Decision Making: Applications in Management and Engineering Vol. 4, Issue 1, 2021, pp. 85-103.

ISSN: 2560-6018 eISSN: 2620-0104

cross ef DOI: https://doi.org/10.31181/dmame2104085g

BIBLIOMETRIC ANALYSIS OF DEMATEL METHOD

Gözde Koca 1* and Seda Yıldırım 1

¹ Bilecik Seyh Edebali University, Department of Business Administration, Bilecik, Turkey

Received: 11 January 2021; Accepted: 3 February 2021;

Available online: 11 February 2021.

Original scientific paper

Abstract: In this study, a bibliometric analysis of the studies evaluated with DEMATEL (Decision Making Experiment and Evaluation Laboratory Method), one of the MCDM methods in Web of Science, was performed according to various performance indicators. The total number of DEMATEL publications examined is 1963 documents. When DEMATEL studies are evaluated in terms of countries, it is seen that China is the leader (553 documents; 28.17%). The most cooperative country is China. The country with the highest h-index is Taiwan (62). Journal of Cleaner Production is the most efficient journal (96; 4.88%). National Chiao Tung University (102, 5.19%) is ranked as the most efficient institution in DEMATEL research. Among the most used words are "Model", "DEMATEL", "Selection", "Management", "fuzzy DEMATEL".

Key words: Multi-Criteria Decision Making, Bibliometric, Web of Science, DEMATEL.

1. Introduction

Decision making can be defined as individuals and organizations choosing the best alternative under current conditions to achieve their goals. Decision making is an interdisciplinary field of research that attracts researchers and academics in almost every field. While intelligence, intuition and experience are important in decision making, it is equally important to use scientific methods.

MCDM methods (Multi-criteria decision-making methods) have been developed for the correct evaluation of multiple different criteria in solving complex problems. MCDM methods refer to the process of evaluating many criteria in a problem at the same time and assigning numerical evaluation to alternatives. MCDM allows decision-makers to make evaluations and make decisions in multiple dimensions by bringing together multiple disciplines such as mathematics, management, social sciences, and economics (Yıldırım & Önder, 2018). Each method has solution logic in itself (Çelikbilek & Özdemir, 2018). The MCDM process consists of two stages. In the first of these stages, all the objectives and provisions given according to the alternatives are

E-mail addresses: gozde.koca@bilecik.edu.tr (G. Koca), sdayldrmm@gmail.com (S. Yıldırım)

^{*} Corresponding author.

brought together, in the second stage; the most appropriate decision is made by evaluating the alternatives among the combined provisions. (Aytac & Gürsakal, 2015).

DEMATEL (The Decision Making Trial and Evaluation Laboratory), one of the MCDM methods, was developed in 1972 by the Battelle Memorial Institute of Geneva Research Center. The method is used in solving complex problem groups (Shgeh et al., 2010). The advantage of the DEMATEL method is that it separates the distributor and receiver groups in the problem and determines the relationships between the criteria based on Graph Theory (Impact-Directional Diagram) (Lin & Tzeng, 2009). The DEMATEL method, which assumes that all criteria determined for the decision-making problem are in interaction with each other, evaluates the effect levels among the criteria. In the method, factors that are higher than the other criteria are called distributive, and criteria whose exposure level is higher than the effect on the system are called buyers (Karaoğlan, 2016).

The increasing interest in MCDM methods has caused the publication of DEMATEL method to increase continuously. In this study, bibliometric analysis was performed on the studies related to the method to interpret and summarize the information confusion caused by the continuous increase of the publications made with the DEMATEL method. The reason why the DEMATEL method is examined in this study is that it covers a very different literature that contributes from different disciplines. Apart from this, it is to show how the method is examined in different disciplines by revealing causality and by revealing the importance of its differentiation from other MCDM methods. Bibliometric analysis is an analysis method that examines scientific studies with the help of numerical analysis and statistics and shows the activities and current status of scientific studies in the field (Çetinkaya Bozkurt & Çetin, 2016). Accordingly, bibliometric analysis reveals the productivity of countries, institutions and authors, citation analysis of countries, institutions and authors, which type of documents are used more, and how much the documents are distributed, and cooperation maps.

For the research, the 1963 document searched from the Web of Science database with the subject "DEMATEL" on 12.12.2020 was found in the bibliometrix library of the R Studio program and analyzed with biblioshiny. All studies on the DEMATEL method between 1999 and 2020 in the Web of Science database were included in the analysis. Along with the analysis, annual studies and total citation rates, the productivity of countries, the number of citations and the cooperation map between countries, the most used journals and the number of citations in the studies conducted on the subject, the most efficient universities, the fields of science in which the DEMATEL method is used and In which journals the studies were published the most, the most productive authors and citation rates, the most cited articles and the most used words in the articles written on the subject and the conceptual structure of the field were shown.

