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ARTICLE INFO ABSTRACT

Article history: Emergency response scenarios are inherently complex and rapidly evolving,
Received 25 April 2024 necessitating immediate and well-informed decision-making. Traditional decision
Received in revised form 29 May 2024 support systems, however, often struggle to effectively integrate heterogeneous data
Accepted 27 June 2024 sources and adapt to continuously changing conditions. To address these challenges
Available online 29 December 2025 and enhance both the speed and quality of decision-making in emergency contexts,

this study proposes a Cognitive Decision Support System for Emergency Response

Keywor ds: o (CDSS-ER), which combines Knowledge Graphs (KGs) with Deep Reinforcement
Cognitive ~ Decision  Support Learning (DRL), specifically Deep Q-Networks (DQN). The system constructs a
System, Knowledge Graphs, Deep dynamic KG by aggregating and semantically aligning data from multiple
Q-Network, Emergency Response, emergency-related sources, thereby capturing contextual and relational information
Reinforcement Learning in real time. These structured knowledge representations are then vectorised to

depict the current state of the emergency environment. Leveraging these
representations, the DQN component determines optimal response policies through
iterative trial-and-error interactions, continuously refining its strategies based on
real-time feedback. Experimental results demonstrate that CDSS-ER substantially
outperforms conventional rule-based systems with respect to both the efficiency of
resource allocation and the accuracy of decisions. The framework provides a
scalable and adaptive solution for emergency management and holds promise for
application in other domains requiring real-time cognitive decision support.

1. Introduction

Emergency response systems play a critical role in minimising the impact of disasters, public
health crises, and industrial incidents on lives and property [7]. Conventional systems, however,
frequently encounter difficulties in responding promptly, maintaining situational awareness, and
facilitating effective inter-agency coordination [31]. Such deficiencies often arise from the
fragmented availability of information, overly rigid response protocols, and the inability to adjust
dynamically to evolving circumstances [3]. In situations where rapid and informed decisions are
essential, these limitations can lead to severe consequences [33]. The increasing unpredictability
and complexity of emergencies have therefore intensified the demand for systems capable of
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delivering relevant, adaptable guidance to decision-makers [26].

Al-driven CDSS present a promising approach to these challenges [32]. Unlike traditional
systems that remain static and inflexible, CDSS can analyse historical data, interpret current
conditions, and provide informed recommendations through adaptive learning processes [17].
Central to this capability are KG, which structure data by capturing entities and their interrelations
[13]. During emergencies, diverse data streams—such as meteorological forecasts, geographical and
infrastructural maps, social media inputs, and sensor readings—can be integrated within KG [21].
This integration enables the system to query complex relationships, identify connections between
events, and reveal insights, such as links between power outages and nearby healthcare facilities
[2]. In recent years, the frequency and complexity of emergencies, including natural disasters and
large-scale public health incidents, have increased, placing additional pressure on response
mechanisms [23]. Effective emergency management now depends on rapid information processing,
coordinated multi-stakeholder action, and flexible strategies that adapt to changing scenarios [25].
Traditional siloed models, characterised by slow data flows, are unable to meet these expectations
[22]. As emergencies become more interdependent and unpredictable, the demand has grown for
systems capable of handling large volumes of data efficiently, facilitating real-time analysis, and
supporting inter-sector communication to enhance response agility and preparedness [16].

To address these persistent challenges, this study proposes a CDSS-ER that leverages the
capabilities of KG and DRL to support intelligent and flexible decision-making. The principal gap
targeted by this research is the lack of context-aware, real-time, and dynamically adaptable decision
support in conventional emergency response systems. The focus of this work is on designing and
implementing a system that integrates dynamic knowledge representation with a learning-based
decision engine to improve both the speed and accuracy of emergency responses. The proposed
system establishes a cognitive framework in which KG provide structured situational awareness
while DQN facilitates sequential decision-making, continuously updated with incoming data. This
approach offers a scalable, intelligent solution capable of overcoming the rigidity of traditional
systems, thereby enhancing emergency preparedness and supporting multi-agency coordination
during critical incidents.

