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 Original scientific paper  
Abstract: Regression analysis is a statistical technique that is most commonly 
used for forecasting. Data sets are becoming very large due to continuous 
transactions in today's high-paced world. The data is difficult to manage and 
interpret. All the independent variables can’t be considered for the prediction 
because it costs high for maintenance of the data set. A novel algorithm for 
prediction has been implemented in this paper. Its emphasis is on the 
extraction of efficient independent variables from various variables of the data 
set. The selection of variables is based on Mean Square Errors (MSE) as well as 
on the coefficient of determination r2p, after that, the final prediction equation 
for the algorithm is framed based on of deviation of the actual mean. This is a 
statistical-based prediction algorithm that is used to evaluate the prediction 
based on four parameters: Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), and residuals. This 
algorithm has been implemented for a multivariate data set with low 
maintenance costs, preprocessing costs, lower root mean square error and 
residuals. For one dimensional, two-dimensional, frequent stream data, time 
series data and continuous data, the proposed prediction algorithm can also 
be used. The impact of this algorithm is to enhance the accuracy rate of 
forecasting and minimized the average error rate. 

Keywords: Coefficient of determination, Mean square error, Actual means, 
Multiple Linear Regression (MLR), Root Mean Square Error (RMSE), Mean 
Square Error (MSE). 

1. Introduction  

Regression techniques come under the category of supervised learning methods in 
which the existing training data sets can be used as guidance and to supervise the 
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complete learning and prediction process. The results of supervised learning 
approaches are dependent on algorithms and their complexity. In the regression 
techniques, new values are predicted for future analysis, which will be calculated 
based on historical or previous data sets. Linear Regression fits a straight line and it 
has two components b0 (intercept) and coefficient b1 and one predictor termed as the 
independent variable. In today’s scenarios, data sets are maintained with multiple 
attributes and it requires so much processing time and costs for prediction. The cost 
of preprocessing and maintenance is depending on the type of data sets but at the time 
of analysis, it is not necessary to consider all attributes. In this paper prediction 
algorithm is introduced based on actual means which improve the prediction rate and 
reduce the cost of maintenance of the data. The regression line includes the following 
properties: The line restricts the aggregate of squared differentiation between 
observed values (y dependent variable) and foreseen characteristics (the ŷ values 
enrolled from the regression line). The regression line experiences the mean of the ‘x’ 
and mean of the ‘y’. In the linear regression, the b0 is considered as the intercept of the 
regression equation and it is the incline of the regression line. The regression 
coefficient b1 is the average change in the dependent variable ‘y’ for a per-unit change 
in the independent variable ‘y’. 

1.1. Regression Coefficients  

Regression coefficients are estimates of the unknown population parameters and 
describe the relationship between a dependent and the independent variable. These 
are identified using methods, such as least square and matrix form. The Least square 
method is a modest linear forecasting approach, in which there is only a binary 
dependent variable and the other one is a neutral or independent variable. The 
equation for prediction using regression is: 

ŷ = b0  + x ∗ b1                                                                                                (1) 

 
Least-squares regression coefficients Daniya et al. (2020): 

𝑏1 =
∑[(𝑥(𝑖−𝑛)−  𝑥 ̅)((𝑦(𝑖−𝑛)−  �̅�))]

∑[((𝑥(𝑖−𝑛)−  �̅�2)
                                                                                   (2) 

𝑏0 = 𝑦 − 𝑥 ∗ 𝑏1                                                                                                                      (3) 

In equation (1) ŷ is the projected value of the reliant variable in linear regression two 
variables are used b0 and b1. The x(i---n) is the value of the independent variable for 
observation or new predicted values. For observed values y(i---n) is used, in which y 
is a dependent variable. x implies x score, and y is the mean y score. Equation (2) and 
(3) Daniya et al. (2020) represents the method of coefficients calculation. With 
Multiple linear regression, things are getting progressively jumbled and confused. In 
Multiple linear regression, ‘n’ free factors and ‘n + 1’ relapse coefficients and ordinary 
conditions are used. Finding the least-squares arrangement includes solving ‘n + 1’ 
condition with ‘n + 1’ questions. Equation (1) is eligible only for prediction in the one-
dimensional data set. If the prediction is done in a multivariate data set then there will 
be many independent variables but all are not required for prediction. So, the 
proposed algorithm will work on the selection of attributes that have the highest 
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weightage and more suitable for prediction, after selection of variable prediction 
equation will be formed based on the actual mean.  