2. Literature Overview

The study conducted by Cole and Eales (1917) in the literature is known as the first bibliometric study. In this study; Analyzes of studies published in the field of anatomy between 1550-1860 were made. After this study, an analysis was made in the field of historical science by E.Wyndham Hulme, a librarian at the British Patent Office in 1923. Later, in 1927, P.L.K. Gross and E.M. A citation analysis study was conducted by Gross to evaluate the bibliography of the articles published in the Journal of the American Chemical Society. The first two studies were based on bibliographic

features, not citations, and in Gross & Gross's study, citation analysis was performed (Lawani, 1981; Hotamışlı & Erem, 2014). On the subject of MCDM, there are many studies conducted in the related literature. Popular tools such as VOSviewer, R-Bibliometric Package were used in some of these studies. Bibliometric studies made using popular tools in the field of MCDM are summarized in Table 1 below.

Table 1. Bibliometric Studies Using Popular Tools in the MCDM Field

Authors	Keyword Used	Time Span	Number of Publications Reviewed
Bragge et al. (2010)	Multi objective, Multi criteria	1970-2007	15198
Guerrero-Baena et al. (2014)	MCDM	1980-2012	347
Zavadskas et al. (2014)	MCDM review papers	1990-2013	71
Tramarico et al. (2015)	Analytic Hierarchy Process and Supply Chain	1990-2014	116
Blanco-Mesa et al. (2017)	Fuzzy decision-making	1970-2014	8135
Liu and Liao (2017)	Fuzzy Decision	1970-2015	13901
Zyoud and Funchs-Hanusch (2017)	AHP ve TOPSIS	1976-2016	10188 AHP 2412 TOPSIS
Peng and Dai (2018)	Neutrosophic set	1998-2017	137
Yu et al. (2018)	Multiple criteria decision- making	1977-2016	4464
Liao et al. (2019)	Hesitant fuzzy sets	2009-2018	484
Morkūnaitė et al. (2019)	Cultural heritage buildings with MCDM	1994-2018	1039

There are literature reviews in the field of MCDM without using popular bibliometric tools. Abu-Taha (2011) reviewed more than 90 publications on MCDM in the field of renewable energy. He summarized both the application areas and the methodologies used in these publications. As a result of the literature review, it is revealed that AHP is the most used method among all MCDM methodologies. Kahraman et al. (2015) examined the MCDD literature by dividing it into two parts as multi-specific and multi-purpose. In particular, they focused on multi-purpose decision making. They provided tables and graphs for each method (Fuzzy AHP, Fuzzy VIKOR, Fuzzy TOPSIS, Fuzzy ELECTRE, etc.). Mardani et al. (2015) examined a total of 393 articles published in more than 120 peer-reviewed journals between 2000 and 2014. Especially in the fields of energy, environment, and sustainability, they found that MCDM methods are frequently used. Gul et al. (2016) conducted a literature review on VIKOR and Fuzzy VIKOR applications and reviewed 343 publications in total. This comprehensive literature review they have done provides insight into VIKOR applications for researchers and practitioners. In their study, Renganath and Suresh (2016) analyzed the literature of MCDM methods used in supplier selection. After all, they said that the most popular method was fuzzy TOPSIS. Stojčić et al. (2019)

reviewed the literature on the application of MCDM methods in the field of sustainable engineering. They analyzed 108 articles scanned in the Web of Science (WoS) database between 2008-2018. As a result, they found that sustainable engineering is a very suitable field for the use of MCDM. Liu et al. (2019) conducted a comprehensive review of FMEA (Error Type and Effects Analysis) studies using MCDM approaches to evaluate and prioritize error types. They reviewed 169 articles published between 1998-2018. This research sup0ports and provides insight into academics and practitioners in effectively adopting MCDM methods to overcome the shortcomings of traditional FMEA. Chowdhury and Paul (2020) conducted a literature analysis of MCDM methods used in corporate sustainability between 2007 and 2019. As a result of this analysis, in which they examined 52 publications, they determined that the most used methods were AHP and TOPSIS.