2. Literature Survey

Advancements in artificial intelligence are driving significant improvements in emergency
response decision support systems, enabling the timely allocation of resources, continuous
situational awareness, and informed decision-making even when objectives conflict under uncertain
conditions. DRL is particularly well-suited to these scenarios, as it allows systems to acquire
adaptive strategies through interaction with complex and dynamic environments. By employing
iterative trial-and-error processes, DRL progressively refines decisions based on real-time feedback,
rendering it highly effective in contexts that demand rapid, context-sensitive, and flexible
responses—areas in which conventional rule-based systems frequently underperform.
Concurrently, KG are increasingly employed to integrate heterogeneous data sources, providing a
structured semantic framework that enhances decision-making quality. Table 1 summarises recent
studies employing Al techniques for emergency management, detailing the principal
methodologies, their advantages in addressing specific challenges, and potential limitations. This
evaluation highlights the critical role of Al-driven learning and knowledge representation in
developing sophisticated and effective decision support systems for emergency situations.

Recent investigations into emergency response systems have focused on enhancing essential
capabilities, including the optimisation of resource allocation, situational awareness, multi-agent
coordination, and evacuation planning. Within the area of resource distribution, both the
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reinforcement learning model [9] and the many-objective decision-making framework [19] have
been developed to improve the efficiency of aid delivery under high-pressure conditions. While the
model in [9] demonstrates strengths in managing uncertainty and ensuring fairness during supply
distribution, it is associated with significant computational demands. Conversely, the framework in
Li et al. [19] employs knowledge graphs to balance competing objectives, although the maintenance
and scalability of such semantic structures present ongoing challenges.

Table 1
Summary of Key Al Techniques and their Roles in Emergency Response Decision Support Systems
Author(s) Techniques Involved Advantages Disadvantages Relation to Emergency Response &

Decision Support
Fan et al. Deep Reinforcement Adaptive supply distribution;  High training cost; Optimizes emergency supply

[9] Learning (DRL) handles dynamic environments complex tuning logistics for timely decisions
Lietal. Knowledge Graphs + Rich context understanding; KG construction is Enables multi-criteria emergency
[19] Multi-Objective supports complex decisions resource-intensive  aid decision support

Optimization
Yang et Multi-Agent DRL Collaborative resource Coordination Supports distributed decision-
al. [34] (DQN Variants) allocation; models overhead; scalability making in post-disaster recovery

decentralized agents limits

Zhao et DRL (Improved DQN)Real-time evacuation Infrastructure Provides adaptive crowd evacuation
al. [36] + Cloud-Edge optimization; scalable dependency; latency support in emergencies

Computing issues
Lietal. Multimodal Integrates diverse data for Data quality and Enhances flood emergency decision
[15] Knowledge Graphs situational awareness integration challengessupport with semantic data

For situational awareness, the semantic integration proposed in Li et al. [19] facilitates a
comprehensive understanding of emergency environments, whereas the Aegis system [36] provides
near real-time responsiveness by combining cloud-edge computing with deep learning techniques.
Nevertheless, the dependency of Zhao et al. [36] on specific infrastructural components introduces
potential concerns regarding latency and operational resilience. In the domain of distributed
decision-making, the agent-based approach described in [34] supports decentralised recovery
planning, aligning with practical requirements for coordination among multiple actors. However,
limitations remain in inter-agent synchronisation and system scalability. Additionally, the study in Li
et al. [15] on urban flood response highlights the effectiveness of combining temporal, spatial, and
behavioural data to support timely decision-making, though its performance is closely tied to the
guality and integration of the underlying datasets.

Collectively, these studies illustrate significant progress across various aspects of emergency
response, yet each method encounters specific technical or operational constraints that warrant
further investigation. The evidence indicates an increasing utilisation of deep reinforcement
learning to enhance emergency supply distribution, improve responsiveness under dynamic logistics
conditions, and support real-time decision-making in disaster scenarios. Knowledge graphs also
demonstrate substantial potential for integrating heterogeneous data to improve situational
awareness and prioritisation. However, most existing approaches treat these technologies
independently, limiting their ability to provide adaptive, context-aware, and scalable solutions
under uncertain and evolving conditions. Notably, few studies have effectively combined knowledge
graphs with deep reinforcement learning, particularly DQN, to form a unified framework capable of
both capturing complex relationships across multimodal data and deriving optimal decision policies
in real time. This study aims to address this gap by developing a hybrid model that integrates the
semantic reasoning capabilities of knowledge graphs with the adaptive learning potential of DQN,
thereby enabling intelligent, interpretable, and responsive emergency management, particularly in
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high-stakes scenarios such as large-scale evacuations or urban flood responses, where both
precision and adaptability are critical.

