equal 

to
1 1

n n

ikt ikt

i k

Y V
 

 .  

While Eq. (40) limits the sum of jw  equal to 1, Eqs. (41), (42), and (43) are binary 

and nonnegative constraints of iktY , iktV , and jw , respectively.   

Let us consider an example of n=4 alternatives and m=3 MCDM methods. Then we 
have three different MCDM results for the same four alternatives. Assume that 

(4 3)ij x
X x  is given as follows; 

 

12 0.9 100

10 0.5 80

5 1 45

9 0.7 15

X

 
 
 
 
 
 

 

We can obtain the normalized score matrix
(4 3)ij x

Z z using Eq. (1) as follows; 

 

1.000 0.800 1.000

0.714 0.000 0.765

0.000 1.000 0.353

0.571 0.400 0.000

Z

 
 
 
 
 
 

 

 

After that, we can sort rows of 
( )ij nxm

Z z according to scores of alternatives for 

each MCDM method ( 1,2,3t  ) in a descended manner and obtained 3 

different
ij

tz matrices as follows, 

 

1

1.000 0.800 1.000

0.714 0.000 0.765

0.571 0.400 0.000

0.000 1.000 0.353

ijz

 
 
 
 
 
 

2

0.000 1.000 0.353

1.000 0.800 1.000

0.571 0.400 0.000

0.714 0.000 0.765

ijz

 
 
 
 
 
 

3

1.000 0.800 1.000

0.714 0.000 0.765

0.000 1.000 0.353

0.571 0.400 0.000

ijz

 
 
 
 
 
 

 

 
So, the Eq. (37) in the AMTRD model can be defined with 18 constraints as 

follows; 
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1 1 1 1 1 1

1 11 2 12 3 13 1 21 2 22 3 23 121

2 2 2 2 2 2

1 11 2 12 3 13 1 21 2 22 3 23 122

3 3 3 3 3 3

1 11 2 12 3 13 1 21 2 22 3 23 123

1 1 1 1

1 11 2 12 3 13 1 31 2

* * * * * *

* * * * * *

* * * * * *

* * * * *

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w

      

      

      

    1 1

32 3 33 131

2 2 2 2 2 2

1 11 2 12 3 13 1 31 2 32 3 33 132

3 3 3 3 3 3

1 11 2 12 3 13 1 31 2 32 3 33 133

1 1 1 1 1 1

1 11 2 12 3 13 1 41 2 42 3 43 141

2 2

1 11 2 12

*

* * * * * *

* * * * * *

* * * * * *

* *

z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z

  

      

      

      

 2 2 2 2

3 13 1 41 2 42 3 43 142

3 3 3 3 3 3

1 11 2 12 3 13 1 41 2 42 3 43 143

1 1 1 1 1 1

1 21 2 22 3 23 1 31 2 32 3 33 231

2 2 2 2 2 2

1 21 2 22 3 23 1 31 2 32 3 33

* * * *

* * * * * *

* * * * * *

* * * * * *

w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY

     

      

      

      232

3 3 3 3 3 3

1 21 2 22 3 23 1 31 2 32 3 33 233

1 1 1 1 1 1

1 21 2 22 3 23 1 41 2 42 3 43 241

2 2 2 2 2 2

1 21 2 22 3 23 1 41 2 42 3 43 242

3 3 3

1 21 2 22 3 23 1 41

* * * * * *

* * * * * *

* * * * * *

* * * *

N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z



      

      

      

   3 3 3

2 42 3 43 243

1 1 1 1 1 1

1 31 2 32 3 33 1 41 2 42 3 43 341

2 2 2 2 2 2

1 31 2 32 3 33 1 41 2 42 3 43 342

3 3 3 3 3 3

1 31 2 32 3 33 1 41 2 42 3 43 343

* *

* * * * * *

* * * * * *

* * * * * *

w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

w z w z w z w z w z w z HY N

   

      

      

      
 

The Eq. (38) would also be defined with 18 constraints as follows; 
1 1 1 1 1 1

1 21 2 22 3 23 1 11 2 12 3 13 211

2 2 2 2 2 2

1 21 2 22 3 23 1 11 2 12 3 13 212

3 3 3 3 3 3

1 21 2 22 3 23 1 11 2 12 3 13 213

1 1 1 1

1 31 2 32 3 33 1 11 2

* * * * * *

* * * * * *

* * * * * *

* * * * *

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w

      

      

      

    1 1

12 3 13 311

2 2 2 2 2 2

1 31 2 32 3 33 1 11 2 12 3 13 312

3 3 3 3 3 3

1 31 2 32 3 33 1 11 2 12 3 13 313

1 1 1 1 1 1

1 31 2 32 3 33 1 21 2 22 3 23 321

2 2

1 31 2 32

*

* * * * * *

* * * * * *

* * * * * *

* *

z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z

  

      

      

      

 2 2 2 2

3 33 1 21 2 22 3 23 322

3 3 3 3 3 3

1 31 2 32 3 33 1 21 2 22 3 23 323

1 1 1 1 1 1

1 41 2 42 3 43 1 11 2 12 3 13 411

2 2 2 2 2 2

1 41 2 42 3 43 1 11 2 12 3 13

* * * *

* * * * * *

* * * * * *

* * * * * *

w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV

     

      

      

      412

3 3 3 3 3 3

1 41 2 42 3 43 1 11 2 12 3 13 413

1 1 1 1 1 1

1 41 2 42 3 43 1 21 2 22 3 23 421

2 2 2 2 2 2

1 41 2 42 3 43 1 21 2 22 3 23 422

3 3 3

1 41 2 42 3 43 1 21

* * * * * *

* * * * * *

* * * * * *

* * * *

N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z



      

