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Original scientific paper 

Abstract: In this paper, it is assumed that there is a violation of 
homoskedasticity in a certain classical linear regression model, and we have 
checked this with certain methods. Model refers to the dependence of savings 
on income. Proof of the hypothesis was performed by data simulation. The aim 
of this paper is to develop a methodology for testing a certain model for the 
presence of heteroskedasticity. We used the graphical method in combination 
with 4 tests (Goldfeld-Quantum, Glejser, White and Breusch-Pagan). The 
methodology that was used in this paper showed that the assumption of 
homoskedasticity was violated and it showed existence of heteroskedasticity. 

Key words: Economic phenomena; heteroskedasticity; homoskedasticity; 
random errors. 

1. Introduction 

Econometrics is a discipline that determines the connection between economic 
phenomena and confirms or does not confirm economic theory, starting from 
mathematical equations and forming econometric models suitable for testing. 
Regression analysis is one of the most commonly used tool in econometrics to describe 
the relationships between economic phenomena. One of the classic assumptions of 
linear regression is homoskedasticity. Homoskedasticity implies that the variance of 
random error is constant and equal for all observations. When the random errors of 
the classical linear regression model are not homoskedastic, then they are 
heteroskedastic (Mladenović & Petrović, 2017). 

The main goal of the paper is to show how the linear regression model behaves in 
conditions of violating the assumption of homoskedasticity and how this violation is 
detected. The basic contribution of the paper is that in one place it gives a developed 
method of detecting violating of homoskedasticity, ie the existence of 
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homoskedasticity in linear regression models. This paper presents a methodology for 
detecting heteroskedasticity in linear regression models by a combination of a 
graphical method and four tests. 

 
After the introduction, a review of the literature was performed, after which the 

basics of heteroskedasticity were presented. In this part of the paper, the Goldfeld-
Quantum, Glejser, White and Breusch-Pagan tests are presented.  At the end of the 
paper, concluding remarks were made and recommendations for further research 
were given. 

2. Literature review 

Aue et al. (2017) state that heteroskedasticity is a common characteristic of 
financial time series and most often refers to the process of model development using 
autoregressive conditional heteroskedastic and generalized autoregressive 
conditional heteroskedastic processes. Ferman and Pinto (2019) formed a model of 
inference that works with adjusting differences in differences with several treated and 
many controlled groups in the presence of heteroskedasticity. Charpentier et al. 
(2019) developed the Gini-White test, which shows greater strength in solving the 
problem of heteroskedasticity than the ordinary White test in cases when external 
observations affect the data. Moussa (2019) analyzes cases in which 
heteroskedasticity is the result of individual effects or idiosyncratic errors, or both. 
Linton and Xiao (2019) study the effective estimation of nonparametric regression in 
the presence of heteroskedasticity and conclude that in many popular nonparametric 
regression models their method has a lower asymptotic variance than the usual 
unweighted procedures. A large number of authors pay attention to heteroskedasticity 
and develop models for solving certain problems (Baum & Schaffer, 2019; 
Brüggemann et al., 2016; Lütkepohl & Netšunajev, 2017; Cattaneo et al., 2018; Ou et 
al., 2016; Sato & Matsuda, 2017). Taşpınar et al. (2019) investigate the properties of 
finite samples of the heteroskedasticity-robust generalized method of moments 
estimator (RGMME), ie develop a robust spatial econometric model with an unknown 
form of heteroskedasticity. Crudu et al. (2017) propose a new inference procedures 
for models of instrumental variables in the presence of many, potentially weak 
instruments that are robust to the presence of heteroskedasticity. Lütkepohl and 
Velinov (2016) compare  models of long-term restriction that are widely used to 
identify structural shocks in vector autoregressive (VAR) analysis based on 
heteroskedasticity. Harris and Kew (2017) test adaptive hypotheses for a fractional 
differential parameter in a parametric ARFIMA model with unconditional 
heteroskedasticity of unknown shape. In the case of heteroskedasticity, there are 
occasionally precise theoretical reasons for assuming that the errors have different 
variances for different values of the independent variable. Very often, arguments for 
the presence of heteroskedasticity are so well defined, and sometimes there is a vague 
suspicion that the assumption of homoskedasticity is too strong (Barreto & Howland, 
2006). It is important to note that heteroskedasticity is a common occurrence in 
spatial samples due to the nature of collection of data. Obvious sources of 
heteroskedasticity are associated with different dimensions for different regions in 
the study area, unequal concentrations of population and economic activity in rural 
and urban areas (Arbia, 2006). Baum and Schaffer (2019) provide advice and guidance 
to researchers who wish to use tests to check heteroskedasticity. 
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3. Methodology 