3. System Framework

The initial configuration of the CDSS-ER architecture is founded upon the integration of semantic
reasoning via KG and adaptive decision-making through DQN. The system first constructs a multi-
relational KG that represents emergency-specific entities, including incident categories, geographic
coordinates, temporal factors, infrastructure characteristics, and available resources. These entities
are interconnected through semantic relations to form a contextualised graph, facilitating efficient
data retrieval and inference. The KG functions as the cognitive layer of the CDSS-ER, enabling real-
time understanding and reasoning over complex emergency scenarios. Concurrently, the DQN
component is established to manage sequential decision-making within this dynamic environment.
The state space is defined by contextual information derived from the KG, such as incident severity,
location, and resource availability, while the action space encompasses a range of response
strategies, including resource deployment, traffic rerouting, and authority notifications. The Q-
network approximates the optimal action-value function Q(s,a), allowing the system to identify
actions that maximise cumulative rewards under conditions of uncertainty. The integration
mechanism permits the DQN to access KG-derived contextual insights, while the KG itself is
continuously updated as actions are executed and new information is received. This configuration
establishes a hybrid CDSS-ER framework in which KG provide structured situational understanding
and DQN facilitates learning-based optimisation, supporting resilient, real-time decision-making
during emergency response operations.

4. Methodology

The proposed CDSS-ER establishes a robust framework for contextual reasoning and adaptive
decision-making by integrating KG with DQN. This section addresses three core components: the
modelling of emergency knowledge via KG, the training of decision-making processes through DQN,
and the synthesis of these elements into a unified cognitive architecture. The framework is
designed to enable emergency responders to operate intelligently and rapidly by combining
structured knowledge representation with adaptive capabilities. KG technology is employed to
organise diverse emergency-related data into a dynamic knowledge structure. Essential entities and
their interactions, such as those linking incidents, locations, and required resources, are encoded
within the KG, facilitating inference and the generation of new insights from existing information.
These relationships are further converted into quantitative representations or metrics that capture
how different factors affect and respond to evolving emergency conditions [14].

The state inputs for DQN are derived from KG embeddings, enabling DQN to interpret the
decision environment as a sequence of actions and associated outcomes. Through iterative
interaction with the environment, DQN identifies optimal strategies, adjusting its actions based on
feedback to improve future decision-making. Whenever an action is executed, such as deploying
units or redirecting movement, the resulting information is incorporated into the KG in real time [5].
This continuous interaction forms a feedback loop in which knowledge reasoning informs state
representation, and adaptive learning refines decision policies. Owing to this hybrid design, the
system can address multiple challenges simultaneously, prioritize effectively, and respond swiftly in
high-pressure emergency situations. Figure 1 presents the flow diagram of the proposed
architecture.
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Fig.1: Proposed Architecture

Step 1: Emergency Data Acquisition

Prior to activating the core components of the architecture, emergency information is collected
from a wide array of sources. These include sensor readings from GPS devices, traffic and
surveillance cameras, and environmental monitoring systems, alongside data obtained from
incident logs, emergency service databases, and user-generated reports from online platforms. The
diversity and richness of these data streams provide a comprehensive foundation for situational
analysis. To ensure data quality and suitability for semantic modelling and subsequent processing,
the collected information is subjected to cleaning, normalisation, and transformation procedures
[28].

Step 2: Knowledge Graph (KG) Construction

Following data pre-processing, the system constructs a KG to organise and represent the critical
elements required for emergency management. Individual nodes correspond to incident types, such
as fires or accidents, as well as locations, infrastructure, resources, and temporal attributes, while
edges depict the relationships between these entities. CDSS-ER relies on this KG to facilitate
informed decision-making tailored to specific scenarios. As the KG is continuously updated with
incoming information, the system can infer missing details and identify significant patterns that are
vital for effective emergency management [27].

