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Original scientific paper 

Abstract: Value of information is a widely accepted methodology for evaluating 
the need to acquire new data in the oil and gas industry. In the conventional 
approach to estimating the value of information, the outcomes of a project 
assessment relate to the decision reached following Boolean logic. However, 
human thinking logic is more complex and include the ability to process 
uncertainty. In addition, in value of information assessment, it is often desirable 
to make decisions based on multiple economic criteria, which, independently 
evaluated, may suggest opposite decisions. Artificial intelligence has been used 
successfully in several areas of knowledge, increasing and enhancing analytical 
capabilities. This paper aims to enrich the value of information methodology by 
integrating fuzzy logic into the decision-making process; this integration makes 
it possible to develop a human thinking assessment and coherently combine 
several economic criteria. To the authors’ knowledge, this is the first use of a 
fuzzy inference system in the domain of value of information. The methodology 
is successfully applied to a case study of an oil and gas subsurface assessment 
where the results of the standard and fuzzy methodologies are compared, 
leading to a more robust and complete evaluation. 

Key words: Value of information, fuzzy logic, fuzzy inference system, oil and 
gas industry, uncertainty.  

1. Introduction  

1.1. Review of Value of information  

Value of information (VoI) is a prescriptive methodology embedded in the discipline 
of decision analysis that has the aim of assessing the value assocted with gathering 
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information. To that end, the methodology maximizes an objective function, which 
defines the value of a project. 

Grayson (1960), Raiffa and Schlaifer (1961) and Newendorp (1967) were the 
pioneers in the field of decision making for data acquisition in the oil and gas industry. 
Subsequently, more research and applications, such as those of Warren (1983), Lohrenz 
(1988), Demirmen (1996), Newendorp and Schuyler (2000) and Koninx (2000), among 
others, expanded the scope of the subject, adding more robustness to the methodology.  

Recently, more applications have emerged, like those of Clemen (1996), 
Coopersmith and Cunningham (2002), Suslick and Schiozer (2004), which enrich the 
process of assessing the VoI decision problem from a methodological perspective. 
Several papers, such as Walls (2005) and Vilela et al. (2017), have discussed the use of 
utility theory in VoI assessment in the oil and gas industry. Similarly, Santos and 
Schiozer (2017) discussed the impact of the risk attitude of the decision makers in VoI 
assessments. Kullawan et al. (2017) developed a discretized-programming approach, 
based on value of information, to optimize stochastic-dynamic the geosteering 
operations. Steineder et al. (2018) discussed the maximization of the VoI on a horizontal 
polymer pilot project. All these researchers used one or more crisp decision criteria to 
make decisions. 

In the oil and gas industry, the scope of a project varies from the complex 
exploitation of hydrocarbon fields to theoretical reservoir studies or laboratory tests. 
Project’s economic benefits are calculated based on the estimated figures of 
hydrocarbons’ production and price, operating cost, taxes, royalties, and investments. 
All these figures carry uncertainties because it is not possible to predict their future 
fluctuations accurately, in particular, future hydrocarbon production is uncertain due to 
a combination of: 

(a) the uncertainties associated with the reservoir parameters (permeability, 
thickness, top reservoir, well producibility, aquifer support, etc.); 

(b) the uncertainties associated with the methods used to estimate future 
production based on the reservoir parameters (dynamic reservoir models, decline 
curve analysis, etc.) 

On occasion, additional data can be acquired to change the uncertainty in the 
reservoir parameters; however, acquiring data involves a cost that could be greater than 
the benefits of the data. Changes in the reservoir parameters’ uncertainties translate 
into changes in the value of the project. In general, acquiring additional data makes 
sense in cases in which the outcome from the data acquisition can change the decisions 
being made. 