      

      

   3 3 3

2 22 3 23 423

1 1 1 1 1 1

1 41 2 42 3 43 1 31 2 32 3 33 431

2 2 2 2 2 2

1 41 2 42 3 43 1 31 2 32 3 33 432

3 3 3 3 3 3

1 41 2 42 3 43 1 31 2 32 3 33 433

* *

* * * * * *

* * * * * *

* * * * * *

w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

w z w z w z w z w z w z HV N

   

      

      

      
 

So, the Eq. (39) would be defined with 3 constraints as follows; 
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121 131 141 231 241 341 211 311 411 321 421 431

122 132 142 232 242 342 212 312 412 322 422 432

123 133 143 233 243 343 213 313 413 323 423 433

Dev Y Y Y Y Y Y V V V V V V

Dev Y Y Y Y Y Y V V V V V V

Dev Y Y Y Y Y Y V V V V V V

           

           

           

 

 
The mixed-integer linear programming model of AMTRD is coded in the 

Matlab2021 environment and is presented in Appendix 1. After solving the 
optimization model and obtaining jw , the final ranking would be acquired by using 

Eq. (36). 
The proposed AMTRD method is neither dependent on any specific MCDM method 

nor relies on a certain number of methods. A decision-maker can consider and group 
different MCDM methods that are reliable on a specific problem in AMTRD. The 
AMTRD only needs scores of alternatives obtained by each MCDM method which they 
have conflicts about the alternative ranks between them, to aggregate the MCDMs. 
Considering and using the scores, the magnitude of the difference in scores in any 
MCDM method will also be included in the model. In this way, both ranking and 
ratings will collectively affect the final score and rankings.  

3. Experimental Results 

In this section, we used two different cases to analyze AMTRD in different 
circumstances. In Case 1, we consider five MCDM methods, and for each method, the 
criteria were weighted with the CRITIC method. To demonstrate the proposed 
method can be effective in any circumstances we formed a group of seven MCDMs for 
Case 2 and the criteria were equally weighted for all the methods in Case 2.  

3.1 Case 1  

In Case 1, Better Life Index (BLI), a social index to compare well-being across the 
countries and being carried out by Organization for Economic Co-operation and 
Development (OECD), was used to demonstrate the capabilities of the proposed 
hybrid approach with aggregating five MCDMs namely ARAS, COPRAS, EDAS, 
MOOSRA, and WASPAS. In Case 1, the same data, which were examined by Depren 
and  Kalkan (2018), were used. BLI data for the year 2017 with eleven main criteria 
and twenty-four sub-criteria were taken into consideration (OECD, 2017). 
Information about these criteria and also sub-criteria weights which were obtained 
by CRITIC were given in Table 1. In this study, these sub-criteria weights were 
evaluated under the main criteria due to the independence of the main criteria from 
each other, and the CRITIC method was used for obtaining these weights, while 
Depren and Kalkan (2018) considered all the sub-criteria at the same level and used 
entropy method for weighting them. With these two disparate perspectives and also 
using different weighting methods such as CRITIC and entropy, the results of criteria 
weights differ. For example, according to Depren and Kalkan (2018), the “Personal 
earnings” sub-criterion was found as the most important factor on the “Jobs” main 
criterion while this sub-criterion was followed by “Employment rate”, “Long-term 
unemployment rate” and “Labour market insecurity”, respectively. In comparison 
with Depren and Kalkan (2018) and our results, while the most important factor 
remained the same for the “Jobs” main criterion, the second most important factor 
was changed as “Labour market insecurity”, in our study. 
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Table 1. Sub Criteria Weights of BLI with CRITIC  

Main 
Criteria 

Main 
Criteria 

No 
Sub Criteria 

Sub 
Criteria 
Weight 

Unit 
Criteria 

Type 

Housing C1  
  Dwellings without basic facilities 

0.25256 Percentage 
min 

  Housing expenditure 
0.42091 Percentage 

min 

  Rooms per person 
0.32652 Ratio 

max 
Income C2  

  Household net adjusted disposable income 
0.52068 US Dollar 

max 

  Household net financial wealth 
0.47932 US Dollar 

max 
Jobs C3  

  Labour market insecurity 
0.17577 Percentage 

min 

  Employment rate 
0.16890 Percentage 

max 

  Long-term unemployment rate 
0.22764 Percentage 

min 

  Personal earnings 
0.42770 US Dollar 

max 
Community      C4 

  Quality of support network 
1.00000 Percentage 

max 
Education C5  

  Educational attainment 
0.36937 Percentage 

max 

  Student skills 
0.25738 Average 

score max 

  Years in education 
0.37325 Years 

max 
Environment  C6 

  Air pollution 

0.49417 Micrograms 
/cubic 
metre min 

  Water quality 
0.50583 Percentage 

max 
Civic 

engagement 
C7  

  Stakeholder engagement for developing regulations 
0.48124 Average 

score max 

  Voter turnout 
0.51876 Percentage 

max 
Health C8 

  Life expectancy 
0.41054 Years 

max 

  Self-reported health 
0.58946 Percentage 

max 
Life 

Satisfaction 
 C9 

  Life satisfaction 

1.00000 Average 
score 

max 
Safety  C10 

  Feeling safe walking alone at night 
0.56169 Percentage 

max 

  Homicide rate 
0.43831 Ratio 

min 
Work-Life 

Balance 
 C11 

  Employees working very long hours 
0.53648 Percentage 

min 

  Time devoted to leisure and personal care 
0.46352 Hours 

max 

After obtaining sub-criteria weights in Case 1, we used these weights and the 
same data with Depren and Kalkan (2018) in five different MCDMs to acquire scores 
of alternatives for all eleven main criteria. So, at this stage, we had a total of five 
different decision matrices, each with 11 criteria and 38 alternatives. These decision 
matrices are directly associated with the MCDM methods that were used to obtain 
them. 