1.2. Research Contribution  

 

     In this paper, an algorithm (MIPA) is explained that will be applicable for multivariate 

data sets. In the preprocessing part, irrelevant variables are reduced. Based on the selected 

variables actual mean has been calculated for identifying the coefficients. The selection of 

variables is based on the coefficient of determination (r2p) and mean square errors (MSE). 

This algorithm can be applied on various types of data set and reduced the errors like RMSE, 

MAE, and MAPE so that the accuracy rate of prediction can be improved. 

2. Related Work 

Regression techniques are important tools for prediction and analysis. It indicates 
the significant associations between the dependent variable and independent variable 
and the strength of the impact of multiple independent variables on a dependent 
variable. Chai et al. (2007) introduced two prediction algorithms that are applicable 
for one-dimensional and two-dimensional stream data: Frequent Item Prediction 
Method (FIPM) and Frequent Temporal Pattern Data Stream (FTPDS). Stream data 
converted into discrete data to get dependent and independent variables so that 
regression models can be applied. In these algorithms, there were some limitations 
that were recovered by Sequence Forecast Algorithm Plane Regression (SFAPR) 
introduced. This plane regression algorithm is based on linear regression for two-
dimensional data sets and reduces the error rate. Kavitha et al. (2016) discussed that, 
after the advancement of technologies in big data, data analytic has been developed 
wonderfully in today’s environment. The measurable strategies are utilized for the 
assessment of prescient models; the choice of accurate systems depends on the 
prerequisites of the information. The expectation and determining are done generally 
with time-series data sets. The majority of the applications of prediction are: climate 
determining, account and securities exchange join recorded information with the 
present gushing information for better exactness. In this paper, the author divided the 
time arrangement information using a regression model. Linear and multiple linear 
regression models are connected using the training data set for applying and also for 
preparation of informational assortment so that it can operate the right model for 
improvement. 

Ostertagova et al. (2016) presented the application of linear regression algorithm 
for processing of stress state data which were collected through drilling into a 
Harmonic Star Method (HSM) it was used for the collection of final data. The non-
commercial software based on the harmonic star method enables us to automate the 
process of measurement for the direct collection of experiment data. Such 
programming empowered us to gauge worries in a specific purpose of the analyzed 
surface and, simultaneously, separate these anxieties. For example, a camera was 
utilized to move the image of its chromatic edges legitimately to a computer. 

Mustapha and Fadzil (2015) presented a regression algorithm for vendors to 
forecast their yearly profit and it is based on their historical data. Using a forecasting 
approach vendor can prepare their evaluation exercise. In this article, the author used 
various regression techniques that analyze the vendor’s performance. The 
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performance report demonstrates the capability of data mining tasks in helping the 
Entrepreneur Development Unit (EDU) to predict vendors’ performance and to 
identify groups of on performance and under-performance. The Entrepreneur 
Development Unit was responsible for managing a big group of vendors that hold 
contracts with the company. Khan et al. (2016) discussed a non-linear regression by 
assuming that the data depend on a variety of folds. They divided the data space into 
multiple areas to construct a partitioned linear regression analysis as an estimation of 
the non-linearity among the experiential and the expected data, in place of setting up 
the range and limitations of the particular category, the Algorithm was exposed to 
immediately adapt to the differences in the data and it was very successful for high 
dimensional data as well as for small data sets. Saptawati et al. (2015) stated that the 
major activity in the mineral industry was most significant and costly in drilling. 
Although finding targets for drilling, geologists were using qualitative study, which 
resulted in a lot of failures in drilling. The authors worked on the analysis of methods, 
used for mining, and used to retrieve the facts in the outcome, the categorization of 
informed data, and mining of common item sets that can maintain the forecasting of 
drilling targets. The objective of the work is to reduce the threat of failure of drilling 
and hold the industry’s decision and decide on a new target in drilling. Ilayaraja and 
Meyyappan (2015) discussed the data mining techniques and applied them in many 
areas of medicine for different objectives. They partitioned a process to estimate the 
risk factors of the patients who were having symptoms of heart disease through the 
collected frequent data sets. Data sets for the heart patients were collected from the 
medical institutes or hospitals. Frequent data item sets are produced and depend on 
the selected symptoms and minimum support value. The frequent or common data 
sets which were extracted could help the doctors to make decisions in diagnostics and 
to predict the level of risk at an early stage so that immediate treatment could be 
provided. The projected approach could be applied to a data set of medical fields which 
helps in predicting the factors that affect risk with the level of risk and the patients 
based on selective factors item sets.  