For a project with uncertain outcomes, the VoI is the difference between the 
expected value (EV) of the project with and without the newly acquired data (Clemen, 
1996): 

   with information without informationVOI EV EV   (1) 

where both values, 𝐸𝑉𝑤𝑖𝑡ℎ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  and 𝐸𝑉𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛    , assess the outcome 

of the project in these circumstances and refer to a future situation. 
In the ‘without-information’ case, for 𝜅 possible scenarios (which include endorsing 

the project with the current knowledge and uncertainties and the alternative of 
relinquishing it), the EV of the project corresponding to the 𝑗𝑡ℎ scenario is defined as: 
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where 𝑢𝑗𝑖  is the value of the state of nature 𝑠𝑖  for the scenario 𝑎𝑗  and 𝑝(𝑠𝑖) is the prior 

probability of the state of nature 𝑠𝑖 . The most often used decision criterion is to select 
the alternative that maximizes the EV: 

   * max  j

j

EV a EV a   (3) 

Equation (3) is the 𝐸𝑉𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  term shown in Equation (1). 

Similarly, in the ‘with-information’ alternative, for 𝜅 possible scenarios and for each 
possible data outcome, 𝑥𝑘 , the EV for the 𝑗𝑡ℎ  alternative is: 
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where 𝑢𝑗𝑖  is the value of the state of nature 𝑠𝑖  for the scenario 𝑎𝑗; 𝑝(𝑠𝑖|𝑥𝑘) is the 

posterior probability of the state 𝑠𝑖  given the outcome 𝑥𝑘; and the term 𝐸𝑉(𝑎𝑗|𝑥𝑘) is the 

expected project value for the 𝑗𝑡ℎ  alternative given the outcome 𝑥𝑘 . 
Similarly, as in the ‘without-information’ case, the optimum alternative in the ‘with-

information’ case for a given data outcome 𝑥𝑘  (EV conditioned on the outcome 𝑥𝑘) is the 
one that maximizes the EV: 

 *| max ( | )k j k

j

EV a x EV a x   (5) 

The unconditional maximum EV (which is the EV of the project considering the data 
acquisition outcomes) is the sum of the conditional EV weighted with the corresponding 
marginal probabilities: 

 * *
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   (6) 

The VoI is the difference between the estimates of EV in Equation (6) and Equation 
(3). 

So far, the discussion has focused on the classical methodology to assess the VoI in a 
decision problem in which the output values (hydrocarbon production, total benefits, 
etc.) are uncertain due to uncertainties in the input variables; these uncertainties have 
been included using probabilistic measures. In the next section, we will include the 
imprecision in the input variables by making use of fuzzy logic. 

 

1.2. Review Fuzzy Logic 

Fuzzy logic, pioneered by Zadeh (1965), is one of the most prolific areas of artificial 
intelligence, which has enriched the analysis of challenging and complex problems. 
Bellman and Zadeh (1970) introduced an important distinction between randomness 
and fuzziness: while randomness relates the uncertainty concerning membership or 
non-membership of an object or event to a non-fuzzy set (a crisp set), fuzziness deals 
with classes in which there may be degrees of membership (between the full and the 
no-membership relationship).  

These distinct sources of uncertainties are managed during different phases of the 
VoI assessment: 
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Phase 1) Assessing: assesses, using one or more decision criteria, whether the new 
data add value to the project or not.  

Phase 2) Categorization: relates the values obtained during the assessing phase to 
the options available for the decision problem.  

During the Phase 1, the uncertain nature of the input variables (e.g. reservoir 
parameters) and outcome values (e.g. financial benefits or economic parameter values) 
is captured using probabilistic analysis based on EV calculations.  

In the standard VoI approach, Phase 2 is implemented using crisp criteria to make 
decisions that do not correspond with human fuzzy thinking for making decisions. 
Following Bellman and Zadeh (1970), the uncertainty related to fuzziness is a major 
source of uncertainty in many decision processes.   

In classical set theory, the events (values) belong (or not) to sets in a crisp manner 
that is represented by the “characteristic function”, defined by Equation (7), which is a 
mapping from the input variables to the Boolean set  {0,1}:  

1  ,              
 

0,        

k
M

x M

otherwise






   (7) 

Thus, an event (e.g. X) belongs totally or not at all (1 or 0) to a set; these kinds of 
relationships follow Boolean logic.  