After that, using these decision matrices, main criteria weights were evaluated by 
using CRITIC for each related MCDM method. As expected the main criteria weights 
differ for each MCDM method since the evaluation process of MCDMs and its 
outcomes as the importance values of alternatives for main criteria differs among the 
MCDM methods in decision matrices. The only alternative importance values for the 
C4 and C9 main criteria have not changed according to each MCDM method. Due to 
having only one criterion as a sub-criterion, it was not necessary to make any 
calculations with MCDM methods and so OECD original survey results were used as 
alternative importance values for those criteria. Contrastingly, the importance values 
of alternatives for the main criteria other than C4 and C9 vary according to the MCDM 
approaches used. 
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Next, alternative final scores were obtained by each MCDM method using five 
different decision matrices and different criteria weights. The final rankings of the 
alternatives differed according to the MCDM methods. 

According to the ARAS method, the countries in the top three were listed as the 
Netherlands, Russia, and Sweden, respectively. In the COPRAS rankings’, Russia, 
Netherlands, and Sweden were the first three countries with the highest scores. 
According to EDAS rankings’, the top three were the United States, Australia, and 
Canada. Iceland, Norway, and United Kingdom were listed as the top three countries 
while rankings’ were made with MOOSRA. According to WASPAS rankings’, Norway, 
Netherlands, and Sweden were the three leading countries, respectively.  

Due to the differences in the results of alternative ranking obtained with the 
MCDM methods, there was not any common ranking or consensus among the 
methods. This situation, which poses a problem in decision-making, could be seen not 
only in the upper ranks but also in the lower ranks and overall MCDM rankings’. As it 
is known, although there is no superiority among MCDM methods, some methods 
may resemble each other more than others. Accordingly, it will be possible to 
overcome the problem of compromising these methods properly only by reconciling 
these methods and taking the methods’ affinity issue into account. 

Table 2 presents the normalized scores of alternatives for each MCDM method 
used in the optimization process of AMTRD to obtain weights of five MCDMs and the 
final scores and ranking with the proposed AMTRD approach. The weights of five 
individual MCDM in AMTRD were calculated according to their order in Table 2 as 
0.00000, 0.53755, 0.45271, 0.00000, and 0.00974. So, the three MCDM namely 
COPRAS, EDAS, and WASPAS were adequate to cover all five MCDM and addressed 
the AMTRD rank in this problem. 

Depending on the scores of AMTRD, the United States, Canada, and Russia are the 
top three countries, respectively, for the BLI. While the United States was the best and 
Canada was the third for EDAS, Russia was the best for COPRAS. It seems that 
COPRAS and EDAS were the methods pulling the wire for AMTRD rankings’, however, 
the AMTRD also established links with the other remaining methods via COPRAS and 
EDAS. 

Table 2. Ranking Countries with Hybrid AMTRD for BLI (Case 1) 

 ARAS COPRAS EDAS MOOSRA WASPAS AMTRD 

Australia 0.59734 0.52227 0.69634 0.76715 0.85289 0.60429(4) 

Austria 0.46633 0.42622 0.05885 0.62707 0.66520 0.26223(21) 

Belgium 0.51433 0.44537 0.29698 0.55582 0.72645 0.38093(14) 

Canada 0.60660 0.54226 0.69187 0.75721 0.87328 0.61321(2) 

Chile 0.14864 0.13189 0.00202 0.16510 0.23048 0.07405(37) 

Czech Rep. 0.32313 0.31931 0.12586 0.40897 0.50713 0.23356(23) 

Denmark 0.59260 0.54494 0.28247 0.76389 0.85193 0.42911(10) 

Estonia 0.31503 0.28732 0.21735 0.35984 0.44045 0.25714(22) 

Finland 0.48906 0.44424 0.29299 0.60795 0.72868 0.37854(15) 

France 0.42203 0.38498 0.02009 0.49676 0.63121 0.22219(26) 

Germany 0.54477 0.48736 0.15773 0.71426 0.79012 0.34108(17) 

Greece 0.16962 0.18855 0.02762 0.20638 0.28895 0.11667(33) 

Hungary 0.16738 0.18090 0.03669 0.20707 0.25660 0.11636(34) 
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 ARAS COPRAS EDAS MOOSRA WASPAS AMTRD 

Iceland 0.84244 0.58351 0.23304 1.00000 0.97091 0.42862(11) 

Ireland 0.46890 0.40209 0.28109 0.56431 0.66030 0.34982(16) 

Israel 0.30185 0.29721 0.22060 0.40888 0.44792 0.26400(20) 

Italy 0.29474 0.29176 0.03698 0.33026 0.44098 0.17787(30) 

Japan 0.43250 0.38012 0.26562 0.62355 0.51778 0.32962(18) 

Korea 0.58025 0.30875 0.09216 0.46512 0.49997 0.21256(28) 

Latvia 0.21258 0.20980 0.09867 0.22301 0.29009 0.16027(31) 

Luxembourg 0.73999 0.49146 0.27524 0.67705 0.88233 0.39738(13) 

Mexico 0.24120 0.17245 0.27349 0.21144 0.21911 0.21865(27) 