Yang et al. (2019) used both a linear model and a nonlinear model to predict the 
future cash flow.  A hybrid model integrating linear and nonlinear was constructed to 
enhance the prediction effect and calculate the fund reserve ratio and improved the 
accuracy rate of prediction. In the literature survey, it has been discussed that the 
prediction algorithm discussed by Zhao and Li (2005) is used for two-dimensional 
stream data that was based on plane regression. Chai et al. (2007) discussed the 
prediction algorithm for one-dimensional and two-dimensional stream data. Later on, 
a non-linear regression algorithm has been proposed for two-dimensional and one-
dimensional stream data. After those algorithms for multi-dimensional data sets were 
discussed but it takes a lot of cost and time for the maintenance and preprocessing of 
data. In this paper, we minimize the cost of storing and preprocessing data sets and 
increase the accuracy rate of prediction and decrease the error rate via the proposed 
method. 

Antoniadis et al. (2021) reviewed the sector of sensitivity analysis and targeted the 
link between random forest and global sensitivity analysis (GSA). The concept is to use 
the random forest technique as an effective non-parametric method for building a 
meta-model that permits effective sensitivity analysis. In addition to its 
straightforward relevance to regression problems, the random forest methods 
additionally have the flexibility to implicitly handle correlation and high-dimensional 
data. Authors have used the rank-based random forest (RF) variable index to define 
sensitivity indexes. The author further reviewed the acceptable tool set for quantifying 
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the importance of variables and used these tools to cut back the spatial property of the 
model, thereby conducting sensitivity analysis studies that might not be performed. 

Yıldırım et al. (2021) used a preferred deep learning tool known as long short-run 
memory (LSTM), which has been shown to be terribly effective in several time-series 
prognostication problems. They projected the hybrid model using two data sets that 
mix two separate LSTMs to improve the prediction, and it was found that the model 
gave good results for real data. 

Mukherjee  et al. (2019) proposed a model to predict the images based on spatio 
temporal sequence forecasting problems. They trained the Convolutional Long Short 
Term Memory (Conv-LSTM) to learn the temporal relationships while preserving the 
spatial data and present in the Latent space. In this method first, the encoder and 
decoder network are trained to learn the spatial features of the data. After that, the 
Conv-LSTM is inserted between the encoder and the decoder. The weights of the 
encoder-decoder are freezed and then the Conv-LSTM is trained. In the experiment 
loss function is used to predict the next set of frames for a given set of frames in a video. 

Gauba et al. (2017) proposed a novel approach to predict the rating of video 
advertisements based on a multimodal framework combining physiological analysis 
of the user and global sentiment-rating available on the internet. In the framework, 
they record the EEG signals while the users were asked to watch the video 
advertisement simultaneously. To predict the rating of an advertisement using EEG 
data, they used the regression technique based on Random forest and then EEG-based 
rating is combined with NLP-based sentiment score to improve the overall 

prediction.  

3. Proposed Work  

In the literature survey, it has been identified that various algorithms have been 
introduced by authors for prediction using regression. Some existing algorithms and 
methods discussed in section 2 are used for the prediction process for forecasting. The 
proposed algorithm is based on the selection of efficient variables and prediction of 
new dependent variables with low residuals, Root Mean Square Errors, Mean Absolute 
Error, and Mean Absolute Percentage Error.  