As a practical example, in subsurface reservoirs, the characteristic function allows 
establishing a Boolean relationship (1 or 0, i.e. totally belongs or totally excluded) 
between quantitative input variables (e.g. reservoir depth of 5000 ft) and descriptive 
terms (e.g. deep reservoir). Fuzzy logic extends the mapping between events and sets 
using the membership function (MF) to include all the values between 0 and 1, [0,1]; 
mathematically, the MF is a mapping from a given universe of discourse “X” to the 
continuous unit intervals that are the membership values. Equation (8) shows the 
mathematical expression for the MF:  

        /  0,1
M

x y y     (8) 

which shows that the values of the MF belong to the interval [0,1]. The membership 
values measure the degree of belonging of each event to a given set, representing the 
“degree of membership” of the mentioned event to that set. In this logic, an event (e.g. 
reservoir depth of 5000 ft) belongs partially (with a value between 0 and 1) to a set (e.g. 
deep reservoir). 

In the standard VoI, the results of the assessment are a set of crisp values that 
measure the project benefits or losses of the different alternatives under evaluation. 
Comparing those values with a set of threshold values, a decision is made regarding the 
project fate; however, a decision made in this manner is limited because it does not 
follow the human thinking for decision making which works with fuzzy categories like 
“the project is viable to endorse”, “the project is unviable to endorse” or “the project 
needs reframing”. 

1.3. Review Fuzzy Inference Systems 

In practice, fuzzy logic is implemented through a process called a “fuzzy inference 
system” (FIS). A FIS is a non-linear procedure that derives its output based on fuzzy 
reasoning and a set of IF-THEN rules. The FIS performs approximate reasoning like the 
human brain, albeit in a much more straightforward manner. 

The FIS is one of the most prolific applications of fuzzy logic. It has been used recently 
in very different areas and within various problem domains, such as: the assessment of 
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water quality in rivers (Ocampo, 2008), the improvement of image expansion quality 
(Sakalli et al., 1999), the differential diagnosis of non-toxic thyropathy (Guo & Ling, 
2008), the development of a fuzzy logic controller for a traffic junction (Pappis & 
Mamdani, 1997), maintenance scheduling of Smart Grid systems (Malakhov et al., 
2012), the design of fire monitoring sensors in coal mines using fuzzy logic (Muduli et 
al., 2017), the estimation of the impact of tax legislation reforms on the tax potential 
(Musayev et al., 2016), pipeline risk assessment (Jamshidi et al., 2013), depression 
diagnosis (Chattopadhyay, 2014), river discharge prediction assessments (Jayawardena 
et al., 2014), geological strength index calculation and slope stability assessments 
(Sonmez et al., 2004), the regulation of industrial reactors (Ghasem, 2006) and the use 
of a fuzzy logic approach for file management and organization (Gupta, 2011). In the 
domain of the oil and gas industry several applications of FIS have been reported such 
as the streamline based fuzzy logic workflow to redistribute water injection by 
accounting for operational constraints and number of supported producers in a pattern 
(Bukhamseen et al., 2017), the identification of horizontal well placement (Popa, 2013), 
for estimating strength of rock using FIS (Sari, 2016), for predicting the rate of 
penetration in shale formations (Ahmed et al., 2019). Fuzzy logic has been used in 
combination with others Artificial Intelligence techniques such as Adaptative Neuro-
Fuzzy Inference system (ANFIS) on practical applications, e.g. for predicting the inflow 
performance of vertical wells producing two-phase flow (Basfar et al., 2018) or to 
predict geomechanical failure parameters (Alloush et al., 2017); FIS has also been used 
in conjunction with Analytical Hierarchical processes to evaluate the water injection 
performance in heterogeneous reservoirs (Oluwajuwon & Olugbenga, 2018). 

From the point of view of applications, there are two kinds of FIS (Guillaume, 2001): 
1) Fuzzy expert systems or fuzzy controllers: fuzzy rules built on expert 

knowledge. This kind of FIS uses the ability of fuzzy logic to model natural language.  
2) Automatic learning from data: neural networks have become the most popular 

tool using a numerical performance index, typically based on the mean square error. 
These kinds of development are distinguished by their accuracy, and their main 
drawback is their “black-box” approach. 