The simplest form of linear regression, which shows a linear relationship between 
two phenomena, is a simple linear regression:  

Y X                                                                                                                                   (1) 

𝜀 is a random error that we make during linear regression, and α and β are 
unknown parameters. To estimate the unknown parameters, we use a sample. For 
fixed n values of the independent variable 𝑋 the values of the variable 𝑌 are 
determined. In this way, n pairs (𝑋1, 𝑌1),  (𝑋2, 𝑌2), … , (𝑋n, 𝑌n) are obtained, which 
forming the model of the simple linear regression sample: 

,i i iY X             i = 1,2, …, 𝑛                                                                                              (2) 

The assumption of homoskedasticity for the random variable 𝜀i is: 

2 2( ) ( ) .,i iv E const         for each i = 1,2, …, n                                                         (3) 

When this assumption is violated, that is, when the random errors of the classical 
linear regression model do not satisfy this characteristic, then they are 
heteroskedastic. 

If the assumption of homoskedasticity (Jovičić, 2011): 

 
2 2 2( ) ( ) ( )i i i iv E E E        ,           for each 𝑖                                                     (4) 

is not met, but the variances are different and valid: 

2( )i iv                         i = 1, . . ., 𝑛,                                                                                               (5) 

respectively (Mladenović & Petrović, 2017),  

2 2 2
1 1 2 2( ) , ( ) ,..., ( ) ,n nv v v                  

2

1  ≠ 2

2
 ≠ … ≠ 2

n                          (6) 

it can be said that the errors are heteroskedastic or there is heteroskedasticity in the 
model. 

Figure 1 presents a model where heteroskedasticity of the error is assumed. The 
growth of savings with increasing income is shown, where the variance of savings is 
smaller with different income levels. The variance is not constant, but increases with 
the growth of income, which corresponds to real economic relations (Mladenović & 
Petrović, 2017). 
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Figure 1. Heteroskedastic errors 

Source: Mladenović & Petrović (2017) 

Heteroskedasticity can also be caused by errors of specification . For example, by 
omitting an important regressor whose influence will be covered by the error, a 
different variation of the error for different observations can be obtained. Similarly, 
the wrong functional form of the model can lead to heteroskedasticity of the error. As 
data collection techniques are advancing, which implies the provision of 
representative samples for statistical processing, so do errors and thus their 
dispersions are decreasing. And this may be another reason for the occurrence of 
heteroskedasticity. 

3.1. Consequences of heteroskedasticity 

The presence of heteroskedasticity in the model of dependence of savings on 
income can be represented on the basis of the following point scatter diagram (Figure 
2): 
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Figure 2. Diagram of distribution of points (Mladenović & Petrović, 2017) 

Estimates of unknown parameters using the ordinary least squares method are 

determined from the condition that the residual sum of squares, 2
ie , is minimal. In 

that case, all squares of the residuals have the same weight, ie they give the same 
information when forming the necessary estimates. This condition is not precise 
enough for the sample presented in Figure 2. Data that are far from the sampling 
regression line provide less useful information about its position than those that are 
closer to it. Higher residual values in absolute terms correspond to more distant data. 
These residues dominate in the total residual sum of squares. Therefore, it is realistic 
to expect that the application of ordinary least squares method does not provide 
estimates with desirable statistical properties. 