3.1 Problem Formulation 

  Forecasting is the estimation of a dependent variable ‘y’, based on the 
independent variable ‘x’. Some algorithms are implemented for one-dimensional and 
two-dimensional data sets. These data sets can be stream, continuous or discrete data. 
Most of the data sets have multiple independent variables and in the prediction 
equation, all variables are used for prediction, which may cause the extra cost of 
maintenance of the data set, more execution time, and low accuracy rate of prediction. 
The proposed algorithm focused on the selection of relevant variable (independent) 
from multivariate data sets and improving accuracy rates because multivariate data 
set consist of various independent variable but all are not required for prediction 
model and it is very difficult to maintain huge data set with multiple variables due to 
high cost of maintenance and pre-processing of data set. In the literature survey, it has 
also been found that existing algorithms are restricted to the number of independent 
variables for one- and two-dimensional stream data.  The objective of the proposed 
algorithm is to reduce the errors with more accuracy in prediction. The proposed 

https://ieeexplore.ieee.org/author/37086234303
https://www.sciencedirect.com/topics/engineering/regression-technique
https://www.sciencedirect.com/topics/computer-science/random-decision-forest
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algorithm is used for data sets that have numerous independent variables and reduce 
the cost of maintenance by selecting the appropriate variables for prediction then the 
prediction equation is framed based on assumed means. The selection of variables is 
based on the coefficient of determination and the prediction equation is based on 
actual means.   

This algorithm is applied on “Energy Data Prediction”, from the UCI repository, 
(https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction). In the 
proposed prediction algorithm, there is one dependent variable and 'n’ independent 
variables. The dependent variable is Humidity (Average of all areas of the building) 
and the independent variables are Average temperature (average of all areas of the 
building), Pressure, RH_out, Wind speed, visibility, etc. 

3.2 Multivariate Item Prediction Algorithm (MIPA) 

In the algorithm coefficients are calculated for independent variables using the 
actual mean of dependent and independent variables, in Step 4 formula for coefficient 
calculations has been explained.  

 
 Algorithm Name: Multivariate Item Prediction Algorithm (MIPA) 
Input: Multivariate data set 
Output: Low Residuals, RMSE, MAE, MAPE during the prediction 

Step 1: Take 2n regression equations ‘n’ is the number of independent 
variables. 

Step 2: Categorize all the equations into Models, Model 1= no independent 
variable, Model 2 = 1 independent variable, Model 3 = 2 independent 
variables and so on. 

Step 3: Using ANOVA compare r2p and MSE for each regression model in each 
Model. 

              If (r2p ↑ MSE ↓) /*select the regression model if this condition is  true 
highest value of  r2p and lowest value of  MSE */ 

              For i=0 to 2n                 /*select the appropriate regression model which 
has the highest r2p and lowest MSE out of 2n regression model*/ 

Step 4: Select the regression model from each Model which have highest r2p   
and lowest MSE. 

Step 5: Compare all selected regression equation from each Model consider 
the regression model with lowest MSE and highest r2p      /*selection of 
independent variables.*/ 

Step 6: Find the deviation of actual mean for each selected independent 
variable. 

𝑑𝑥(𝑖 = 1. . . . 𝑛) = 𝑥 – x̅    

𝑑𝑦(𝑖 = 1. . . . 𝑛) = 𝑦 −   �̅�  

                     𝑏𝑦𝑥(𝑖=1 𝑡𝑜 𝑛) =
𝑛∑[(𝑑𝑥(𝑖=1 𝑡𝑜 𝑛)∗𝑑𝑦 )−∑(𝑑𝑦(𝑖=1 𝑡𝑜 𝑛)∗𝑑𝑦)]

𝑛∑(𝑑𝑥(𝑖=1 𝑡𝑜 𝑛))2−(∑(𝑑𝑥(𝑖=1 𝑡𝑜 𝑛)))2
 

Step 7: Put value of   byx(i=1 to n)in the prediction model 
Ŷ =  𝑏𝑦𝑥1 (𝑥1 – x̅1) + 𝑏𝑦𝑥2 (𝑥2 – x̅2) + 𝑏𝑦𝑥3 (𝑥3 – x̅3) + ⋯ + 𝑏𝑦𝑥𝑛 (𝑥 – x̅) + y̅ 