For the current application, we will focus on the first kind of FIS. 
From a methodological perspective, the FIS can be understood as a general 

procedure that transforms a set of input variables into a set of outputs, following the 
workflow shown in Figure 1.  

 

Figure 1. Fuzzy inference system 



 Vilela et al./Decis. Mak. Appl. Manag. Eng. 2 (2) (2019) 1-18  

6 

As shown in Figure 1, FIS as a procedure entailing five blocks in which the inputs and 
outputs are in crisp form.  

For a Mandani FIS, shown in Figure 1, the outcome is a crisp number, independently 
of the number of crisp parameters used the asses the value of the project (e.g. NPV, DPI, 
IRR, etc.); this is FIS aggregation process; in general, higher FIS values means higher 
value of the project and vice versa. 

1.4. Objective of this research work 

The objective of this work is to investigate whether considering the fuzzy nature of 
human thinking can impact the decision’s assessment in VoI problems, especially in oil 
and gas projects; to reach this objective we integrate Fuzzy Inference System into the 
VoI assessment. 

2. Application 

2.1. Reservoir Description 

An exploration campaign conducted in Algeria discovered a medium-sized oil field 
located at 5200 ft. TVD SS. Four wells were drilled—the discovery well and three 
appraisal wells. The range of original oil in place (minimum and maximum figures) has 
been assessed; the fluid characteristics are known based on samples taken from the 
appraisal wells. The operator’s technical team has estimated, based on the available 
information, technical experience, and analogue fields, that the main source of 
subsurface uncertainty is the well productivity. The four wells drilled were tested for 
six hours; however, considerable uncertainty remains regarding well productivity due 
to reasons described in Table 1. 

Table 1. Causes of well productivity uncertainty 

Reason for uncertainty Comment 
Quality and reliability of the well test Possible calibration issues on well 

testing equipment 
Duration of the tests Well test period too short, no enough to 

reach stabilized flow 

Based on the information gathered during the exploration phase and from similar 
fields in the same basin, a material balance model is built to represent the forecast oil 
rate for the high, medium and low development scenarios, as shown in Figure 2.  
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  Figure 2. High, medium and low cases of the oil production rate 

The difference between the profiles is the well model used in each case. The full 
development of the field includes twelve vertical wells, four of which have already been 
drilled—at present these are “suspended”, to be used in the development phase of the 
project if a decision is taken to move the project forwards; otherwise, those wells should 
be abandoned entirely. 

The rig will be available in four months, and each well can be drilled in two months; 
the duration of the campaign to drill and complete the remaining eight wells included 
in the development plan is sixteen months. The first period of oil production was 
planned to have a fixed plateau rate followed by a period of oil rate decline (Figure 2). 

2.2. Decision Problem 

At this stage, the operator company must decide whether acquiring additional 
information would increase the project’s value.  

Alternative A: without-information. The decision on project development is made 
based on the current information using the expected value (EV) of the net present value 
(NPV) and the discounted profit to investment ratio (DPI), which is discussed further in 
Section 3.3. Prior probabilities are assigned according to the technical team members’ 
judgment on the subjective probabilities of realizing the different states of nature; the 
economic parameters are estimated based on the assumptions and assessments 
included in the high-, medium- and low-production scenarios. If this option is chosen, 
the first oil can be reached in two years’ time, including facilities and wells. 

Alternative B: with-information. Additional information is acquired regarding the 
uncertain parameters of the reservoir and, subsequently, based on the outcomes of the 
data obtained, a decision is made on the future development of the project. The 
operator’s technical team has estimated, based on the reservoir and fluid properties, 
that, to obtain meaningful well test results, the minimum well test duration per well 
should be four months. It was decided that two of the appraisal wells could be used to 
perform an extended well test (EWT) in each one. Following these assumptions, there 
will be a delay of one year (four months rig move + eight months EWT) compared with 
the without-information alternative. 