Step 3: Knowledge Embedding and State Representation

The subsequent stage entails translating the semantic KG into a numerical representation
suitable for integration with DQN. Through knowledge embedding, entities and their interrelations
within the KG are converted into continuous vector forms, preserving both structural and semantic
information [4]. These embeddings form the basis of the state space within the reinforcement
learning model. Each state vector encodes essential details regarding the current incident type and
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severity, the availability of response teams, location, and temporal information. By utilizing these
embeddings, DQN gains a comprehensive understanding of the emergency environment, enabling
the selection of effective decision strategies [10].

Step 4: Deep Q-Network (DQN) Decision Learning

At this stage, DQN is employed within CDSS-ER to make informed decisions in dynamic
emergency situations. The DQN models the environment according to a Markov Decision Process
(MDP) framework, utilising the embedded state vectors to select optimal actions from a predefined
set [35]. Such actions may include deploying specific response teams, directing traffic along
alternate routes, issuing emergency alerts, or redistributing medical supplies. Through continual
interaction with the environment, DON evaluates the effectiveness of its actions and reinforces
those yielding positive outcomes. Over time, the model converges on a policy that maximises long-
term benefits while minimising operational inefficiencies and resource wastage [12].

Step 5: Hybrid Integration and Adaptive Decision Cycle

The final critical stage involves fully integrating KG and DQN into a continuous feedback loop.
The KG is continually updated with incoming emergency information, enhancing the semantic
representation of each state. These updated embeddings are supplied to DQN, informing the
selection of subsequent actions. As DQN executes and evaluates its decisions, it becomes
progressively more effective, simultaneously triggering updates to the KG based on the insights
gained. This continuous adaptive cycle enables the system to respond more rapidly and accurately
in real time. Consequently, the hybrid CDSS-ER exhibits high reactivity, comprehensive situational
awareness, and the capacity to manage evolving emergency scenarios effectively [8].

4.1 Knowledge Graphs (KGs)

Within an emergency response system, KG represent various categories of information by
modelling entities—such as incidents, resources, and locations—as nodes, with edges illustrating
the relationships between them. This structured collection of contextual data enables the system to
interpret complex factors relevant to emergency management [1]. Formally, relationships in a KG
are expressed as triples (h,r,t), where the head and tail correspond to entities and r denotes the
relationship connecting them. To facilitate efficient reasoning and similarity computation, these
entities and relationships are embedded within a continuous vector space. In many applications, the
TranskE model is employed, with its scoring function defined as shown in equation 1:

f(hrt) =|lh+7—tl; (1)

h,r,teR% are the vector embeddings for the head, relation and tail and ||. ||, is the Euclidean
norm. When f(h,r,t) is smaller, the system is able to find new and correct connections between
emergency information and use them to improve decision accuracy [11].

4.2 Deep Q-Networks (DQN)

DQN are designed to support decision-making by determining optimal actions in uncertain and
dynamic environments, such as those encountered during emergency response operations [30]. The
model views the task using an MDP framework where, at every step t, the environment presents a
state s; , the agent acts using action a; , collects reward 1; and the system progresses to state sy, 1.
The objective is to identify a policy that maximises the expected cumulative reward, particularly
over the long term. The optimal action-value function Q* (s,a) satisfies the Bellman equation, as
expressed in equation 2:
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Q*(s,a) =Eg [r + y max Q*(s\, a‘) s, a] (2)
a

The discount factor y, which lies within the range [0,1], is employed to balance the significance
of immediate rewards against those anticipated in the future. The neural network, parameterised
by 6, approximates Q(s,a;8), enabling the agent to evaluate actions based on complex state
representations derived from KG embeddings. Through iterative updates and repeated interactions,
DQN progressively identifies optimal strategies for allocating and managing emergency resources in
response to evolving conditions [29].