Netherlands 1.00000 0.77352 0.27740 0.92919 0.99724 0.55110(5) 

New Zealand 0.50919 0.45504 0.41408 0.65853 0.74625 0.43933(9) 

Norway 0.82264 0.57891 0.29301 0.93433 1.00000 0.45358(8) 

Poland 0.24120 0.24634 0.11963 0.30360 0.38357 0.19030129) 

Portugal 0.18319 0.19539 0.02954 0.25636 0.28247 0.12116(32) 

Slovak Rep. 0.25922 0.26098 0.19052 0.30120 0.40333 0.23047(24) 

Slovenia 0.37037 0.35216 0.20659 0.46306 0.55809 0.28827(19) 

Spain 0.37551 0.34023 0.07677 0.44454 0.56330 0.22313(25) 

Sweden 0.86184 0.61733 0.45088 0.78653 0.99458 0.54565(7) 

Switzerland 0.83133 0.55118 0.54173 0.78636 0.97193 0.55100(6) 

Turkey 0.12706 0.12936 0.02241 0.15579 0.20709 0.08170(36) 

United King. 0.63882 0.56885 0.23512 0.93236 0.82157 0.42023(12) 

United States 0.68253 0.59228 1.00000 0.80599 0.89962 0.77985(1) 

Brazil 0.14587 0.15131 0.00871 0.18589 0.20164 0.08724(35) 

Russia 0.89040 1.00000 0.16019 0.90347 0.31252 0.61311(3) 

South Africa 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000(38) 

3.2. Case 2 

In this study, we borrowed a material selection case from Shanian and Savadogo 
(2006). The decision matrix of the problem with eight alternatives and twelve criteria 
in which the first, fourth, fifth, and twelfth are the cost and the rest are beneficial 
criteria are presented in Table 3. 

Table 3. Decision Matrix of Case 2  

 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 8.25 560 940 0.78 15183 2916 380 560 138 465 105 18.64 
A2 8.65 460 600 0.71 12472 2395 220 460 125 465 205 13.99 
A3 8.94 50 210 0.08 1355 260 45 50 122 460 398 3 
A4 8.95 340 380 0.48 9218 177 115 340 135 460 390 3.46 
A5 2.67 190 295 0.25 20317 1966 87 191 73.59 741 152 2.81 
A6 8.06 690 1030 1.55 5909 2174 350 800 190 189 17 5.99 
A7 8.63 95 270 0.17 2711 520 63 100 116 174 185 3.32 
A8 7.08 267 355 0.48 1957 720 110 265 205 329 50 1.04 
Source: Shanian and Savadogo (2006). 

As mentioned before, all criteria weights in Case 2 considered in each MCDM as 
equal with the value of 0.08333.  First, we obtained alternatives’ ranking for seven 

http://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx?Dataset=BLI2017&Coords=%5bLOCATION%5d.%5bISR%5d&ShowOnWeb=true&Lang=en
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MCDMs, namely ARAS, COPRAS, EDAS, MOOSRA, WASPAS, WSM, and WPM. The Eqs. 
(33) and (34) present the calculations of the WSM and WPM which are basic ranking 
methods, respectively. Table 4 represents the scores and ranks of alternatives for 
each MCDM and also AMTRD. The weights of seven individual MCDM in AMTRD were 
obtained according to their order in Table 4 as 0.24290, 0.06798, 0, 0.37440, 0, 0, and 
0.31473. So, the three MCDM namely ARAS, COPRAS, MOOSRA, and WPM were 
adequate to cover all seven MCDM and addressed the AMTRD rank in this problem. 
However, using AMTRD we found out the best alternative is A8 and second best is A6 
while also it was considered as the top according to ARAS, COPRAS, EDAS, and WSM 
which two of them were not included in the final phase of AMTRD.   

Table 4. Ranking Alternatives with MCDMs and Hybrid AMTRD for Case 2 

 

ARAS COPRAS EDAS MOOSRA WASPAS WSM WPM AMTRD 

SCORES of ALTERNATIVES 

A1 0.50271 97.03645 0.46362 1.80552 0.46416 0.54666 0.38165 0.59815 

A2 0.42847 84.69563 0.42089 1.74793 0.41581 0.46510 0.36653 0.41990 

A3 0.47157 84.63413 0.31088 2.67523 0.37096 0.45064 0.29127 0.59805 

A4 0.41977 86.87727 0.57101 2.45927 0.41881 0.44734 0.39028 0.73403 

A5 0.41959 72.21532 0.29427 1.99619 0.39069 0.43345 0.34793 0.41980 

A6 0.51769 100.00000 0.60762 2.28269 0.45815 0.55642 0.35988 0.73414 

A7 0.31515 69.23272 0.17624 1.80032 0.29286 0.31062 0.27509 0.01877 

A8 0.44897 84.07422 0.39773 2.79296 0.41257 0.45042 0.37472 0.83989 

RANK of ALTERNATIVES 

A1 2 2 3 6 1 2 2 4 

A2 5 4 4 8 4 3 4 6 

A3 3 5 6 2 7 4 7 5 

A4 6 3 2 3 3 6 1 3 

A5 7 7 7 5 6 7 6 7 

A6 1 1 1 4 2 1 5 2 

A7 8 8 8 7 8 8 8 8 

A8 4 6 5 1 5 5 3 1 

Since the results of weighting with the proposed approach reveal that some 
methods can represent others with greater importance in the proposed AMTRD 
approach, it can be expected that the goal of the AMTRD which is the minimization of 
the maximum rank deviation from the MCDM methods achieved. With this regard, in 
order to demonstrate the effectiveness of the proposed method, the correlation 
between the methods in terms of ranking results was analyzed and also compared 
with different well-known methods and finally, the proposed approach was analyzed 
in terms of its validity. 