After the test results have been gathered, the technical team expects to have a more 
certain criterion to assign well deliverability, although uncertainty will still be present 
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because the data are not perfect. The cost associated with the well test in these two wells 
is US$20 million. It should be considered that, if the project is relinquished now, the 
US$90 million already spent on exploration and appraisal will be lost; additionally, the 
abandonment cost for the 4 drilled wells, US$4 million, and the facilities’ abandonment 
cost, US$10 million, should be added to the economic evaluation. If new data are 
acquired and afterwards the decision is made to abandon the project, the cost of the 
data acquisition must be added to the previously mentioned costs. 

The outcome of the assessment of the alternatives without-information and with-
information will result in one of the following options:  

1) the project is viable to endorse: it will proceed to the development phase, which 
necessitates a large investment; 

2) the project is not viable to endorse : it will be relinquished, carrying the losses 
associated with the exploration costs;  

3) the project needs additional analysis before deciding: it will be reframed. 

2.3. Economic Parameters for Decision Making 

Two economic parameters are used to make the decision: the net present value 
(NPV) and the discounted profit to investment ratio (DPI). The NPV is the yearly net 
cash flow discounted to the weighted average cost of capital (WACC—the average rate 
of return with which a company expects to compensate all its different investors, in 
which the weights are the fraction of each financing source in the company’s target 
capital structure), which in this case is 10.5%; the DPI is the result of dividing the 
discounted net cash flow by the discounted sum of the investment using the WACC. The 
values of NPV and DPI are shown in Section 2.4.2. 

2.4. Classical VoI Assessment 

As discussed in Section 1.1, the VoI is described by Equation (1); in this section, the 
classical approach to the VoI is discussed. 

2.4.1. Decision rules 

Based on the operator’s portfolio of projects, the criterion for making decisions on 
projects with a financial investment higher than US$500 million is: A) a project with 
NPV lower than US$100 million is unviable to endorse, which means that it is 
relinquished, B) a project with NPV higher than US$500 million is viable to endorse and, 
C) a project with NPV between US$100 million and US$500 million is reframed to find 
alternative development options.    

Regarding the DPI: A) a project with DPI higher than 0.5 is viable to endorse, B) a 
project with DPI lower than 0.0 is unviable to endorse and, C) a project with DPI 
between 0.0 and 0.5 should be reframed. 

2.4.2. VoI assessment for the without-information and with-information alternatives 

For the without-information alternative, Table 2 shows the prior probabilities, the 
calculated NPV, and DPI of each state of nature and the EV of the without-information 
alternative. 
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Table 2. Prior probabilities, NPV, DPI and expected values for the without-

information alternative 

State of nature Prior probabilities 
(%) 

NPV (US$ 
million) 

DPI 
(fract.) 

S1=High 25 2,139 2.27 
S2=Medium 40 414 0.42 

S3=Low 35 -631 -0.61 
EVNPV-A1 (US$ million) 479   
EVNPV-A2 (US$ million) -102   

EVNPV (US$ million) 479   
EVDPI-A1 (fraction) 0.52   
EVDPI-A2 (fraction) -1.00   

EVDPI (fraction) 0.52   

For the with information alternative, the technical team members estimated the 
reliability probabilities for the well test. It is acknowledged that, in a developed field, 
wells perform differently depending on their location and well test results are 
representative of a specific location; additionally, the duration of the test, although 
designed to capture the well performance, might not be long enough to assess the long 
range well operation. Table 3 shows the reliability probabilities of the well test 
estimated by the technical team members. 

Table 3. Reliability probability of the well test 

Reliability 
probability 

X1=High 
productivity 

X2=Medium 
productivity 

X3=Low 
productivity 

𝑝(𝑥𝑘|𝑠1) 0.9 0.1 0.0 
𝑝(𝑥𝑘|𝑠2) 0.1 0.8 0.1 
𝑝(𝑥𝑘|𝑠3) 0.0 0.1 0.9 

Reliability probabilities are used together with prior probabilities to obtain 
posterior probabilities, which are combined with the project values to generate the 
expected value of the net present value (EVNPV) and the EV of the discounted profit to 
investment ratio (EVDPI). The results of these assessments are shown in Table 4. 
 

