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Behavior of curved beams subjected to moving loads has specific application in the 
structural design of bridges, railways, as well as machining frames. With the growth in 
applications of the composite material in structural members, in the form of beams, 
plates, as well as in columns, the stringent analysis of their transient loading behavior 
has been made inevitable. This paper investigates the dynamics of a moderately deep, 
orthotropic curved composite beam subjected to moving mass loads. Analysis is based 
on the first-order shear deformation theory in combination with Hamilton’s principle, 
for the identification of the governing partial differential equations in the spatial as 
well as time domains. These equations are then reduced to ordinary differential 
equations in the spatial domain using Navier’s method, while the temporal aspect is 
resolved using Newmark’s numerical integration scheme. The accuracy of the model's 
natural frequency predictions is validated through comparison with both straight and 
curved composite beam configurations, as well as with cases involving moving mass 
loads, demonstrating strong agreement with previously published results. In practical 
engineering scenarios, particularly in high-speed railway systems and aerospace 
structures, selecting the optimal configuration of curved composite beams 
necessitates careful consideration of factors such as stiffness, weight, 
manufacturability, and resilience to dynamic loading. The study reveals that increasing 
the mass and length of the beam leads to a notable amplification in its dynamic 
response. Additionally, the stacking sequence and orientation of the composite layers 
play a decisive role in influencing vibrational behaviour. Nonetheless, the 
configuration of the layers profoundly affects the dynamic responding related to the 
beam curved counting on a moving mass, with the amplitude of structural oscillations 
being maximized for   layers and minimized for   layers. To support optimal design 
strategies, a Multi-Criteria Decision-Making (MCDM) framework is introduced, 
enabling a structured evaluation of trade-offs among structural stiffness, mass, cost, 
and vibration performance. The findings underscore the necessity of such a decision-
making tool in selecting optimal beam configurations under realistic dynamic loading 
conditions, considering variables such as load velocity, curvature, and anisotropic 
material behaviour. This research offers practical guidance for engineers in choosing 
suitable laminate architectures and materials to reduce vibration and enhance 
durability in transportation and civil engineering infrastructure. The study 
contributes to informed decision-making in high-speed rail and aerospace 
applications, where control of dynamic performance is of critical importance. 
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1. Introduction 
Composite curved structures, initially developed for aerospace rings, have progressively 

expanded their applications into civil engineering, particularly in arch-based systems. Their unique 
capability to efficiently support dynamic moving loads has rendered them increasingly significant in 
contemporary structural engineering practice [21]. These structures are commonly utilised across 
various sectors, including transportation, industrial automation, and robotics, where interaction 
with moving masses—such as vehicles, robotic payloads, or heavy machinery—is prevalent [38]. In 
contrast, straight beams exhibit comparatively simpler dynamic responses due to limited coupling 
among axial, flexural, and torsional vibrations, resulting in more predictable behaviour under 
dynamic excitation [11]. The intrinsic complexity of curved structural elements has prompted the 
development of extensive analytical models aimed at accurately characterising their behaviour 
under diverse dynamic conditions [3]. Modern infrastructure and transportation systems demand 
highly accurate and reliable structural performance, particularly in the face of increasing 
operational velocities, heavier loads, and higher safety and efficiency requirements [1]. 
Consequently, there is an urgent requirement for advanced investigation into the dynamic 
responses of composite curved structures subjected to moving mass scenarios [12].  

Early foundational work, such as that by Smith on elongated strings interacting with moving 
masses, contributed significantly to understanding mass-motion dynamics [10]. However, limited 
focus has been directed towards more sophisticated systems, particularly curved composite 
structures under non-stationary dynamic loading. This creates a knowledge gap requiring renewed 
investigation into the distinctive behaviours of such composites and their implications for structural 
design and material engineering [20]. Recent progress in dynamic modelling of curved composites 
using high-fidelity techniques presents substantial potential. For example, the elasto-dynamic 
response of curved sandwich beams under moving mass loads was analysed using Finite Element 
Method (FEM), highlighting notable interactions between geometry and inertial effects [10]. 
Advanced theories, such as higher-order shear deformation, have also been applied to examine the 
dynamic stability of stiffened curved plates, demonstrating dependence on velocity and stiffness 
gradients [26]. These outcomes have shown consistency with simulations based on variable 
curvature and multi-parameter beam formulations [18].  

Functionally graded materials (FGMs) and porous composites have become crucial in enhancing 
vibration control performance, especially under moving mass effects, due to their tuneable 
stiffness, mass distribution, and damping characteristics [25]. FGMs offer precise design flexibility, 
enabling engineers to optimise vibrational responses and improve structural reliability and longevity 
[15]. Notably, the dynamic response of elliptically curved steel beams under varying-speed moving 
mass loads was successfully controlled through FGM configurations [30]. Despite these benefits, the 
complex vibration behaviours encountered in real-world engineering applications continue to pose 
both challenges and opportunities for material innovation [18].  