4.3 Hybrid Integration of KGs and DQN

The hybrid CDSS-ER integrates KG and DQN within a single framework to address the
complexities of decision-making in emergency response. KG aggregate diverse emergency-related
data—including incident categories, resource availability, geographic locations, and temporal
information—and organise them within a graph structure that preserves relational connections.
This structured representation enables the system to identify significant features and relationships
in the data that are difficult to capture using conventional formats [18]. Features derived from the
graph are subsequently converted into numerical embeddings, which serve as input for the DQN.
The DQN interprets these embeddings to model the environment as a sequence of actions, learning
optimal strategies through iterative interaction and feedback, with rewards guiding adjustments.
Consequently, the DQN can evaluate long-term outcomes rather than making decisions solely on
immediate observations.

The system’s functionality fundamentally relies on the integration of KG and DQN, allowing
decisions to adapt dynamically to diverse emergency scenarios [20; 37]. KG are employed to encode
the semantic relationships of emergency data into embeddings, which define the current system
state s_t. This state vector encapsulates key attributes such as the incident type, affected area,
available resources, and timing. Based on the updated state, DQN selects the action most likely to
maximise future rewards. The policy is refined in practice through the continual update of Q-value
estimates, utilising the temporal difference learning method as formalised in equation 3.

Q(spar) « Qs ar) + afry + Vmaax Q*(St+1:a\) = Q(spap)] (3)

In this context, a denotes the learning rate, r represents the immediate reward, and vy is the
discount factor. Through continuous real-time feedback, the hybrid approach enables the model to
refine its action selection by leveraging both the semantic insights provided by KG and the decision-
making capabilities of DQN. The resulting system demonstrates enhanced reliability and accelerated
response times in managing emergency operations compared with conventional standalone
solutions.

The integration of KG into the emergency environment follows a structured process: initially,
live emergency data are collected to build and continually update the database; subsequently,
essential information from the database is transformed into vector representations; finally, these
vectors are provided to DQN to inform the selection of appropriate actions. By combining the
semantic knowledge from KG with the advanced pattern recognition capabilities of DQN, the
system enhances the precision of its decisions. This synergy allows the hybrid CDSS-ER to allocate
emergency resources more effectively and make rapid decisions in response to evolving situations
[6; 24]. The close interaction between these components improves both the efficiency and
reliability of responses during critical emergency events.

5. Results
The performance and practical applicability of the integrated CDSS-ER, utilising KG and DQN, are
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systematically evaluated. A combination of quantitative metrics, visualisations, and case studies is
employed to assess the system’s operational effectiveness, adaptability, and decision accuracy.
Indicators such as resource allocation efficiency, responsiveness to incidents, and decision-making
precision confirm the system’s overall efficacy. The outcomes produced by the model are compared
with those of conventional rule-based and heuristic approaches, highlighting the improvements
afforded by semantic reasoning and reinforcement learning. In the context of urban disaster
management, CDSS-ER demonstrates the ability to recommend timely and effective actions in
response to rapidly evolving environmental conditions. Furthermore, the model’s potential for
broader application is considered, including adaptation to sectors such as healthcare, transportation
management, and routine safety operations.

5.1 Case Study Dataset Description

Between 2018 and 2024, the Integrated Emergency Response Analytics Dataset (IERAD)
compiled detailed information from carefully selected emergency response cases in metropolitan
Sydney, Australia [6]. The dataset encompasses emergency operations through contributions from
ambulance dispatchers, drone operators, and regional hospitals. By integrating operational
procedures, response times, environmental contexts, and logistical details, IERAD provides
representations of emergency scenarios that closely reflect real-world conditions. To capture the
diverse challenges faced by emergency services in both urban and suburban settings, the dataset
incorporates real-time data from aerial drones and ambulances. The inclusion of actual incident
records enhances the reliability and value of the dataset for emergency response analysis. IERAD
addresses a wide range of emergency situations, considering factors such as traffic conditions,
incident severity, and weather, thereby supporting robust and consistent Al-based optimisation of
emergency service routing. Collaboration with local partners has ensured that IERAD serves as a
practical resource for emergency studies. All sensitive information within the dataset has been
anonymised, preserving the integrity and analytical value of the data. Table 2 presents a
comparative analysis of performance evaluation metrics between the proposed system and
conventional rule-based and heuristic methods.