Table 4. Posterior probabilities, residual probabilities and expected values for the with-

information alternative 

 X1=High 
productivity 

X2=Medium 
productivity 

X3=Low 
productivity 

𝑝(𝑠1|𝑥𝑘) 0.85 0.07 0.00 
𝑝(𝑠2|𝑥𝑘) 0.15 0.84 0.11 
𝑝(𝑠3|𝑥𝑘) 0.00 0.09 0.89 

𝑝(𝑥𝑘) 0.27 0.38 0.36 
𝐸𝑉𝑁𝑃𝑉(𝐴1|𝑥𝑘) 1,667 357 -497 
𝐸𝑉𝑁𝑃𝑉(𝐴1|𝑥𝑘) -114 -114 -114 
𝐸𝑉𝑁𝑃𝑉(𝐴1|𝑥𝑘) 1.667 357 -114 

𝐸𝑉𝑁𝑃𝑉(𝑈𝑆$ 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) 537   
𝐸𝑉𝐷𝑃𝐼(𝐴1|𝑥𝑘) 1.76 0.37 -0.48 
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 X1=High 
productivity 

X2=Medium 
productivity 

X3=Low 
productivity 

𝐸𝑉𝐷𝑃𝐼(𝐴1|𝑥𝑘) -1.00 -1.00 -1.00 
𝐸𝑉𝐷𝑃𝐼(𝐴1|𝑥𝑘) 1.76 0.37 -0.48 

𝐸𝑉𝐷𝑃𝐼( 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 0.44   

2.4.3. Results of the VoI using the classical approach 

Decision based on NPV: Based on the results obtained in Section 2.4.2, and using the 
decision rules (Section 2.4.1), it can be concluded that, the without information project 
should be reframed and the with information project should be endorsed. In this 
manner, acquiring data increase the project’s value; Summarizing, according to the NVP 
figures, the preferred alternative is to perform the well test (the with-information 
alternative) and, depending on the data outcomes, decide whether the project should be 
endorsed or not.   

Decision based on DPI: Using DPI as the decision criterion, the without-information 
alternative suggests endorsing the project, while the with-information alternative 
suggests reframing the project; summarizing, the alternative that maximizes the DPI is 
the without information one, which means that it is not recommended to perform the 
well test. 

At this stage, using two financial criteria, we have two contrasting recommendations 
about the future of the project. 

Making a decision using these crisp criteria does not include the sophisticated 
elements used by human thinking in which, the criteria may overlap. In addition, from 
the independent NPV and DPI results, it is not clear which is the optimum alternative 
unless some form of weighted valuation is made by combining the two economic 
parameters into one.  

2.5. FIS VoI Assessment 

Up to this stage, the criterion to decide the future of the project has been based on 
linguistic variables like “not endorse”, “endorse”, “viable”, “unviable”, “high”, “medium” 
and “low”. Indeed, a crisp relationship is established between the NPV and DPI and the 
linguistic variables: if the NPV is less than US$ 𝑿 million, the project is “unviable to 
endorse”, if the NPV is higher than US$ 𝒀 million, the project is “viable to endorse” and 
if the NVP is higher than 𝑿  but lower than 𝒀, the project should be reframed; similar 
relationships apply to the DPI criterion. 

However, it is worth recognizing that these criteria are fuzzy and not always aligned. 
The fuzziness occurs because, if the project NPV is US$ 𝑿 − 𝜺 million, where 𝜺  is a given 
amount, the crisp logic decision criterion catalogues the project as “unviable to 
endorse”, although 𝜺 could be “small” compared with 𝑿. In the same manner, if the 
project value is US$ 𝒀 + 𝜺, in a crisp decision, the project is catalogued as “viable to 
endorse”, although 𝜺 could be “small” compared with 𝜺.  

The no alignment between the criteria happens because very often the two indices, 
NPV and DPI, can produce a contradictory assessment of the same problem; for example, 
it could be the case that, using the NPV, the project is “viable to endorse” but, using the 
DPI, the project is “unviable to endorse” or vice versa, as has been witnessed in this case 
study.   