Step 8: Analysis of prediction algorithm (RMSE and residuals) 
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𝑅𝑀𝑆𝐸 = [∑((Y − Ŷ)

𝑛

𝑘=0

∗ (Y − Ŷ))/N] 

Residuals=Actual values- Predicted values( y- ŷ) 

 
  Algorithm MIPA has been discussed in detail as follows: 

 

Step1: Find the 2n regression models in which ’n’ is the number of independent 
variables. e.g. in the case of 4 independent variables total possible equations will be 
16. In Table 1, Model 1 has not considered any independent variable, for Model 2 one 
independent variable is considered, for Model 3 two independent variables are 
considered, and so on. In Table 1 all possible regression models are shown. 

Table 1.  The 2n Possible Regression equations model. 

Mode1 Model 2 Model 3 Model 4 Model 5 

y=b0+e y=b0+b1X1 y= b0+b1X1+b2X2 y=b0+b1X1+b2X2+

b3X3 

y= 

b0+b1X1+b2X2

+b3X3+ b4X4 

 y=b0+b2X2 y= b0+b1X1+b3X3 y=b0+b1X1+b2X2+

b4X4 

 

 y=b0+b3X3 y= b0+b1X1+b4X4 y=b0+b1X1+b3X3+

b4X4 

 

 y=b0+b4X4 y= b0+b2X2+b3X3 y=b0+b2X2+b3X3+

b4x4 

 

  y=b0+b2x2+b4X4   

  y= b0+b3X3+b4X4   

 
Step2: Find the Analysis of Variance (ANOVA table) of each regression model (2n). 
Select the regression model from each Model which has the highest r2p (coefficient of 
determination) and lowest MSE. Table 2 includes the values of r2p and MSE from each 
model of Table 1. 

Table 2.  MSE and r2p (Coefficient of Determination) 

Model 2 Model 3 Model 4 Model 5 

r2p (%)  MSE 
square 

r2p (%) MSE 
square 

r2p (%) MSE 
square 

r2p (%) MSE 
square 

85.35 0.24 95.74 0.07 95.87 0.07 95.91 0.08 

12.08 1.47 90.91 0.16 95.83 0.07   

88.11 0.19 93.96 0.11 93.96 0.11   

3.7 1.61 88.14 0.21 91.33 0.16   

  76.92 0.4     

  88.35 0.2     
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Step3:  Model 2 consists of 1 independent variable, Model 3 consists of 2 independent 
variables, and Model 3 consists of 4 independent variables, and so on. The condition 
must be r2p ↑ MSE ↓ means that if the value of r2p is increasing then the value of MSE 
will decrease. So that Model 4 is selected in Table 2, which has values 95.87 and 0.07 
belong to the first regression model of Model 4 in Table-1. It includes X1, X2, and X3 
independent variables; it means that these three variables are most relevant for the 
prediction algorithm. 
 

  

Figure 1(a) Highest coefficient of determination r2p; Figure 1(b) Lowest Mean 
Square Error (MSE) 

 
In Figure 1(a) values of coefficient of determination are plotted which are selected as 
the highest value from each model and in Figure 1(b) plotted the values of lowest MSE 
of Table 2. In Figure 1(a) value 95.91 is highest but MSE is high corresponding to it so 
that 95.87 will be selected which is corresponding to the lowest MSE i.e. 0.07. 
 