4. Comparative Analysis 

To analyze and compare the effectiveness of the AMTRD regarding to the minimax 
total rank deviation strategy, the CRITIC method which favors the uncorrelated 
criteria in an MCDM problem was chosen. Additionally, with extracting the standard 
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deviations from Eq. (5) the greatly enhanced version of CRITIC for focusing on 
correlation coefficients (CC) also compared with AMTRD. The results of the Equal 
Mean (EM) approach, which is the basic method in criteria weighting also 
represented to draw a wider perspective. All these models were formed using final 
scores which were obtained by five different MCDM methods as a decision matrix for 
Case 1. Appendix 2 presents the results of each weighting method and the rankings 
for the BLI problem with them obtained by using WSM to make fair comparisons. 
According to the results, both CC and CRITIC weigh the EDAS method most. However, 
AMTRD differs from them with prioritizing COPRAS as the highest of all MCDM 
methods. Apart from this; it is observed that the obtained results with CC were much 
closer to CRITIC than AMTRD's. So, AMTRD generally parted from them in the 
weighting scheme. While the United States was the leading alternative for the BLI in 
each approach including EM, the runner-up alternatives for BLI using AMTRD, CC, 
and CRITIC were Canada, Switzerland, and the Netherlands, respectively. EM 
approach and CRITIC ranked the same alternatives at the top four with a different 
order which can be seen as a sign of closer ranking results for them. 

To compare the aggregating methods for Case 2, we used scores of single MCDMs 
in Table 4, we obtained weights of the seven method with the order in Table 4 and for 
CC as; 0.11148, 0.10853, 0.11246, 0.31352, 0.09357, 0.10049, 0.15995 and for CRITIC 
as; 0.09760, 0.10560, 0.10627, 0.35267, 0.08368, 0.08744, 0.16673. While CC and 
CRITIC have significantly close weight values they also ranked the alternatives 
identically with the AMTRD, the only exception is the ranking between A6 and A8 
were reversed. AMTRD which differs a lot from both CC and CRITIC in terms of 
weightings revealed similar rankings with them. The EM presents the rank of 
alternatives as 2-5-6-3-7-1-8-4 which differs from all of them. 

To identify the total rank deviation among both rankings with weighting methods 
and single MCDM rankings more approximately, the Total Rank Deviation (TRD) was 
defined as follows;   

Suppose that, there is n  number of alternatives that have to be ranked. While also 

there are two different rankings available as 
( )i n

R r and 
( )i n

T t then TRD 

between them would be; 

1

n

RT i i

i

TRD r t


                     (44) 

Using Eq. (43) in Tables 5 and 6, the TRD values between individual MCDMs and 
each aggregated rankings are presented for Case 1 and 2, respectively. 

Table 5. TRD values between individual MCDMs and Aggregated rankings’ 

for Case 1 

 
CC CRITIC EM AMTRD 

ARAS 82 72 58 122 

COPRAS 84 74 52 110 

EDAS 170 178 192 132 

MOOSRA 90 86 70 124 

WASPAS 102 88 76 146 

Max TRD 170 178 192 146 
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Table 6. TRD values between individual MCDMs and Aggregated rankings’ 

for Case 2 

 
CC CRITIC EM AMTRD 

ARAS 10 10 6     12 

COPRAS 8 8 4     10 

EDAS 8 8 4     10 

MOOSRA 14 14 20     12 

WASPAS 12 12 6     12 

WSM 12 12 8     14 

WPM 14 14 10     14 

Max TRD 14 14 20     14 

According to Max TRD values in Table 5 and 6, for Case 1 the AMTRD has the 
minimum Max TRD with 146, while CC, CRITIC, and EM follow it with 170, 178, and 
192, respectively. In Case 2 the three approaches AMTRD, CC, and CRITIC outperform 
EM in terms of Max TRD. The results indicated that the AMTRD is the better option 
for obtaining minimum Max TRD which is the main purpose of the AMTRD. 

5. Further analysis 

To analyze further effectiveness of AMTRD and also to demonstrate that it is not 
dependent on specific MCDM methods, Case 1 and 2 were investigated using different 
groups of MCDMs. In Table 7 the Max TRD between individual MCDMs and 
Aggregated rankings’ were presented for Case 1. We sequentially discarded an MCDM 
from the original model for Case 1. So, this approach provides five different models 
with four MCDMs in each for Case 1. Using all these models with different weighting 
schemes we acquired final rankings via WSM, and then we calculated the TRD and 
Max TRD for each model to reveal which weighting schemes provide better results in 
line with the minimax strategy. While AMTRD outperformed the other weighting 
methods in all models, the runner-up was CC for four models and CRITIC only 
surpassed CC only in one model. EM could not compete with any of them concerning 
minimax strategy. 