Suppose that in the model (Mladenović & Petrović, 2017): 

0 ,i i iY X                                                                                                                             (7) 

there is heteroskedasticity: 

2( ) ,i iv       i = 1 , 2, …, n                                                                                                             (8) 

The estimate b of the parameter β, obtained using the ordinary least squares 
method, is unbiased, because the corresponding proof does not use the assumption of 
the stability of the variance of the random error. 

To determine the variance of the estimate b we start from the expression: 

b – β =
1

n

i i

i

w 


  ,                                                                                                                                  (9) 

 
2

1

    i
i n

i
i

x
w

x





 ,                                                                                                                                (10) 
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based on which the variance is: 
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   (11) 

In the Eq. (11), all elements of the form  i jE   , i ≠ j are equal to zero. 

The expression for the variance of the estimate b is: 

       2 2 2 2 2 2

1 1 2 2        n nv b w E w E w E    
 

2 2 2 2 2 2
1 1 2 2      n nw w w     . 
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                                                                                        (12) 

The variance of the estimate b, in a simple linear regression model, is given by the 
following expression: 

 
2

2

1

 
n

i
i

v b

x








                                                                                                                              (13) 

When the existence of heteroskedasticity is neglected, the estimate of the variance 
of the estimate b is obtained by the following formula: 

2
2

2 1

2 2

1 1

1
   

2

n

i
i

b n n

i i
i i

es
s

nx x



 

 




 
                                                                                             (14) 

When the variance of the random error grows in parallel with the explanatory 

variable then the estimate 2
bs underestimates the actual variance of the estimate b. 

This arises because the estimate of the random error variance, 2s , underestimates the 

actual random error variance of the initial model. 
Thus, the properties of the estimates of parameter obtained by applying the 

ordinary least squares method in the presence of heteroskedasticity are: 
1. The ratings are unbiased, 
2. Estimates do not have minimal variance, that is, they are ineffective. 
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3. The assessment of the variance of a random error underestimates, in most 
cases, the actual variance. Therefore, the estimate of the variance of the 
estimate of slope,  , also underestimates the variance  . 

4. Confidence intervals and tests based on the assessment of the variance of 
a random error are unreliable. 

3.2. Testing of heteroskedasticity  

The true nature of heteroskedasticity is usually unknown, so the choice of the 
appropriate test depends on the nature of the data. But as the amount of error 
variation around the mean value typically depends on the height of the independent 
variables, all tests rely on examining whether the error variance is some function of 
the regressor. Certain methods for testing the existence of heteroskedasticity are 
presented below. 

3.2.1. Graphic method 

One of the simplest methods for examining the existence of heteroskedasticity 
consists in visually viewing the residuals of the estimated model. It is common to form 

point scattering diagram of residual 𝑒𝑖  or their absolute value, ie , and independent 

variable ix . Since the variance of a random error  2
iE  , there is an opinion that on 

the point scattering diagram of residual values should be replaced by their square, 2
ie

. 
Based on the point scatter diagrams, we can conclude about whether 

heteroskedasticity exists, and if so, in what form it occurs, ie how the variance of 
random error is generated. Figure 3 presents graphs of some of the possible point 

scatter diagrams (Mladenović, 2011). 

 

Figure 3. Point scatter diagrams (Mladenović, 2011) 
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The first graph corresponds to a model in which there is no systematic dependence 
between the variances of random errors and the independent variable .ix  In such a 

model, random errors can be considered homoskedastic. Other graphs show the 
regularity in the position of the points on the scatter diagram, suggesting possible 
heteroskedasticity. The second graph indicates a linear dependence, while the third 
and fourth graphs represent the dependence expressed in square form, in the sense 

that the variance of the random error is correlated with 2
ix . 

Graphic methods are only a means of preliminary analysis. In order to get a more precise 

answer to the question of whether heteroskedasticity is present or not, it is necessary to use 

appropriate tests. 