Step 4: Derivation of proposed regression algorithm on the basis of deviation from 
actual mean is as follows: 
Find the value of dx and dy on the basis of actual mean: 

𝑑𝑥(𝑖 = 1. . . . 𝑛) = 𝑥 – x̅                                                                                                                (4)

                                                                                                
𝑑𝑦(𝑖 = 1. . . . 𝑛) = 𝑦 −   �̅�                                                                                                             (5) 

𝑏𝑦𝑥(𝑖=1 𝑡𝑜 𝑛) =
𝑛∑[(𝑑𝑥(𝑖=1 𝑡𝑜 𝑛)∗𝑑𝑦 )−∑(𝑑𝑦(𝑖=1 𝑡𝑜 𝑛)∗𝑑𝑦)]

𝑛∑(𝑑𝑥(𝑖=1 𝑡𝑜 𝑛))2−(∑(𝑑𝑥(𝑖=1 𝑡𝑜 𝑛)))2                             (6) 

Ŷ =  𝑏𝑦𝑥1 (𝑥1 – x̅1) + 𝑏𝑦𝑥2 (𝑥2 – x̅2) + 𝑏𝑦𝑥3 (𝑥3 – x̅3) + ⋯ + 𝑏𝑦𝑥𝑛 (𝑥 – x̅) + y̅        (7)                                                                                                                                                                                                                                                                                                

                                                                                                                                                                             
Step 5: Find the RMSE. Using equation (8) RMSE is calculated. If RMSE is low during 
the prediction means that accuracy of prediction is high. 
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𝑅𝑀𝑆𝐸 = [∑ ((Y − Ŷ)
𝑛

𝑘=0
∗ (Y − Ŷ))N]                                                                                 (8) 

 
Step6:  Analysis of   residual error (Actual y- ŷ) 
 
       In the proposed algorithm Step 1, 2 and 3 are preprocessing steps, used for the 
selection of efficient variables which are required for the prediction equation (7). In 
step 4 equations (6) represent the coefficients calculations and prediction equation 
(7) is drafted for forecasting of new values. As we have mentioned that this algorithm 
is also valid for different types of data sets, the above-explained approach was 
extended to a multivariate data set. Here, this method is also applied to one-
dimensional data set selected from the UCI repository 
https://archive.ics.uci.edu/ml/datasets/Parking +Birmingham), data set contain four 
attributes parking id (System Code Number), the capacity of parking (Capacity), 
parking rates, and updated details. In this data set parking occupancy is an 
independent variable and parking rates are the dependent variable. The coefficient for 
independent variables is calculated using equations (4), (5), and (6) and then places 
the values of byx for each independent variable in equation (7). This proposed 
prediction equation can also be applicable to the stream data set. For the prediction of 
stream data first, the stream data need to convert into a form of discrete data sets.  

4. Implementation and Result 

The algorithm is implemented in “R 3.3.2” version. One-dimensional and 
multivariate data sets are collected from an online repository. 

 
4.1 Implementation 

One dependent variable (Humidity) and 4 independent variables (Wind speed, 
Average, temperature, t out, press m hg) are included in multivariate data collection. 
In one dimensional data set four attributes parking id (System Code Number), the 
capacity of parking (Capacity), parking rates are available. The capacity of parking is 
an independent variable and parking rate is a dependent variable. For multivariate 
datasets, all possible equations for independent variables are considered in this 
process. For the prediction system, appropriate independent variables can be 
identified using preprocessing. In this process, 2n equations are considered as n is the 
number of independent variables, and these equations are shown in Table-1. In the 
multivariate data sets, it is not needed to consider all variables in the prediction 
algorithm. Coefficient of determination and MSE are used for finding relevant 
variables. All independent variables have no equal significance or priority so few 
variables can be eliminated. For one-dimensional data set, there is no need to process 
the data set, only the regression equation will be applied on attributes x and y. 

 4.2 Results 

In this paper, a MIPA algorithm is compared with MLR because it deals with 
multiple independent variables. RMSE values for MLR and MIPA algorithms are 
plotted in Figure 4. As compared with MLR, it has been evaluated that RMSE's are low 
for the MIPA algorithm. In Table 3 residuals are analyzed or compared which are 
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generated through MLR and MIPA algorithms. These values are corresponding to 
humidity. By analyzing Table 3 it can be easily observed that the improved algorithm 
gives low error rates during the prediction of humidity based on temperature, wind 
speed, etc. independent variables.  