Table 2

Performance Evaluation

Aspect Metric Proposed Traditional Heuristic

Performance Operational Speed (Seconds) 9.5 15.5 17.0

Comparison Decision Accuracy (%) 92.3 78.6 74.9
Resource Efficiency (%) 87.5 70.2 68.0

System Resource Management Efficiency (%) 88.0 69.5 65.7

Evaluation Average Response Time (Minutes) 7.2 12.8 14.5
Decision Accuracy (%) 91.5 79.0 75.3

Case Study Average Response Time (Minutes) 6.8 13.2 14.8

Application Number of Incidents Handled 150 120 110
Resource Deployment Efficiency (%)  89.0 71.5 69.0

Figure 2 illustrates the deployment of emergency units to incident locations, with dashed lines
and associated timings indicating the planned routes. In the upper-central zone, a single emergency
team attends to multiple incidents at 4.0, 4.5, 7.2, and 10.0 minutes, demonstrating efficient
handling of simultaneous events. Units on the right manage incidents within their designated area,
with the first unit responding to two incidents in 2.0 and 4.5 minutes, while the second unit is
dispatched to a more distant incident in 16.1 minutes, ensuring that the closest calls are prioritised.
In the lower section of the grid, units are dispatched on missions taking 8.2, 5.7, and 4.5 minutes,
respectively. These results highlight the improvement in response selection achieved through DQN
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learning from real-time information provided by the KG. The KG continuously integrates spatial,
temporal, and resource data, maintaining real-time links as emergency situations evolve.
Consequently, emergency services are able to make rapid and well-informed decisions. The findings
indicate that employing CDSS-ER enhances resource utilisation, accelerates response times, and
streamlines overall operational workflow more effectively than conventional rule-based methods.
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Fig.2: Urban Disaster Response Allocation (Metropolitan Sydney, Australia)

Figure 3 presents a comparison of the accuracy achieved by different approaches over ten
simulation runs. The proposed method demonstrates an improvement from approximately 88%
accuracy in the initial run to around 95% by the tenth iteration. In contrast, the traditional method
begins with an average accuracy of 75%, gradually increasing to just below 80%, while the heuristic
approach starts at 70% and reaches roughly 74% by the final run. The integration of KG with DQN
within CDSS-ER accounts for the substantially superior performance of the proposed system. This
configuration allows the system to progressively refine its decision-making over time. Traditional
and heuristic approaches, relying on fixed strategies, lack the adaptability required to achieve
comparable improvements. The experimental results confirm that CDSS-ER offers a more efficient,
responsive, and scalable solution for managing complex emergency scenarios.

954 ¥ Propesed 3 e

Traditional —

—=—  Heuristic

204 - -~
854

80

Decishon Accursey (%)

754

704

v
&
o
e

Simulation Run

Fig.3: Decision Accuracy
809



Decision Making: Applications in Management and Engineering
Volume 8, Issue 2 (2025) 801-815

Figure 4 illustrates the superior performance of the proposed method compared with traditional
and heuristic approaches after 50 training episodes. Initially, the model achieves approximately 56%
accuracy, followed by a consistent upward trend, reaching around 89% accuracy by the final
episode. In comparison, the traditional method maintains a static accuracy of 70%, while the
heuristic approach remains at 65%. The progressive improvement of the proposed method
demonstrates the effective synergy between KG and DQN within CDSS-ER. Its performance
increases incrementally as it incorporates feedback from interactions, a capability absent in the
conventional approaches. These findings indicate that the proposed CDSS-ER enhances both
adaptability and decision accuracy in emergency scenarios, outperforming traditional strategies due
to its continuous learning capability.
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Fig.4: Average Accuracy