3.2.2. Goldfeld-Quandt test 

One of the earliest, which is very simple and often used is the Goldfeld-Quandt test 
(Kalina & Peštová, 2017). This test tests the null hypothesis of random error constancy 
versus alternative that the variance of a random error is a linear function of the 
independent variable. It is assumed that the random error is non-autocorrelated and 
with normal distribution. The test procedure is as follows (Mladenović & Petrović, 
2017): 

 Observations from the sample are arranged according to the increasing 
values of the independent variable. 

 From the set of n observations, c central observations are omitted, so that 

further analysis is based on two sets of observations: the first 
2

n c
 and 

the last 
2

n c
 observations where is necessary to ensure that 

2

n c
k


 , 

and 𝑘 is the number of evaluated parameters. 

 We individually evaluate the two regressions based on the first 
2

n c
 and 

the last 
2

n c
 observations. The obtained sums of the residual squares are 

denoted by 2
1e  and 2 2 2

2 1 1   e e e    ( 2
1e corresponds to the regression 

with the lower, аnd 2 2 2
2 1 1   e e e    to the regression with the higher values 

of the independent variable). 
The homoskedasticity of a random error implies the same degree of variation in 

two subsets of observations, which is manifested by approximately the same values of 

the variable sums 2
1e  and 2 2 2

2 1 1   e e e   . In this case, the quotient of these two sums 

is close to the value of 1. On the contrary, the existence of heteroskedasticity results in 

a higher value of the residual sum 2 2 2
2 1 1   e e e   . The purpose of the test is to check 

whether 
2
2

2
1

e

e




 is statistically significantly different from 1. Assuming that the null 

hypothesis of constant variance is correct, the following holds: 

2
21

22

2

 :  n c k

e
x


 


                                                                                                                                 (15) 
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2
22

22

2

 :  n c k

e
x


 


                                                                                                                                 (16) 

where the k is the number of parameters for evaluation in the known model. It follows 
that the observed relationship: 

2
2

2
1

e

e




  

has an F – distribution with 
2

2

n c k 
 and 

2

2

n c k 
 degrees of freedom. 

Therefore, the Goldfeld-Quandt test statistic is in a form: 

2
2

2
1

 
e

F
e





                                                                                                                                          (17) 

If the calculated value of F – statistics is higher than the corresponding critical value 
at a given level of significance, we conclude that there is heteroskedasticity in the 
model. 

3.2.3. Glejser test 

The application of this test does not require a priori knowledge of the nature of 
heteroskedasticity, but it is reached during the testing. The test procedure is as follows 
(Im, 2000): 

 The initial regression   0  1  1         i i k ik iY X X        is estimated by the 

method of ordinary least squares and the residuals   ie  are calculated . 

 The next regression is estimated: 

0 1    errorh
i ie X                                                                                                                   (18) 

The values 1, −1, and 1/2 are usually assigned to the parameter h  so that 

regressions are evaluated: 

 0 1    errori ie X                                                                                                                   (19) 

0 1    / errori ie X                                                                                                                (20) 

0 1    errori ie X   
                                                                                                           (21) 

 The statistical significance of the evaluation of the parameter 1  is tested 

using the t-test. 
 The coefficients of determination obtained for different values of the 

parameter h are compared. 
The statistical significance of the estimate 1  leads to the conclusion that there is 

heteroskedasticity. The very character of heteroskedasticity is determined according 
to the regression with the highest value of the coefficient of determination. 
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3.2.4. White test 

The test is based on the comparison of the variance of the estimators obtained by 
the method of ordinary least squares in the conditions of homoskedasticity and 
heteroskedasticity. If the null hypothesis is correct, the two estimated variances would 
differ only due to fluctuations in the sample. The null hypothesis about the 
homoskedasticity of a random error is tested against the widely placed alternative 
hypothesis that the variance of a random error depends on the explained variables, 
their squares and intermediates, ie. the variation of the residuals under the combined 
action of the regressors is examined. 

The White test consists of the following steps (White, 1980): 
Step 1: The model   0  1  1         i i k ik iY X X        should be estimated to obtain a 

series of residuals ie  ie their squared values. 