Table 3. Residuals using MLR and MIPA 

 Independent variables   

Dependent 
variable 
Humidity 

Average(te
mp)=X1 

Press_mm_h
g=X2 

RH_out=X3 Windspeed=
X4 

Residuals 

MIPA 

Residuals 

MLR 

50.91 17.1674074 733.5 92 7 0.42107573 0.99597124 

50.83 17.1496296 733.6 92 6.66666666 0.00879531 1.17010151 

50.63 17.1037037 733.7 92 6.33333333 0.55354625 1.48437316 

50.57 17.0670370 733.8 92 6 0.95598559 1.64734098 

50.73 17.0707407 733.9 92 5.66666666 1.10794818 1.56379616 

50.79 17.0485185 734 92 5.33333333 1.37981300 1.59155517 

50.79 17.0407407 734.1 92 5 1.70193451 1.6768479 

50.8 17.0185185 734.166666 91.8333333 5.16666666 1.63454412 1.67028356 

50.9 17.0185185 734.233333 91.6666666 5.33333333 1.46779281 1.56250345 

51.05 17.0396296 734.3 91.5 5.5 1.21976676 1.38058893 

51.23 17.0667592 734.366666 91.3333333 5.66666666 0.93158178 1.15983686 

51.47 17.1103703 734.433333 91.1666666 5.83333333 0.58419480 0.87670657 

51.85 17.1851851 734.5 91 6 0.04521525 0.41176678 

52.68 17.2149074 734.616666 90.5 6 0.65000026 0.44031096 

53.52 17.2522222 734.733333 90 6 1.37553362 1.32006378 

53.5 17.2866666 734.85 89.5 6 1.24106697 1.33981661 

53.38 17.3107407 734.966666 89 6 0.98628249 1.24189434 

53.38 17.3133333 735.083333 88.5 6 0.83118018 1.24629699 

52.97 17.3196296 735.2 88 6 0.27623678 0.84953717 

54.37 17.3748148 735.233333 87.8333333 6 1.67429658 2.2952218 

55.07 17.465 735.266666 87.6666666 6 2.42625301 3.0850061 

54.9 17.4588888 735.3 87.5 6 2.19335931 2.90766546 

4.3 Analysis with Existing algorithms 

MIPA algorithm can be used for various types of data sets such as stream data sets 
(one dimensional, two-dimensional), time-series data set, and multivariate data sets. 
It identifies the relevant variables from the data set which are the best suitable for the 
prediction. In FIPM, FTPDS preprocessing of data is done with the use of sliding 
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window protocol and it is applicable only for one-dimensional and two-dimensional 
stream data sets. MLR is used for data sets where multiple independent variables are 
used for prediction, but it consumes lots of time and cost. Here in Table 4, MIPA is 
analyzed with MLR, FIPM, and FTPDS, based on residuals parameters.  Residuals are 
the errors or difference values of the dependent variable and the observed values. In 
Table 3 independent variables are mentioned, humidity is predicted based on the 
selected independent variables. 

 
Table 4.  Analysis of residuals of existing algorithm with proposed algorithm. 

Humidity MIPA MLR FIPM FTPDS 

50.91 0.421075736 0.9959712 1.3323720 0.58600286 

50.83 0.008795312 1.1701015 1.4105585 0.786391724 

50.63 0.553546256 1.4843731 1.6086900 1.114464984 

50.57 0.955985598 1.6473409 1.6668764 1.297415314 

50.73 1.107948187 1.5637961 1.5050629 1.252681248 

50.79 1.379813003 1.5915551 1.4431944 1.313070113 

50.79 1.70193451 1.6768479 1.4413808 1.430897512 

50.8 1.634544126 1.6702835 1.4323151 1.420897512 

 

Figure 2  Plotting of residuals during prediction  

In Figure 2 residuals of existing algorithms and MIPA algorithm are plotted compared 
to MIPA and have low residuals in comparison of MLR, FIPM, and FTPDS. 
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Figure 3.  Analysis of average of Residuals  

In Figure 3 we have compared the average residuals of algorithms MIPA has low 
average residual values 0.71525 and average residual values of MLR, FIPM, and FTPDS 
are 0.7664, 0.9615, and 0.8799 respectively. 