Table 7. Max TRD values between group of MCDMs and Aggregated 

rankings’ for Case 1 

The groups of MCDMs in the model CC CRITIC EM AMTRD 

COPRAS, EDAS, MOOSRA, WASPAS 148 154 170 124 

ARAS, EDAS, MOOSRA, WASPAS 154 174 186 136 

ARAS, COPRAS, MOOSRA, WASPAS 70 62 78 58 

ARAS, COPRAS, EDAS, WASPAS 168 170 180 130 

ARAS, COPRAS, EDAS, MOOSRA 148 150 194 128 

Considering different models for Case 2 we focused on different combinations of 
the MCDMs and obtained seven models and in Table 8 the Max TRD values between 
individual MCDMs and Aggregated rankings were listed for Case 2. In terms of 
minimax strategy, AMTRD and EM outperformed the other two models, while the 
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proposed method slightly has a better mean of Max TRD than EM. But more 
importantly, AMTRD had the minimum Max TRD values in all models. Additionally, 
an important issue to be considered was the EM had better results than both CC and 
CRITIC in line with the minimax strategy for the first time. This consequence falsified 
our foresight that CC is the superior version of CRITIC for minimax strategy. Since CC 
even failed to dominate over the EM, it cannot be a valid option anymore. Similar to 
all other models, AMTRD has maintained its best performance in terms of Max TRD 
values in these models as well. 

Table 8. Max TRD values between group of MCDMs and Aggregated 

rankings’ for Case 2 

The groups of MCDMs in the model CC CRITIC EM AMTRD 

ARAS, WSM, WPM 12 12 12 12 

COPRAS, WSM, WPM 12 12 10 10 

EDAS, WSM, WPM 8 8 8 8 

MOOSRA, WSM, WPM 18 18 14 14 

WASPAS, WSM, WPM 12 12 10 10 

ARAS, WASPAS, WSM, WPM 12 12 12 10 

ARAS, COPRAS, WASPAS, WSM, WPM 12 12 10 10 

Considering the inferences that can be made from all the results, with the AMTRD 
method, the best result was always obtained according to Max TRD. While the 
efficiency of AMTRD is more evident when the number of alternatives in the problem 
is higher, the approach also maintains its performance in ranking fewer alternatives. 
Meanwhile, we cannot have a conclusion on which the other compared methods have 
an edge over others. 

 As mentioned earlier in this study, the AMTRD approach should consider the 
individual MCDM rankings’ that constitute it without any difference between them 
and the similarity rate in the rankings should be as high as possible in all of them. In 
this context, it is desirable to minimize the Max TRD between individual MCDMs and 
this would be a minimax strategy to perform. So, AMTRD outperformed CC, CRITIC, 
and EM in the context of minimax strategy in all cases and models. So, these results 
indicate that removing any MCDM did not crucially affect the performance of the 
AMTRD and also reveal the robustness of the proposed method. 

5. Results and Discussions 

This paper aimed to develop an aggregating method that has its original point of 
view and appropriately aggregates the MCDMs in line with its assumptions. Some 
aggregation methods have been proposed in the past. However, they mostly relied on 
the thought that MCDMs which have similar rankings should be more important than 
the others in the aggregated rankings. Contrary to this idea, we proposed a new 
approach that does not underestimate any MCDM method, assuming that there is no 
superiority between MCDM methods, which is one of the important assumptions in 
decision theory, in the evaluation process. To prevent positive bias towards the 
methods with similar rankings, the basis of the proposed AMTRD method is 
structured to minimize the Max TRD of final rankings from any rankings of MCDM 
methods. Owing to this approach, overall, the importance of the methods remains 
relatively the same. Because the methods with similar rankings have interaction and 
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so their compound significance highly affects the final rankings. However, the 
methods with different rankings offset this high effect with their higher individual 
weights that were acquired by AMTRD. In the AMTRD approach, the decision-maker 
can select a group of MCDM methods that he/she considers reliable and uses their 
scores to obtain aggregated rankings in line with the minimax strategy. 

The two cases were used in the study to demonstrate the effectiveness of the 
proposed approach in both MCDM problems with a big and small number of 
alternatives. Different models were handled with AMTRD and as indicated by the 
overall results the AMTRD aggregated groups of MCDM methods reliably in line with 
the minimax strategy, whether the number of methods in the group is small or big, or 
which methods compromise the group. While the proposed approach had 
significantly better results from any weighting scheme in Case 1 with 38 alternatives, 
the AMTRD maintained its assignments even the number of alternatives decreased to 
8 as in Case 2. Furthermore, even when the number of MCDMs used in AMTRD was 
reduced from five to four in Case 1, it can produce similar ranking results with the 
model that has five MCDM ratings and these outcomes display the robustness of the 
AMTRD. In addition, the AMTRD outperformed the other well-known approaches in 
minimizing the Max TRD of aggregated rankings between any individual MCDM 
methods. Besides, a balance, rather than a net correlation, was established between 
the correlation of AMTRD and MCDM ranking results and the weight of MCDMs in the 
AMTRD. So there is no such guarantee that if the weight of the MCDM is high or low 
then its rank correlation with AMTRD also would be high or low. These overall 
results display that the desired reconciliation with AMTRD is achieved in the 
aggregation of MCDM methods. In future studies, there are sufficient opportunities 
for reconciling different MCDMs with different weighting approaches in the decision-
making process. 

 

APPENDIX 

Appendix 1. MATLAB Script of AMTRD Optimization Model. 