3. Method

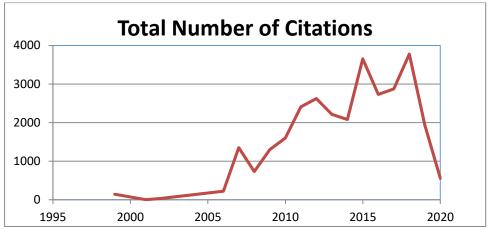
Bibliometric analysis is to make the scope of research in a particular area of interest both quantitatively and qualitatively (Ellegaard & Wallin, 2015). Bibliometry developed for library and information sciences is used to classify research according to publications, times, and journals (Merigó & Yang, 2017). In other words, bibliometry strengthens the scientific literature by understanding the research literature better (Osareh, 1996). Stevens (1953) divided bibliometric studies into two main areas as seen below. Descriptive studies contribute to authors, journals, years, and discipline by categorizing publications by country, while evaluators show where and how many publications are cited.

- 1. Descriptive studies
- Country or geographic location
- Timespan

Discipline or subject area

- 2. Evaluative studies
- Source
- Citation

The analysis made allows identifying early trends in studies conducted in any field (Ellegaard & Wallin, 2015). In general terms, it describes scientific collaboration through collaborations between researchers, institutions, and countries. Some new tools have been introduced to generate more broadcast data and provide a wide variety of indicators as listed in Table 2. In this study, R-Biblioshiny was used.


Table 2. Popular Tools for Bibliometric Analysis

Tools	Practitioners
BibExcel	Olle Persson
Authors	Authors ' frequency tables
Pajek	Vladimir Batagelj and Andrej Mrvar
CiteSpace	ChaomeiChen
VOSviewer	Nees Jan Van Eck and LudoWaltman
R-Bibliometric Package	Massimo Aria and Carrado Cuccurullo

4. Results

1963 DEMATEL publications in 800 sources (Journals, Books, etc) between 1999 and 2020 in the WOS database were examined. DEMATEL publications mostly consist of articles, book chapters, early access, proceedings papers and, review publications. Average citations per document are 15,39 and Average citations per year per doc is 3.274.

Figure 1 shows the annual number of citations of the studies conducted with the DEMATEL method. The most citations to DEMATEL's work took place in 2015 and 2018. It is seen that DEMATEL studies get quite high citations. This shows that the method has a very dynamic structure. The distribution of the examined publications by years is given in Figure 2. As can be understood from Figure 2, the studies made with the DEMATEL method have increased over the years. Especially after 2015, the number of studies conducted with the method has increased. It is seen that most work on the method is in 2020.

Figure 1. Number of citations by years

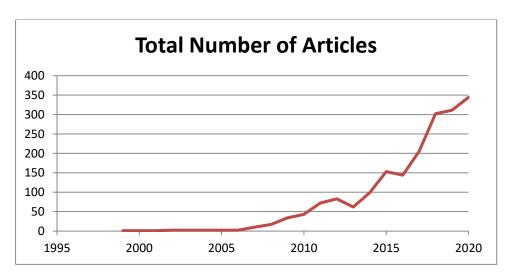


Figure 2. Number of articles by years

Table 3 shows the 20 most productive countries in the DEMATEL method. According to the table, it is seen that the most productive country is China (553; 28.171%). After China, respectively, Taiwan (519; 26.439%), Iran (251; 12.787%), India (241; 12.277%) and Turkey (184; 9.373%) are ranked. With the highest h-index of 62, and it was recorded by Taiwan China (41), India (29), Iran (27), Turkey (24), and the United States (24) respectively. Considering the citation rates of the countries, it is seen that the most cited country is Taiwan (12884). After Taiwan, respectively, China (6228), India (2892), Iran (2878), and Turkey (2499) are ranked. According to the number of studies of the countries, it is seen that the country with the highest citation average is Denmark with 50.87%.

Table 3. Ranking of top twenty most productive countries

-	No. of			No. Of	
Country	documents	%	h-index	citations	Average citations
CHINA	553	28,171	41	6228	11,26
TAIWAN	519	26,439	62	12884	24,82
IRAN	251	12,787	27	2878	11,42
INDIA	241	12,277	29	2892	12,00
TURKEY	184	9,373	24	2499	13,58
USA	74	3,770	24	1710	23,11
ENGLAND	63	3,209	17	839	13,32
MALAYSIA	57	2,904	16	679	11,91
AUSTRALIA	41	2,089	11	492	12,00
SPAIN	34	1,732	11	460	13,53
SERBIA	32	1,630	16	1039	32,47
DENMARK	31	1,579	23	1577	50,87
POLAND	31	1,579	7	217	7,00
LITHUANIA	30	1,528	13	796	26,53
CANADA	29	1,477	8	354	12,21
ITALY	27	1,375	11	467	17,30
PHILIPPINES	24	1,223	9	476	19,83
SOUTH KOREA	24	1,223	7	284	11,83
JAPAN	23	1,172	8	524	22,78
INDONESIA	21	1,070	3	128	6,10

The world density map is shown in Figure 3 below. The countries where DEMATEL studies are carried out the most are listed from dark to light. Countries with gray color do not have studies on the method.