Step 2: Evaluate the auxiliary regression in which the squares of the residuals of 
the function of all regressors of the model, their squares and intermediate products, ie 
apply the method of ordinary least squares on 

2
0 1 1 2 2       i i i p ipe Z Z Z error        , i = 1, 2, …, n,  where for simple regression

2
1 2  2,         i i i ip Z X and Z X   so the test is based on analysis of model

2 2
0 1 2       i i ie X X error      , i = 1, 2, …, n. The significant influence of the independent 

variables iX  and 2
iX  at 2  ie  results in a high value of the coefficient of determination 

2R . 
The significant influence of the independent variables 1iX  and 2iX , the 

specification is 5p  , 2
1 1 2 2 3 1 2 4 1    ,      ,      ,       i i i i i i i i iZ X Z X Z X X Z X    and 2

5 2 i iZ X . Due 

to the possible large loss of degrees of freedom, it is possible to use instead of 

individual values of the regressors, their linear combination: 2,  i iY Y . 

Step 3: Based on the value of the coefficient of determination from the auxiliary 

regression, 2
WR , form the White test 2

WnR , where n  is the sample volume. 

Asymptotically, under the null hypothesis of homoskedasticity, the test statistic 2
WnR  

leads to 2  distribution with the number of degrees of freedom equal to the number 

of regressors in the auxiliary regression: 2 2 ~ W pnR X . 

Step 4: If the calculated value of the test statistics is greater than the tabular value, 
ie if the coefficient of determination in the auxiliary function of the residual square is 
high enough, the homoskedasticity hypothesis is rejected. 

The White test is not sensitive to the deviation of errors from normal and it is 
simpler, so it is more often used to test the existence of heteroskedasticity. In the case 
that there are multiple regressors, the introduction of squares and all intermediates 
in the auxiliary regression can mean a large loss in the number of degrees of freedom. 
That is why the White test is often performed without intermediates. 

3.2.5. Breusch-Pagan test 

This test is based on the idea that the estimates of the regression coefficients 
obtained by the least squares method should not differ significantly from the 
maximally plausible estimates, if the homoskedasticity hypothesis is true (Halunga et 
al., 2017). The null hypothesis about the homoskedasticity of random error is tested 
against the broadly set alternative hypothesis about the influence of a number of 
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factors on the variance of random error. For simplicity, assume that test examines the 
influence of the explanatory variable iX  in simple regression. The testing procedure 

is as follows (Mladenović & Nojković, 2017): 
Residuals ie  are formed from the regression  iY  at a constant and iX . 

The average value of the sum of the squares of the residual is determined: 
2

2  
e

sp
n


 , and then forms a new variable: 

2
1

2
  ,i

e
G

sp
   i = 1, 2, … , n. 

From regression iG  at iX  the explained sum of the squares of the dependent 

variable is obtained  2ˆig . 

The Relationship 
2

2

ˆig
 has 2X  distribution with one degree of freedom. 

The heteroskedasticity hypothesis will be accepted when the value of the calculated ratio
2

 
2

ˆig
 is greater than the critical value of 2X  distribution with one degree of freedom. 

4. Application of the model: Data simulation 

Table 1 shows the data so as to simulate the next deviation 2 2   0.01i iX  . The 

population straight line is    2   3Y X  , where Y is savings and X is income. In line ,iY  

  1  ,   , 30i  , there are values Y  to which errors  i have been added. 