These cases suggest that fuzzy logic can be used advantageously to make VoI 
decisions by providing a more versatile tool to assess these decision problems; fuzzy 
logic is implemented through the FIS. 
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2.5.1. FIS building and application 

The FIS used in this work was developed using MATLAB. The input parameters in 
the FIS are the NPV and DPI; for each input parameter, six Membership Functions are 
built, representing the linguistic variables high NVP or NVP viable to endorse, low NVP 
or NVP unviable to endorse, mid NVP or NVP for reframing, high DPI or DPI viable to 
endorse, low DPI or DPI unviable to endorse and mid DPI or DPI for reframing; the 
corresponding MFs are: NVP HIGH, NVP MID, NVP LOW, DPI HIGH, DPI MID and DPI 
LOW. 

In MATLAB, a set of predefined MFs—triangular-shaped functions—are selected. 
These MFs are chosen because they capture the technical team members’ interpretation 
of the degree to which the NPV and DPI figures belong to the three categories into which 
the range of potential values are divided. Equation (9) shows the mathematical form of 
the triangular-shaped MF: 
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0                               
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   (9) 

The comparison between the output of the FIS for the with-information and that for 
the without-information alternative indicates which alternative has more value (the 
better decision).  

A Mamdani FIS with the centroid defuzzification method was used in this 
assessment. Figure 3 shows the design of the FIS using MATLAB. 

In Section 1.3 we show the Figure 2 which describe the FIS process; that figure is 
shown below but now numbering the steps, in order, we are following in this work 

 
 

 

Figure 3. FIS implementation 

Step1: the crisp data is generated, in this case, the project value, NPV and DPI 
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Step 2: data is fuzzified using the membership function located in the data base; 
those MF describe the degree of belonging of different input values which is defined 
according with the analyst belief. In this work, the MF used for NPV and DPI are shown 
in Figure 4 and Figure 5. 

 

Figure 4. Membership Function for NPV (input) 

 

Figure 5. Membership Function for DPI (input) 

Step 3: once input variables are fuzzified, the decision rules, which are part of the 
knowledge base, are applied to the membership functions in the Decision-making unit; 
in the Mandani type inference, the decision rules are a mapping from the input 
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membership function to the output membership functions, which are also part of the 
knowledge base; the rules aggregation process generate the fuzzy outcome.  

The output membership functions used in this work, describing the different 
decision options are show in Figure 6. 

 

Figure 6. Membership Function for the decision (output) 

 
The decision rules indicate the manner in which the two fuzzy financial parameters 

combine to result in a fuzzy decision. In this work we define the rules shown in Table 5 
to include the cases of interest. 

Table 5. Fuzzy rules 

RULES IF THEN 
Rule 1 (NPV is NPV_HIGH) & (DPI is DPI_HIGH) ENDORSE 
Rule 2 (NPV is NPV_HIGH) & (DPI is DPI_MID) ENDORSE 
Rule 3 (NPV is NPV_HIGH) & (DPI is DPI_LOW) REFRAMING 
Rule 4 (NPV is NPV_MID) & (DPI is DPI_LOW) REFRAMING 
Rule 5 (NPV is NPV_LOW) & (DPI is DPI_LOW) NO ENDORSE 
Rule 6 (NPV is NPV_LOW) & (DPI is DPI_HIGH) REFRAMING 
Rule 7 (NPV is NPV_MID) & (DPI is DPI_MID) ENDORSE 

Step 4: fuzzy output gets into the defuzzification interface to generate crisp output. 
Step 5: the value of the project is the crisp out; different crisp outputs are compared 

and, the one with the higher value is the optimum decision. 
The MFs of the NVP are chosen in accordance with past decisions taken by the 

decision maker, as discussed in Section 1.2. The rationale for the selection of these MFs 
is that, for very high or very low NPV values, the NPV belongs to only one set, the 
NPV_HIGH or the NPV_LOW, with a membership value of 1; for the intermediate NPV 
value, the NPV belongs partially to the three fuzzy sets. This fuzzy representation of the 
criteria for categorizing the project is based on past decisions made by the field operator 
company. The selection of the MFs needs to be updated once more decisions have been 
taken. 
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The MFs for the DPI are chosen following the same procedure used for the NPV. 
The authors define a set of seven rules that determine the logic of this decision; these 

rules (IF-THEN rules) are made by pairs of NPV and DPI figures and a consequential 
sentence (THEN). The rules do not pretend to be exhaustive but must be coherent. All 
the rules were built using the AND connector; although, in general, they can be defined 
equally well with OR. 