clc; clear; 
%%%% AMTRD Method %%% 
%R decision matrix(nxm) (n=number of alternatives, m=number of MCDMs) 
%Example CASE 2 with seven MCDMs  
 R=[0.50271  97.03645 0.46362 1.80552 0.46416 0.54666 0.38165 
0.42847 84.69563 0.42089 1.74793 0.41581 0.46510 0.36653 
0.47157 84.63413 0.31088 2.67523 0.37096 0.45064 0.29127 
0.41977 86.87727 0.57101 2.45927 0.41881 0.44734 0.39028 
0.41959 72.21532 0.29427 1.99619 0.39069 0.43345 0.34793 
0.51769 100.00000 0.60762 2.28269 0.45815 0.55642 0.35988 
0.31515 69.23272 0.17624 1.80032 0.29286 0.31062 0.27509 
0.44897 84.07422 0.39773 2.79296 0.41257 0.45042 0.37472]; 
%R(:,[3,4])=[]; You can extract any MCDMs.  
%But also do not forget make necessary changes in constraint functions 
n=size(R,1); %number of alternatives 
m=size(R,2); %number of criteria 
% Min-Max Normalization [0,1] 
for i=1:n 
for j=1:m 
    R1(i,j)= (R(i,j)-min(R(:,j)))/(max(R(:,j))-min(R(:,j))); 
end 
end 
RN=R1; 
% Standard Deviation 
for j =1:m   
    b=0; 
    for i=1:n 
       b=b+(RN(i,j)-mean(RN(:,j)))^2; 
    end 
sigma(j,1)=sqrt((1/(n))*b);  
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end 
% Correlation Coefficients 
for j=1:m 
for k =1:m 
    aw=0; 
    bw=0; 
    cw=0; 
    for i=1:n 
       aw=aw+(RN(i,j)-mean(RN(:,j)))*(RN(i,k)-mean(RN(:,k))); 
       bw=bw+(RN(i,j)-mean(RN(:,j)))^2; 
      cw=cw+(RN(i,k)-mean(RN(:,k)))^2; 
    end  
RNC(j,k) = aw/(sqrt(bw*cw)); 
end 
eksiRNC=(1-RNC).^(1/1); 
Cj(j)=sum(eksiRNC(j,:)); 
CRj(j)=sigma(j)*sum(eksiRNC(j,:)); 
end 
for j=1:m 
    cc(j)=Cj(j)/sum(Cj); %CC 
    CR(j)=CRj(j)/sum(CRj); %CRITIC 
end 
%Sorting rows for each MCDMs scores 
RN1=sortrows(RN,1,'descend'); 
RN2=sortrows(RN,2,'descend'); 
RN3=sortrows(RN,3,'descend'); 
RN4=sortrows(RN,4,'descend'); 
RN5=sortrows(RN,5,'descend');  
RN6=sortrows(RN,6,'descend'); 
RN7=sortrows(RN,7,'descend'); 
H=1000; % A sufficient large number 
N=0.0001; % A sufficient small number 
% Variable Definitions 
wprob = optimproblem; 
 % weights 
wler = optimvar('wler',m,'LowerBound',0,'UpperBound',1);  
% Variables Y 
y1 = optimvar('y1',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
y2 = optimvar('y2',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
y3 = optimvar('y3',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
y4 = optimvar('y4',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
y5 = optimvar('y5',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
y6 = optimvar('y6',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
y7 = optimvar('y7',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
 % Variables YY 
yy1 = optimvar('yy1',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
yy2 = optimvar('yy2',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
yy3 = optimvar('yy3',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
yy4 = optimvar('yy4',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
yy5 = optimvar('yy5',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
yy6 = optimvar('yy6',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
yy7 = optimvar('yy7',(n-1)*n/2,'Type','integer','LowerBound',0,'UpperBound',1); 
% Objective Variable 
zler= optimvar('zler','LowerBound',0); 
% Constraint Predefinitions  
A1 = optimconstr((n-1)*n/2); 
A2 = optimconstr((n-1)*n/2); 
A3 = optimconstr((n-1)*n/2); 
A4 = optimconstr((n-1)*n/2); 
A5 = optimconstr((n-1)*n/2); 
A6 = optimconstr((n-1)*n/2); 
A7 = optimconstr((n-1)*n/2); 
C1 = optimconstr((n-1)*n/2); 
C2 = optimconstr((n-1)*n/2); 
C3 = optimconstr((n-1)*n/2); 
C4 = optimconstr((n-1)*n/2); 
C5 = optimconstr((n-1)*n/2); 
C6 = optimconstr((n-1)*n/2); 
C7 = optimconstr((n-1)*n/2); 
B1 = optimconstr(1); 
B2 = optimconstr(1); 
B3 = optimconstr(1); 
B4 = optimconstr(1); 
B5 = optimconstr(1); 
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B6 = optimconstr(1); 
B7 = optimconstr(1); 
A11 = optimconstr(1); 
% Creating Constraint Functions 
iter=0; 
itera=0; 
for i=1:n 
    for j=1:n 
    if i<j 
        iter=iter+1; 
    A1(iter)=(RN1(i,:)*wler)>=(RN1(j,:)*wler)-H*y1(iter)+N; 
    A2(iter)=(RN2(i,:)*wler)>=(RN2(j,:)*wler)-H*y2(iter)+N; 
    A3(iter)=(RN3(i,:)*wler)>=(RN3(j,:)*wler)-H*y3(iter)+N; 
    A4(iter)=(RN4(i,:)*wler)>=(RN4(j,:)*wler)-H*y4(iter)+N; 
    A5(iter)=(RN5(i,:)*wler)>=(RN5(j,:)*wler)-H*y5(iter)+N; 
    A6(iter)=(RN6(i,:)*wler)>=(RN6(j,:)*wler)-H*y6(iter)+N; 
    A7(iter)=(RN7(i,:)*wler)>=(RN7(j,:)*wler)-H*y7(iter)+N; 
    elseif i>j 
        itera=itera+1; 
    C1(itera)=(RN1(i,:)*wler)<=(RN1(j,:)*wler)+H*yy1(itera)-N; 
    C2(itera)=(RN2(i,:)*wler)<=(RN2(j,:)*wler)+H*yy2(itera)-N; 
    C3(itera)=(RN3(i,:)*wler)<=(RN3(j,:)*wler)+H*yy3(itera)-N; 
    C4(itera)=(RN4(i,:)*wler)<=(RN4(j,:)*wler)+H*yy4(itera)-N; 
    C5(itera)=(RN5(i,:)*wler)<=(RN5(j,:)*wler)+H*yy5(itera)-N; 
    C6(itera)=(RN6(i,:)*wler)<=(RN6(j,:)*wler)+H*yy6(itera)-N; 
    C7(itera)=(RN7(i,:)*wler)<=(RN7(j,:)*wler)+H*yy7(itera)-N; 
    end 
    end 
end 
B1(1)=zler(1)>=sum(y1)+sum(yy1); 
B2(1)=zler(1)>=sum(y2)+sum(yy2); 
B3(1)=zler(1)>=sum(y3)+sum(yy3); 
B4(1)=zler(1)>=sum(y4)+sum(yy4); 
B5(1)=zler(1)>=sum(y5)+sum(yy5); 
B6(1)=zler(1)>=sum(y6)+sum(yy6); 
B7(1)=zler(1)>=sum(y7)+sum(yy7); 
A11(1)=sum(wler)==1; 
 % Constraint Definitions 
wprob.Constraints.A1 = A1; 
wprob.Constraints.A2 = A2; 
wprob.Constraints.A3 = A3; 
wprob.Constraints.A4 = A4; 
wprob.Constraints.A5 = A5; 
wprob.Constraints.A6 = A6; 
wprob.Constraints.A7 = A7; 
wprob.Constraints.C1 = C1; 
wprob.Constraints.C2 = C2; 
wprob.Constraints.C3 = C3; 
wprob.Constraints.C4 = C4; 
wprob.Constraints.C5 = C5; 
wprob.Constraints.C6 = C6; 
wprob.Constraints.C7 = C7; 
wprob.Constraints.B1 = B1; 
wprob.Constraints.B2 = B2; 
wprob.Constraints.B3 = B3; 
wprob.Constraints.B4 = B4; 
wprob.Constraints.B5 = B5; 
wprob.Constraints.B6 = B6; 
wprob.Constraints.B7 = B7; 
wprob.Constraints.A11 = A11; 
% Objective Function Definition 
wprob.Objective=zler; 
% Solving mixed integer linear programming model by branch and bound algorithm 
opts = optimoptions('intlinprog','MaxNodes',100000); 
[sol,fval]=solve(wprob,'options',opts); 