Country Scientific Production

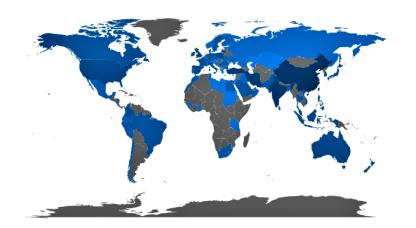


Figure 3. The world density map

The most cooperating twenty countries according to the number of documents are shown in Table 4. According to the table, among the countries with the highest cooperation, Taiwan-China is the first with 74 documents, the USA-China is the second with 31 documents, and the UK-China is the third with 22 documents.

Table 4. The twenty most cooperative countries according to the number of documents

From	To	Frequency
Taiwan	China	74
USA	China	31
United Kingdom	China	22
India	United Kingdom	20
Turkey	China	20
China	Australia	17
Iran	Lithuania	16
Iran	Malaysia	14
India	Denmark	11
Iran	USA	11
Malaysia	Saudi Arabia	11
China	Denmark	10
China	Canada	9
India	China	9
India	USA	9
Iran	Australia	9
Taiwan	USA	9
India	Lithuania	8
India	Spain	8
Taiwan	Philippines	8

World cooperation map is given in Figure 4. The countries where the lines are concentrated are determined as the countries that cooperate most with other countries. Accordingly, China the country with the highest cooperation with other countries, India, Iran, Taiwan, Turkey, the UK and the US appear to be.

Country Collaboration Map

Figure 4. World cooperation map

Table 5 shows the sources of DEMATEL publications. As shown in Table 5 in this study, Journal of Cleaner Production (96; 4,888%) has been the most comprehensive source of DEMATEL research. Then, Sustainability (90; 4,582%) and Expert System Applications (77; 3,921%) journals follow. The most cited journal was determined to be the Expert System Applications journal with 7074 citations. Besides, Expert System Applications journal has the highest h-index (48) and the highest average citation rate (91.87). Then, it was seen that Journal of Cleaner Production ranked second with 2895 citations. The journals with the highest h-indexes after the Expert System Application journal are Journal of Cleaner Production (28), Sustainability (16), Computers & Industrial Engineering (16), Applied Soft Computing (16), respectively.

Table 5. Sources of DEMATEL publications

			h-	Total	Average
Sources	Articles	%	index	citations	citations
Journal of Cleaner Production	96	4,888	28	2895	30,16
Sustainability	90	4,582	16	741	8,23
Expert Systems with	77	3,921	48	7074	91,87
Applications	//	3,941	40	7074	91,07
Computers & Industrial	32	1,629	16	844	26,38
Engineering				-	
Applied Soft Computing	26	1,324	16	917	35,27
Benchmarking-An International	21	1,120	8	167	7,59
Journal International Journal of Fuzzy					
Systems	20	1,018	10	387	19,35
Mathematical Problems in			_		
Engineering	20	1,018	7	216	10,80
International Journal of					
Environmental Research and	19	0,967	5	91	4,79
Public Health					
Symmetry-Basel	19	0,967	5	154	8,11
Resources Conservation and	18	0,916	12	573	31,83
Recycling		•			
Ieee Access	17	0,866	4	40	2,35
International Journal Of Production Research	17	0,866	11	483	28,41
Journal of Intelligent & Fuzzy					
Systems	17	0,866	4	71	4,18
International Journal of					
Information Technology &	16	0,815	8	192	12,00
Decision Making					
Soft Computing	16	0,815	6	288	18,00
International Journal of	15	0,764	13	1004	66,93
Production Economics					
Safety Science	15	0,764	9	500	33,33
Energies	14	0,713	5	68	4,86
Technological And Economic	14	0,713	8	331	23,64
Development of Economy	= *	-,. 10			

Table 6 shows the 20 most active universities in DEMATEL research. Accordingly, it is seen that the most productive university in DEMATEL studies is National Chiao Tung University in Taiwan with 102 documents (5,196). Islamic Azad University in Iran ranks second with 90 documents (4,585) and Nan Kai University Technology in China is third with 86 documents (4,381). The most cited university is National Chiao Tung University with 4344 citations and an average citation rate of 42.59%. Also, National Chiao Tung University has the highest h-index (37).