Figure 5 depicts the operational speed of the proposed, traditional, and heuristic methods
across ten simulation runs. The proposed CDSS-ER consistently outperforms the other approaches,
initially completing tasks in 12.5 seconds and subsequently improving to 9.8 seconds. In
comparison, the traditional method begins at 18 seconds, decreasing to 15.6 seconds, while the
heuristic approach starts around 20 seconds and converges to 17 seconds. The progressive
improvement in the proposed method highlights its effectiveness in reducing response times
through intelligent decision-making. In contrast, the limited gains observed in traditional and
heuristic methods reflect their rigid operational frameworks. These results indicate that the
integration of DQN and KG within CDSS-ER enhances both decision accuracy and the speed of
responder actions, making it particularly suitable for emergency scenarios requiring rapid
intervention.
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Figure 6 presents the efficiency metrics of three decision-making approaches—CDSS-ER (92%),
traditional methods (75%), and heuristic approaches (68%). These percentages are calculated based
on assessments of resource utilisation, response times, and decision accuracy during emergency
scenarios. The figure provides a quantitative comparison of each method’s ability to process
information and adapt to changing conditions, with higher efficiency scores reflecting superior
performance in time-critical and resource-limited environments.
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Figure 7 demonstrates that the proposed CDSS-ER substantially outperforms the alternative
approaches in terms of resource utilisation across ten simulation runs. In the initial run, CDSS-ER
achieves 85% efficiency, which increases to 94.5% by the tenth run. The traditional method exhibits
only a modest improvement, rising from 70% to 74.5%, whereas the heuristic approach progresses
from 65% to just below 69.5%. These results corroborate that CDSS-ER excels at managing
resources effectively and delivering superior responses in rapidly evolving emergency scenarios, as

highlighted in the abstract.

6. Discussion
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The proposed CDSS-ER exhibits significant advantages over conventional and heuristic
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approaches in dynamic emergency scenarios through the integration of KG and DQN. The system
attains a decision accuracy of 92.3%, markedly exceeding that of traditional (78.6%) and heuristic
(74.9%) methods, while reducing operational time to 9.5 seconds, thereby enhancing
responsiveness. Resource utilisation reaches 87.5%, with resource management efficiency
improving to 88.0%, reflecting superior coordination and real-time allocation. Figure 4 highlights the
model’s learning progression, with accuracy increasing from 56% to 89% over 50 episodes, and
Figure 7 demonstrates resource utilisation improving from 85% to 94.5% across ten simulation runs.
These results substantiate the claims made in the abstract, confirming that CDSS-ER enhances
adaptability, scalability, and decision-making quality in high-pressure emergency environments.
Additionally, the system achieves an average response time of 6.8 minutes in real-world case
studies and is capable of managing up to 150 incidents, demonstrating operational robustness.
Collectively, CDSS-ER provides a reliable and intelligent alternative to static systems, particularly in
contexts requiring real-time, context-aware decision-making.

7. Conclusion

In this study, a robust CDSS-ER was developed by integrating KG and DQN to address the
complexities inherent in emergency response. The framework enables the construction of a
dynamic KG from diverse and rapidly evolving emergency data, supporting context-aware decision-
making. Experimental results demonstrate that the CDSS-ER substantially improves resource
utilisation, achieving high success rates. These findings confirm that the system continuously
evolves through feedback while maintaining comprehensive situational awareness. Its adaptive
design allows for faster and more accurate responses in dynamic environments, underscoring its
operational value. Overall, the proposed CDSS-ER is both scalable and intelligent, offering a practical
solution for emergency response as well as applications in public safety, disaster management, and
healthcare logistics. The scalability of CDSS-ER is further validated by consistent performance
enhancements across increasing simulation runs. Operational time decreased from 12.5 to 9.8
seconds, decision accuracy improved from 88% to 95%, and resource utilisation efficiency rose from
85% to 94.5%. These outcomes illustrate that the system not only adapts to increasing complexity
but also enhances performance over time. This stability under expanding workloads confirms the
framework’s suitability for large-scale, real-time deployment in emergency management scenarios.

8. Limitations and Future Directions

Despite its advantages, the proposed CDSS-ER faces certain limitations, including challenges in
transferring knowledge to previously unseen emergency scenarios and the considerable time
required for KG updates and DQN inference. These issues may constrain an organisation’s capacity
to scale resources effectively in complex situations. Future research should focus on enhancing
model flexibility through online learning, developing real-time efficient versions, and extending
applications to areas such as epidemic control and smart city logistics to assess broader usability.
Additionally, subsequent work will investigate the adaptation of the CDSS-ER framework for
manufacturing and industrial automation, emphasising real-time decision-making and resource
optimisation within dynamic production environments. This extension seeks to demonstrate the
system’s versatility and applicability across diverse high-stakes domains.
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