Table 1. Display of simulated data 

No. Xi Y i Yi 

1  10 32  -0.13677   31.86323 

2  10 32   1.045263   33.04526 

3  10 32   0.324248   32.32425 

4  10 32  -1.80589   30.19411 

5  10 32   0.568473   32.56847 

6  10 32  -0.17024   31.82976 

7  10 32   0.676169   32.67617 

8  10 32  -0.57257   31.42743 

9  10 32  -1.53944   30.46056 

10  10 32  -0.38377   31.61623 

11  20 62  -4.85783   57.14217 

12  20 62  -1.66701   60.33299 

13  20 62   9.513881   71.51388 

14  20 62   0.817791   62.81779 

15  20 62 -11.1762   50.82381 

16  20 62   -6.47024   55.52976 
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17  20 62    9.51661   71.51661 

18  20 62    2.045394   64.04539 

19  20 62    5.286107   67.28611 

20  20 62    7.451416   69.45142 

21  30 92  19.59112 111.5911 

22  30 92  33.2486 125.2486 

23  30 92 -23.2211   68.7789 

24  30 92 -28.8606   63.13944 

25  30 92  38.95497 130.955 

26  30 92   -1.97921   90.02079 

27  30 92 -36.9439   55.05615 

28  30 92  12.09004 104.09 

29  30 92  41.06767 133.0677 

30  30 92 -38.0374   53.96263 

 

Based on the values iY  and iX  from Table 1 evaluate the linear regression model 

is evaluated: 

,

2: (0,0.01 ),

1,2,...,30

i i i

i i

Y X

N X

i

  



  



 

After evaluation, the following results were obtained (Table 2): 

Table 2. Coefficients 

Мodel Estimated value Standard error 𝑝 - value 

�̂� 

�̂� 

1.022 

3.090 

8.880 

0.411 

0.909 

0.000 

After the obtained coefficients, the analysis of model variance was performed 
(Table 3): 

Table 3. Analysis of variance 

 Sum of quares 
No. of degrees 

freedom 

Average value 

of Sum 
𝑝 - value 

REGRESSIONAL 

RESIDUAL 

TOTAL 

19090.319 

9462.096 

28552.414 

1 

28 

29 

19090.319 

337.932 
0.000 

The coefficient of determination was determined, 2R  = 0.669. 
Figure 4 graphically shows the simulation model. 
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Figure 4. Graphic representation of the population model 

Figure 4 shows the population line    2   3Y X   by interrupted line, while the sample 

line   1.022 .0ˆ 3 90Y X   is shown by full line. The graph clearly shows that the 

scatterings are higher for higher values of the independent variable X  and that 

sample line Ŷ  slightly deviates from the line  Y . After the graphical representation of 

the model, it can be assumed that certain deviations exist, so we will test the 
heteroskedasticity with the previously described tests. 

 

4.1. Graphic method 

Figure 5 in graph (a) clearly shows the relationship between the residuals and the 
independent variable X  (the larger X , the larger residuals), while in diagram (b) the 
dependence of the squared residuals with respect to X  can be seen (the dependence 
in the square form). 

 

Figure 5. Diagrams of Residual Scattering 
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4.2. Goldfeld-Quandt test 

After the order of observations in ascending order of magnitude X  two models 
(for the first 15 and last 15 observations) of linear regression        i i iY X      are 

evaluated.  
The first 15 observations: 

2  3.075 2.873        0.92ˆ
i iY X R   .  

          (3.324)  (0.235) 

The last 15 observations: 

2 2ˆ   9.516 2.803        0.22i iY X R   .  

       (39.369)    (1.454) 

The residual sum for the first 15 observations is 18.411, and for the last 15 
observations it is 704,495. Based on these residuals, the value of the test statistic is: 

704.495
  38.26
18.411

F   .  

As the critical value of the 𝐹 - distribution with 13 and 13 degrees of freedom and 
a significance level of 0.05 is 2.58, this test shows that heteroskedasticity is present 
(the value of the test statistics is higher than the critical value). 

4.3. Glejser test 

Three linear regression models are being tested: 

Model 1:                                         i ie X error     

Model 2:                                          /i ie X error     

Model 3:                                         i ie X error     

The results are shown in Table 5.  