Table 7 shows the ranking of the twenty most common areas in DEMATEL studies. Most of the published studies are in the field of Computer Science Artificial Intelligence (332; 16,904) and it was seen that the most used journal in this field was Expert System With Applications (77; 23,193%). Following this area, the most common areas

Koca and Yıldırım/Decis. Mak. Appl. Manag. Eng. 4 (1) (2021) 85-103 are Environmental Sciences (288; 14.664%), Operations Research Management Science (285; 14.511%), Management (272; 13.849%), Green Sustainable Science Technology (235; 11.965%).

Table 8 shows the most productive twenty authors on DEMATEL research. According to the table, with 121 documents (6.161%), Tzeng G.H. seems to be. Also, Tzeng G.H is the author with the highest h-index (34) and the highest number of citations (4117). Tzeng G.H. It is seen that the most prolific authors are Tseng M.L. (38), Dincer H. (36), and Liou J.J.H (36). Also, Tseng M.L. is the second most cited author (1605).

Table 6. The 20 most active universities in DEMATEL research

	No. Of			Total	Average	
Name of the institution	documents	%	h-index	citations	citations	Country
National Chiao Tung University	102	5,196	37	4344	42,59	Taiwan
Islamic Azad University	06	4,585	17	971	10,67	Iran
Nan Kai University Technology	98	4,381	33	3631	42,22	China
National Taipei University	99	3,362	19	1238	18,76	Taiwan
National Taipei University Of Technology	28	2,955	19	1285	22,16	Taiwan
University Of Tehran	54	2,751	16	648	12,00	Iran
Indian Institute Of Technology System lit System	53	2,700	16	663	12,51	India
Dalian University Of Technology	51	2,598	18	1114	21,84	China
National Taiwan Normal University	40	2,038	12	509	12,73	Taiwan
Istanbul Medipol University	36	1,834	8	166	4,61	Turkey
Asia University Taiwan	35	1,783	10	591	16,89	Taiwan
University Of Electronic Science Technology Of						
China	34	1,732	20	940	27,65	China
Chung Hua University	29	1,477	10	335	11,55	Taiwan
University Of Southern Denmark	28	1,426	22	1464	52,29	Denmark
Vilnius Gediminas Technical University	28	1,426	13	788	28,14	Lithuania
Chinese Culture University	27	1,375	6	252	9,33	China
Tamkang University	27	1,375	16	759	28,11	Taiwan
National Central University	25	1,274	15	1134	45,36	Taiwan
National Taiwan University Of Science Technology	24	1,223	6	810	33,75	Taiwan
Shanghai Jiao Tong University	24	1,223	11	360	15,00	China

Table 7: The twenty most common areas in DEMATEL studies

	No Of			dering of	
	10:01			aocainc	
Subject Area	documents	%	Most used journal	nts	%
Computer Science Artificial Intelligence	332	16,904	Expert Systems With Applications	77	23,193
Environmental Sciences	288	14,664	Journal Of Cleaner Production	96	33,333
Operations Research Management Science	285	14,511	Expert Systems With Applications	77	27,018
Management	272	13,849	Benchmarking An International Journal	22	8,088
Green Sustainable Science Technology	235	11,965	Journal Of Cleaner Production	96	40,851
Engineering Electrical Electronic	187	9,521	Expert Systems With Applications	77	41,176
Engineering Industrial	187	9,521	Computers Industrial Engineering	32	17,112
Computer Science Interdisciplinary					
Applications	161	8,198	Computers Industrial Engineering	32	19,876
Environmental Studies	144	7,332	Sustainability	06	62,500
Engineering Environmental	131	6,670	Journal Of Cleaner Production	96	73,282
			African Journal Of Business		
Business	124	6,314	Management	6	7,258
Computer Science Information Systems	114	5,804	Ieee Access	17	14,912
Engineering Multidisciplinary	111	5,652	Mathematical Problems In Engineering	20	18,018
			Echnological And Economic		
Economics	105	5,346	Development Of Economy	14	13,333
			International Journal Of Production		
Engineering Manufacturing	88	4,481	Research	17	19,318
			Journal Of Multiple Valued Logic And		
Computer Science Theory Methods	79	4,022	Soft Computing	വ	6,329
Energy Fuels	20	3,564	Energies	14	20,000
Automation Control Systems	61	3,106	International Journal Of Fuzzy Systems	20	32,787
			Engineering Construction And		
Engineering Civil	28	2,953	Architectural Management	7	12,069
Multidisciplinary Sciences	54	2,749	Symmetry Basel	19	35,185