2.5.2. FIS applied to the without-information and with-information alternatives; VOI 
assessment 

Referred to Section 1.3, the outcome of FIS (a crisp number) is the value of the project 
resulting from aggregating the project’s values in terms of NPV and DPI; in addition, the 
FIS assessment includes the imprecision in the terms used to decide whether a project 
worth or not to endorse (Section 2.2). 

For evaluating the project using the FIS developed in Section 2.5.1, the crisp values 
for NPV and DPI estimated in Section 2.4.2 Table 2 (US$479 million and 0.52), are input 
in the FIS; the outcome of the assessment made by the FIS indicates that the value 
associated with the without-information alternative is 7.2. 

Similarly, in the with-information alternative, the NPV and DPI figures (US$537 
million and 0.44), contained in Table 3, are input in the FIS; as a result, the FIS 
assessment for the with-information alternative is 6.97. 

Due to the fact that, the value of the FIS for the without-information alternative is 
higher than the value of the FIS for the with-information case, the best alternative for 
the decision problem discussed is to endorse the project now and move it forward to 
the development phase without acquiring additional data.  

This result is explained by the fact that, although the data acquisition reduces the 
uncertainty regarding well deliverability, the cost of this data acquisition, in terms of 
the additional investment and oil production delay, is higher than the increased project 
value due to uncertainty reduction.   

3. Conclusions 

In this study, an FIS has been successfully implemented with the aim of assessing the 
VoI of an oil and gas project. In the discussed case study, the use of the FIS was able to 
introduce the fuzzy thinking of the decision maker into a subsurface VoI assessment 
while removing ambiguity coming from the use of more than one economic parameter 
for decision making.  

The proposed methodology for VoI assessment using FIS has improved the 
conventional approach because: 

1) instead of using a Boolean relationship between project valuation and project 
decision, the FIS uses a fuzzy human thinking approach to make decisions; 

2) the FIS uses a coherent method to integrate more than one criterion into the 
assessment, while, in the conventional VoI approach, when more than one criterion is 
used, they can reach contradictory outcomes which conduct to inconclusive assessment.     

In addition to the aspects discussed above, the FIS provides a tool for “self-learning” 
in which the quality of the VoI assessments can be improved through continuous 
updating of the decision-making unit, knowledge base, and fuzzification and 
defuzzification interfaces with actual decisions, progressively generating a more robust 
FIS and making the system act closer and closer to the way in which humans make 
decisions. The FIS brings the VoI methodology closer to the decision maker’s reasoning. 
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These are important advantages of the fuzzy compared with the classical VoI 
assessment.  

The fuzzy approach for VoI assessment requires a longer and more complex analysis 
of the data to be acquired and their outcomes. However, this additional effort worth due 
to the impact it has in the decision. 

As a summary, the use of the FIS makes it possible to have a system that can integrate 
the linguistic variables that are part of human language, reasoning, and understanding, 
but not necessarily part of the Boolean logic used in the standard VoI, into the 
prescriptive VoI assessment. 

VoI assessment using the FIS brings the decision-making process one step forward 
with respect to the classical VoI approach. To have tools and methods that replicate the 
human reasoning process for assessing VoI increases the confidence of the decision 
maker in those procedures, thereby increasing their use and making the tools more 
reliable. 

Decisions are made by human, and because human thinking is approximated more 
accurately by imprecise logic than by crisp logic, this research work successfully 
develop a methodology that integrate the human logic in the VoI assessment, in special 
to problems in the oil and gas industry; the integration of the imprecise thinking and 
terminology in the VoI is made through the use of FIS. 
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