Тable 5. The results of the Glejser test 

 
estimated 

PARAMETERS 

ESTIMATED 

VALUES 

standard 

error 
𝑝 -value 𝑹𝟐 

MODEL 1 
�̂� 

�̂� 

-15.419 

1.335 

4.169 

0.193 

0.001 

0.000 
0.631 

MODEL 2 
�̂� 

�̂� 

31.510 

-331.137 

4.500 

66.813 

0.000 

0.000 
0.467 

MODEL 3 
�̂� 

�̂� 

-37.469 

11.151 

7.804 

1.745 

0.000 

0.000 
0.593 

The estimated parameters that stand next to the regressors are statistically 
significant. All parameters are suitable for testing the hypothesis of heteroskedasticity, 
and based on the coefficient of determination, the first is preferred because it is the 
largest. This test also shows the presence of heteroskedasticity. 
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4.4. White test 

Auxiliary linear regression was estimated: 

2 2
0 1 2       i i i ie X X        

  and the values are shown in the following Table 4: 

Тable 4. Coefficients 

Мodel 
estimated 

value 

standard 

error 
𝑝 - value 

�̂�
𝟎
 

�̂�
𝟏
 

�̂�
𝟐
 

766.923 

-117.142 

4.053 

484.031 

54.964 

1.360 

0.125 

0.042 

0.006 

where the coefficient of determination is 2     0.607WR  . It can be observed that the 

coefficients along with iX  and 2   iX are statistically significant while the constant is 

not. White's test statistic is 2    30   0.607  1  8.21WnR    which is greater than the tabular 

value of the 2  istribution with two degrees of freedom, 5.991. It is the same 

conclusion as before, that heteroskedasticity is present. 

4.5. Breusch-Pagan test 

Based on the linear regression equation 1.022 3.090i iY X   the estimated value 

of the error variance is obtained: 

2 9462.10
  315.403ˆ

30
      

The new regression equation: 

2 5ˆ   1.8 2 0.143 ip X   

             (0.609)      (0.028) 

where is:  

2 2

2
 
315.403ˆ

i i
i

e e
p


    

 Test statistics is: 

2
40.660

    20.33
2

ˆ

2

ig
   

  The critical value of the 𝜒2 distribution with one degree of freedom and a 
significance level of 0.05, is 3.841, so it is also concluded that heteroskedasticity is 
present. 
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4.6. Discussion 

After testing, it is clear that all four tests show the presence of heteroskedasticity 
in a given model. The Goldfeld-Quandt test shows that the F – distribution is equal to 
2.58 and it is higher than the corresponding critical value at a given level of 
significance (0.05). Based on this we can conclude that heteroskedasticity is present 
in the model. In the Glejser test the parameter  1  is tested and the coefficients of 

determination obtained for different values of the parameter h are compared. In this 
model (Table 5) all parameters are suitable for testing the hypothesis of 
heteroskedasticity, and based on the coefficient of determination, the first is preferred 
because it is the largest. This test also shows the presence of heteroskedasticity. White 
test shows that the calculated value (18.21) of the test statistics is greater than the 
tabular value and we can conclude heteroskedasticity is present. In the Breusch-Pagan 

test the value of the calculated ratio is 20.33 and it is greater than the critical value of 2X  

distribution that is 3.841 with one degree of freedom, and we also can conclude that 

heteroskedasticity is present. 

5. Conclusion 

One of the classic assumptions of linear regression is homoskedasticity, and when 
it is disturbed, heteroskedasticity occurs. Graphical methods and heteroskedasticity 
tests are used to detect heteroskedasticity, although it is not possible to say with 
certainty which test is the best. In this paper, we explained and applied the graphical 
method and four tests (Goldfeld-Quantum, Glejser, White and Breusch-Pagan test). 
Through a review of the literature, it can be seen that many authors have addressed 
this issue and used various tests to detect heteroskedasticity. 

The tests were applied by data simulation. It can be seen that the graphical method 
and all four applied tests confirm the presence of heteroskedasticity, so we can 
conclude that all four tests showed a good result and that it can be confirmed the 
assumption of the existence of heteroskedasticity in the model.  

Future researchers are left with the question of solving heteroskedasticity, ie the question 

of removing heteroskedasticity from the model. When eliminating heteroskedasticity, care 

must be taken which method can be used depending on the form 
2
i .  
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