Table 8. The most productive twenty authors on DEMATEL research

				Total	Avorage
Authors	Articles	%	h-index	citations	Average citations
Tzeng GH	121	6,161	34	4117	34,02
Tseng ML	38	1,935	19	1605	42,24
Dincer H	36	1,833	8	165	4,58
Liou JJH	36	1,833	17	1115	30,97
Huang CY	35	1,782	7	394	11,26
Yuksel S	32	1,629	8	161	5,03
Kumar A	26	1,324	9	230	8,85
Pamucar D	23	1,171	13	826	35,91
Govindan K	22	1,120	16	1202	54,64
Liu HC	21	1,069	16	1054	50,19
Mangla SK	21	1,069	11	440	20,95
Tsai SB	21	1,069	14	464	22,10
Chuang YC	20	1,018	8	315	15,75
Luthra S	20	1,018	12	478	23,90
Lee YC	17	0,866	8	279	16,41
Zavadskas EK	17	0,866	13	741	43,59
Sarkis J	16	0,815	12	686	42,88
Wu KJ	16	0,815	9	429	26,81
Wu HH	15	0,764	8	484	32,27
Hsu Cc	14	0,713	11	390	27,86

In Table 9, the most cited ten articles about the DEMATEL method are given. The most cited article in DEMATEL with 570 citations is Tzeng G.H., et al "Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL" (Tzeng et al., 2007). In this article, the factors of the elearning program are analyzed. The second most cited article with 500 citations, Wu, W.W. & Lee, Y.T. "Developing global managers' competencies using the fuzzy DEMATEL method" (Wu & Lee, 2007). The article by Büyüközkan and Çifçi (2012) titled "A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP, and fuzzy TOPSIS to evaluate green suppliers" is ranked third with 444 citations.

Table 9: The most cited twenty articles about the DEMATEL method

	a and Yıl	dırım/Dec	is. Mak. A	Appl. I	Manag.	Eng. 4	(1) (20	021) 8:	5-103	3
Average per Year	40,71	35,71	49,33	22	33,25	20	31,5	24,9	22,45	18,5
Total Citations	570	200	444	286	266	260	252	249	247	222
Source Title	Expert Systems With Applications	Expert Systems With Applications	Expert Systems With Applications	Expert Systems With Applications	Journal Of Cleaner Production	Expert Systems With Applications	Journal Of Cleaner Production	Expert Systems With Applications	Knowledge-Based Systems	Expert Systems With Applications
Publication Year	2007	2007	2012	2008	2013	2008	2013	2011	2010	2009
Title	Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL	Developing global managers' competencies using the fuzzy DEMATEL method	A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers	Choosing knowledge management strategies by using a combined ANP and DEMATEL approach	Using fuzzy DEMATEL to evaluate the green supply chain management practices	A causal analytical method for group decision-making under fuzzy environment	Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management	Fuzzy DEMATEL method for developing supplier selection criteria	A DEMATEL method in identifying key success factors of hospital service guality	A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach
Authors	Tzeng et al. (2007)	Wu and Lee (2007)	ouyukozk an and Çifçi (2012)	Wu (2008)	in (2013)	Lin and Wu (2008)	Hsu et al. (2013)	Chang et al. (2011)	hieh et al. (2010)	Tseng (2009)

The most commonly used keywords in DEMATEL method are shown in Figure 5. Keyword analysis shows common keywords used by authors. Accordingly, the most used keyword in DEMATEL is seen as "model". In addition, the words "dematel", "selection", "management", "performance", "anp", "decision making" are the most common keywords.

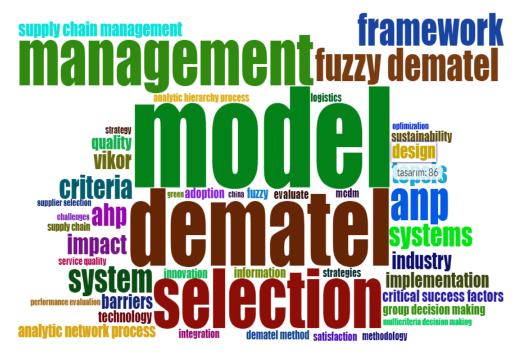


Figure 5. The most commonly used keywords in DEMATEL method

5. Conclusion

The focus of this study was to conduct a bibliometric analysis of global studies on the DEMATEL method, one of the MCDM methods. 1963 documents obtained from the WOS database between 1999-2020 were analyzed with the R Studio program. In the study, the annual research outputs of the researches published on the DEMATEL method, document types, countries, important journals and authors contributing to the field, the most efficient universities, and which fields of science the method is used in are shown.

In the DEMATEL method, China (553), Taiwan (519), Iran (251), India (241), Turkey (184) are among the top five countries. The most cited country in his studies was observed as Taiwan (12884). With the cooperation of Taiwan and China 74, it is in the main position of international cooperation. In the analysis, it was seen that he was actively participating in researches related to the DEMATEL method in other countries.