5. Analysis of Results 

 The analysis of MIPA has been done on the basis of parameters such as Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE) and residuals. 

5.1 Analysis of RMSE 

RMSE is the standard deviation of residuals that are the prediction errors. It is a 
measure of how these residuals are spaced out. Residuals are a measure of how far 
data points are out from the regression line. By analysis of MLR and MIPA, it has been 
identified that MIPA has low RMSE values in comparison to MLR. In Figure 4, MIPA’s 
RMSE values are 0.647776757, 0.582948804, 0.516691943, and 0.496299287 are 
respectively plotted which are low in comparison to RMSE values calculated by MLR. 
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Figure 4.  Analysis of Root Mean Square Errors (RMSE)  

5.2 Analysis of Residuals 

In Figure 5, the red line represents the plotting of residuals 0.99597124, 
1.17010151, 1.48437316, respectively which are generated by the existing algorithm 
MLR, the blue line represents the plotting of residuals 0.421075736, 0.008795312, 
0.553546256, respectively which are generated by MIPA. These values are 
corresponding to humidity. By analyzing Figure 5 it can be easily observed that the 
improved algorithm gives low error rates during the prediction of humidity based on 
temperature, wind speed, etc. independent variables. 

 

Figure 5.  Analysis of residuals during prediction  
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5.3 Analysis of Mean Absolute Error (MAE) 

 MAE takes the absolute difference between the values that are actual and 
predicted and finds the average. MAE is crucial to identify the absolute value because 
it doesn't allow for any form of error value cancellation. For example, the average 
value of 0 if the average of 1 and -1 is considered because 1 and -1 will cancel out each 
other. In Figure 6 MAE for algorithms MLR and MIPA are compared, MIPA gives a 
better result. MIPA Prediction algorithm gives a better selection of important 
predictors or independent variables out of many independent variables in data sets. It 
reduces the cost of maintenance and collection of the data sets. 

 

Figure 6.  Analysis of Mean Absolute Error (MAE)  

5.4 Analysis of Mean Absolute Percentage Error (MAPE) 

       MAPE is often referred to as the mean absolute percentage deviation (MAPD), a 
measure of the prediction accuracy of a statistical forecasting system.  In Figure 7 
MAPE for algorithms MLR and MIPA are compared, it gives a better result. 

 

Figure 7. Analysis of Mean Absolute Percentage Error (MAPE)  
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     5.5 Low cost in execution and maintenance of data sets 

In the MIPA algorithm, only relevant variables are considered for data analysis and 
prediction process. The irrelevant variables get eliminate after the process of selection 
of variables or preprocessing, by eliminating irrelevant variables maintenance costs 
of data get reduce and it takes less time in the execution. Initially, in the data set four 
independent variables X1, X2, X3 and X4 are used, after the preprocessing of data set X1, 
X2, X3 selected as relevant independent variables. The irrelevant variable X4 gets 
eliminated. For further prediction process, we do not need to maintain the X4 as the 
independent variable, so it takes less time in the prediction process.  

 6.  Conclusion and Future Scope 

In this paper, a MIPA algorithm is based on actual mean values. The analysis of the 
algorithms is done based on the parameters such as RMSE and residuals, MAE, MAPE. 
The accuracy of the prediction algorithm is measured with low RMSE and residuals. In 
this algorithm deviation for actual means is estimated for each relevant independent 
variable, using this estimated value, the prediction algorithm is framed. Prediction 
algorithm for ‘n’ independent variables is framed and it predicts the “Humidity” based 
on the rest of the independent variables. In Figure 3 it can be easily analyzed that 
average residuals of MIPA are 5.11% less than MLR, 24.62% are less than FIPM and 
16.46 % are less than FTPDS. In section 5 it has been observed that MIPA is better than 
MLR. 

MIPA is the regression based algorithm that can also be used in medical areas for 
the prediction of diseases based on the symptoms of patients. Through analysis, it can 
be found that values of error rate are more reduced in the implemented regression 
algorithm rather than MLR. It reduces the cost of data maintenance and reduces the 
execution time. It can help in the forecasting of diseases, revenues of the company, 
production, and weather, and in other areas. 
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