A mixed-integer linear programming model for aggregating multi–criteria decision making… 

283 

Appendix 2. Comparison between different weighting schemes for Case 1 

MCDM Weights CC 
 

CRITIC EM 

 Weights Weights Weights 

ARAS 0.14867 0.15838 0.20000 

COPRAS 0.18256 0.15295 0.20000 

EDAS 0.35370 0.32373 0.20000 

MOOSRA 0.13523 0.15328 0.20000 

WASPAS 0.17985 0.21166 0.20000 

 Final Scores Rank Final Scores Rank Final Scores Rank 

Australia 0.68758 5 0.69803 6 0.68720 8 

Austria 0.37239 19 0.39501 19 0.44873 18 

Belgium 0.46863 15 0.48468 16 0.50779 16 

Canada 0.69335 3 0.70389 5 0.69424 7 

Chile 0.11067 36 0.11846 36 0.13562 36 

Czech Republic 0.29736 26 0.31079 26 0.33688 24 

Denmark 0.54402 12 0.56606 11 0.60717 12 

Estonia 0.30404 25 0.31258 25 0.32400 26 

Finland 0.47071 14 0.48767 15 0.51259 15 

France 0.32083 22 0.34197 22 0.39101 20 

Germany 0.46444 16 0.48860 14 0.53885 14 

Greece 0.14928 33 0.15744 33 0.17622 33 

Hungary 0.14504 34 0.15211 34 0.16973 34 

Iceland 0.62404 8 0.65690 8 0.72598 5 

Ireland 0.43761 17 0.45302 17 0.47534 17 

Israel 0.31301 23 0.32216 24 0.33529 25 

Italy 0.23413 28 0.24724 28 0.27894 28 

Japan 0.40509 18 0.41780 18 0.44392 19 

Korea 0.32805 21 0.34607 21 0.38925 22 

Latvia 0.18713 31 0.19328 31 0.20683 31 

Luxembourg 0.54733 11 0.57200 10 0.61321 11 

Mexico 0.23208 30 0.23190 30 0.22354 30 

Netherlands 0.69301 4 0.71999 2 0.79547 2 

New Zealand 0.52850 13 0.54319 13 0.55662 13 

Norway 0.63783 7 0.66856 7 0.72578 6 

Poland 0.23318 29 0.24233 29 0.25887 29 

Portugal 0.15882 32 0.16754 32 0.18939 32 

Slovak Republic 0.26684 27 0.27419 27 0.28305 27 

Slovenia 0.35542 20 0.36851 20 0.39006 21 

Spain 0.30652 24 0.32373 23 0.36007 23 

Sweden 0.68554 6 0.70795 4 0.74223 3 

Switzerland 0.69697 2 0.71760 3 0.73651 4 

Turkey 0.10874 37 0.11488 37 0.12834 37 

United Kingdom 0.55583 9 0.58110 9 0.63934 10 

United States 0.83409 1 0.83637 1 0.79608 1 

Brazil 0.11379 35 0.12024 35 0.13868 35 

Russia 0.54998 10 0.55046 12 0.65332 9 

South Africa 0.00000 38 0.00000 38 0.00000 38 
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