The most prolific authors in the field are Tzeng G.H. was seen as. Next comes Tseng M.L. (38), Dincer H. (36), Liou J.J.H. (36), Huang C.Y. (35).

When we look at the Web of Science categories, it is seen that studies are concentrated in fields such as computer science and artificial intelligence, environmental science, operations research and management science, management, green sustainable technologies, electrical electronics engineering, and industrial engineering.

In the studies related to the field, the journal "Journal Of Cleaner Production" ranks at the top with 96 studies. Then, the magazine "Sustainability" takes second place with 90 studies, and the magazine "Expert Systems With Applications" takes third place with 77 studies. The most cited journal is "Expert Systems With Applications" with 7074 citations.

The most productive university is National Chiao Tung University (Taiwan) with 102 studies. Next is Islamic Azad University (Iran) with 90 studies, followed by Nan Kai University Technology (China) in three with 86 studies.

When we look at the conceptual structure of the studies, it is seen that they concentrate on words such as model, dematel, selection, management, performance, anp, decision making, fuzzy dematel.

The findings of the study show the development of the studies in the DEMATEL method, which is the MCDM method. As a result of the evaluations, it was seen that the studies on the DEMATEL method were quite dynamic. It is possible to say that the studies on this method will increase in the following years. The methodology used can be applied to other methods and other topics.

Overall, the findings of this analysis provide a general picture of the evolution of the DEMATEL method. This can assist practitioners and academics in identifying and evaluating efforts to advance research in these areas. This will help develop new lines of research for the future and advance the use of these methods in more applications. The methodology used can be applied to other MCDM methods or other topics. Using the relative advantages of different bibliometric tools, the use of variables can be expanded.

Author Contributions: Each author has participated and contributed sufficiently to take public responsibility for appropriate portions of the content.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

Abu-Taha, R. (2011). Multi-criteria applications in renewable energy analysis: A literature review. In 2011 Proceedings of PICMET'11: Technology Management in the Energy Smart World (PICMET) (pp. 1-8). IEEE.

Aytaç, M., & Gürsakal, N. (2015). Karar verme. Dora Basım Yayın Dağıtım AŞ, Bursa.

Blanco-Mesa, F., Merigó, J. M., & Gil-Lafuente, A. M. (2017). "Fuzzy decision making: A bibliometric-based review." Journal of Intelligent & Fuzzy Systems, 32(3), 2033-2050.

Bragge, J., Korhonen, P., Wallenius, H., & Wallenius, J. (2010). Bibliometric analysis of multiple criteria decision making/multiattribute utility theory. In Multiple criteria decision making for sustainable energy and transportation systems (pp. 259-268). Springer, Berlin, Heidelberg.

Büyüközkan, G., & Çifçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), 3000-3011.

Çelikbilek, Y., & Özdemir, M. (2018). Çok kriterli karar verme yöntemleri. Ankara: Nobel Akademik Yayıncılık.

Çetinkaya Bozkurt, Ö. ve Çetin, A. (2016), "Girişimcilik ve Kalkınma Dergisi'nin Bibliyometrik Analizi", Girişimcilik ve Kalkınma Dergisi, 11(2), 229-263.

Chang, B., Chang, C. W., & Wu, C. H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert systems with Applications, 38(3), 1850-1858.

Chowdhury, P., & Paul, S. K. (2020). Applications of MCDM methods in research on corporate sustainability: A systematic literature review. Management of Environmental Quality: An International Journal, 31(2), 385-405

Cole, F. J., & Eales, N. B. (1917). The history of comparative anatomy: Part I.—A statistical analysis of the literature. Science Progress (1916-1919), 11(44), 578-596.

Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105, 1809-1831.

Guerrero-Baena, M. D., Gómez-Limón, J. A., & Fruet Cardozo, J. V. (2014). "Are multicriteria decision making techniques useful for solving corporate finance problems? A bibliometric analysis." Revista de Metodos Cuantitativos para la Economia y la Empresa, 17, 60-79.

Gul, M., Celik, E., Aydin, N., Gumus, A. T., & Guneri, A. F. (2016). "A state of the art literature review of VIKOR and its fuzzy extensions on applications." Applied Soft Computing, 46, 60-89.

Hotamışlı, M., & Erem, I. (2014). "Bibliometric analysis of the articles published in journal of accounting and finance." The Journal of Accounting and Finance, 16(63), 1-19.

Hsu, C. W., Kuo, T. C., Chen, S. H., & Hu, A. H. (2013). "Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management." Journal of cleaner production, 56, 164-172.

Kahraman, C., Onar, S. C., & Oztaysi, B. (2015). "Fuzzy multicriteria decision-making: a literature review." International journal of computational intelligence systems, 8(4), 637-666.

Karaoğlan, S. (2016). "Dematel ve Vikor Yöntemleriyle Dış Kaynak Seçimi: Otel İşletmeciliği Örneği", Akademik Bakış Dergisi, 55, 9-24.

Lawani, S. M (1981). "Bibliometrics: Its Theoretical Foundations, Methods and Applications", International Journal of Libraries and Information Services, Cilt: 31, 4, 294-315.

Liao, H., Tang, M., Zhang, X., & Al-Barakati, A. (2019). "Detecting and Visualizing in the Field of Hesitant Fuzzy sets: A Bibliometric Analysis From 2009 to 2018", International Journal of Fuzzy Systems, 21(5), 128.

Lin, C. J., & Wu, W. W. (2008). "A causal analytical method for group decision-making under fuzzy environment." Expert Systems with Applications, 34(1), 205-213.

Lin, C.L. & Tzeng, G.H. (2009). "A value-created system of science (technology) park by using DEMATEL", Expert systems with applications, 36(6), 9683-9697.

Lin, R. J. (2013). "Using fuzzy DEMATEL to evaluate the green supply chain management practices." Journal of Cleaner Production, 40, 32-39.

Liu, H. C., Chen, X. Q., Duan, C. Y., & Wang, Y. M. (2019). "Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review." Computers & Industrial Engineering, 135, 881-897.

Liu, W., & Liao, H. (2017). "A bibliometric analysis of fuzzy decision research during 1970–2015." International Journal of Fuzzy Systems, 19(1), 1-14.

Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). "Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014." Economic Research-Ekonomska Istraživanja, 28(1), 516-571.

Merigó, J. M., & Yang, J. B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, 37-48.

Morkūnaitė, Ž., Kalibatas, D., & Kalibatienė, D. (2019). "A Bibliometric Data Analysis of MultiCriteria Decision Making Methods in Heritage. Buildings", Journal of Civil Engineering and Management, 25(2), 76-99.

Osareh, F. (1996). Bibliometrics, citation analysis and co-citation analysis: A review of literature I.

Peng, X., & Dai, J. (2018). "A Bibliometric Analysis of Neutrosophic Set: Two Decades Review From 1998 to 2017", Artificial Intelligence Review, 1-57.

Renganath, K., & Suresh, M. (2016). "Supplier selection using fuzzy MCDM techniques: A literature review." In 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (1-6). IEEE.

Shgeh, J., Wu, H. & Huang, K. (2010). "A DEMATEL Method in Identifying Key Success Factors of Hospital Service Quality", Knowlwdge-Based Systems. 23(3): 277-282.

Shieh, J. I., Wu, H. H., & Huang, K. K. (2010). A DEMATEL method in identifying key success factors of hospital service quality. Knowledge-Based Systems, 23(3), 277-282.

Stevens, R.E. (1953). Characteristics of Subject Literatures, Chicago: American College and Research Library Monography Series 7.

Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018."Symmetry, 11(3), 350.

Tramarico, C. L., Salomon, V. A. P., & Marins, F. A. S. (2015). "Analytic hierarchy process and supply chain management: A bibliometric study." Procedia Computer Science, 55, 441-450.

Tseng, M. L. (2009). A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert systems with applications, 36(4), 7738-7748.

Tzeng, G. H., Chiang, C. H., & Li, C. W. (2007). Evaluating intertwined effects in elearning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert systems with Applications, 32(4), 1028-1044.

Wu, W. W. (2008). "Choosing knowledge management strategies by using a combined ANP and DEMATEL approach." Expert Systems with Applications, 35(3), 828-835.

Wu, W. W., & Lee, Y. T. (2007). Developing global managers' competencies using the fuzzy DEMATEL method. Expert systems with applications, 32(2), 499-507.

Yıldırım, B.F., & Önder, E. (2018). "Operasyonel, Yönetsel ve Stratejik Problemlerin Çözümünde Çok Kriterli Karar Verme Yöntemleri". Dora Basım Yayın Dağıtım AŞ, Bursa.

Yu, D., Wang, W., Zhang, W., & Zhang, S. (2018). "A Bibliometric Analysis of Research on Multiple Criteria Decision Making", Current Science, 114(4), 747-758.

Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). "State of Art Surveys of Overviews on MCDM/MADM Methods." Technological and Economic Development of Economy, 20(1), 165-179.

Zyoud, S. H., & Fuchs-Hanusch, D. (2017). "A Bibliometric-Based Survey on AHP and TOPSIS Techniques", Expert Systems with Applications, 78, 158-181.

© 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).