Additionally, finite element approximations have shown effectiveness in modelling acceleration-
induced deflections in beams under time-dependent loads [4]. These methods have also proven 
capable of capturing non-uniform spatial curvature variations, encouraging the integration of 
advanced composite materials for enhanced vibration suppression [31]. Collectively, these research 
outcomes emphasise the pivotal role that FGMs and porous composites play in modern structural 
engineering while offering essential theoretical insights for improving the accuracy of dynamic 
response predictions under challenging operational conditions [34]. Recent observations also 
indicate a marked increase in the frequency of high-speed overloaded lorries, intensifying concerns 
over dynamic mass interactions with structural materials in roadways and bridges [22]. The 
materials used in such infrastructures must balance strength and lightness, which is why 
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composites—owing to their high strength-to-weight ratio—are proving to be highly efficient in 
bridges, buildings, and industrial structures [2; 5]. Finite element investigations of asymmetric 
multilayer composite beams subjected to fluctuating loads have been carried out to understand 
their performance [14]. The dynamic contribution of the moving mass can be disregarded if its 
magnitude is negligible in comparison to the structural mass, simplifying the analysis [33]. However, 
the presence of moving masses introduces inertia effects that complicate the governing equations, 
often preventing the derivation of exact solutions [36]. To address this, a modified FEM has been 
proposed for evaluating the longitudinal vibrations of Timoshenko beams composed of FGMs, 
under moving masses with variable velocity, considering dual-parameter modelling [9]. In another 
study, the free and forced vibration behaviour of porous beams, featuring spatially non-uniform 
porosity distributions and nonlinear variations in elastic moduli and density across the thickness, 
was investigated [7]. Further, the transient and free vibration responses of simply supported beams 
under dynamic concentrated harmonic loading have been studied, offering key insights into 
structural behaviour [29].  

The quasi-three-dimensional shear deformation theory was employed to analyse the dynamic 
behaviour of sandwich beams with porous cores and carbon nanotube-reinforced polymer face 
sheets under moving mass loading [6]. Using Euler-Bernoulli theory, the vibration and instability of 
curved beams with varied boundary conditions under moving mass loading were also evaluated, 
including the instability mechanisms arising in vehicles on curved paths [19]. A broader set of 
governing equations for curved beam motion—encompassing vertical, torsional, radial, and axial 
components—was derived using the Lagrangian method by accounting for bending stiffness and 
inertia forces. It was shown that in angular porcelain layers, the dynamic response of the beam 
increases with the fibre orientation angle [17]. In practical engineering settings, particularly in 
transportation infrastructure, the selection of optimal curved composite beam configurations 
requires careful consideration of trade-offs among weight, stiffness, manufacturing constraints, and 
stability under dynamic loading. Civil engineers must assess various laminate stacking sequences, 
geometric curvatures, and material properties to ensure a balance between performance, 
durability, and cost-effectiveness. Previous studies have highlighted the importance of simulation-
based structural optimisation in high-speed railway and aerospace systems, where transient loading 
and vibration control are critical design parameters [27; 35].  

These challenges underscore the necessity of a robust decision-making framework to support 
the rational selection of composite structures in dynamic operating environments [23]. Composite 
curved beams are increasingly implemented in bridges and high-speed transport systems because of 
their favourable mechanical properties and design adaptability. Nonetheless, the selection of an 
ideal configuration remains complex due to the interplay among anisotropic material behaviour, 
geometric parameters, and dynamic forces [37]. Accordingly, engineering decisions must be 
underpinned by validated numerical models capable of predicting dynamic responses across design 
variables, including curvature radius, load velocity, laminate orientation, and mass ratio [16].  This 
research addresses a notable gap in the current literature concerning the dynamic behaviour of 
composite curved beams under non-uniform mass loading. The present study applies first-order 
shear deformation theory to derive the governing equations, which are then solved using the 
Newmark method. Key influencing factors such as beam speed, geometric dimensions, curvature, 
and laminate stacking sequence are evaluated. Hamilton’s principle is employed as the foundational 
framework for deriving the system’s equations of motion. The research is positioned not only as a 
modelling task but also as a contribution to structural design decision-making. By simulating the 
performance of various curved composite beam configurations under dynamic mass loading, the 
study offers insights to inform trade-offs in structural optimisation. It ultimately bridges the divide 
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between analytical simulation and practical engineering design.  
 

2. Structure Modelling 
Figure 1 presents a schematic representation of a layered composite beam featuring a constant 

breadth b  and thickness h . The curvature of the beam is assumed to remain constant over its 

entire arc. The radius of curving and the arc angle of the beam are effectively pointed out by R  and 

0 , correspondingly. The beam’s mid surface is marked with the three coordinates 𝑥, 𝑦, and 𝑧, 
which represent the longitudinal, transverse, and thickness sides, respectively. The displacements 𝑢 

and 𝑤 are associated with the 𝑥 and 𝑧 sides, respectively, while   represents the spinning of the 
beam's cross-section around the 𝑦 axis. As illustrated in Figure 1, the beam is subjected to simple 
support boundary conditions and is analysed under the influence of a moving mass m travelling at a 
constant velocity v. The composite beam comprises multiple orthotropic layers, all of which are 
assumed to be perfectly bonded, ensuring integrated mechanical interaction across the laminate. 
The moving mass is considered to remain in uninterrupted contact with the beam throughout its 
motion, with no possibility of detachment during the loading process. Additionally, the structural 
model omits damping effects, under the assumption that such influences are sufficiently small to be 
neglected within the scope of this analysis.  

 
Fig.1: Diagram of the Composite Curving Beam and Coordinates Display System. 

2.1 Composite Curved Beam Displacement Field 
The governing differential equations for the composite curved beam have been formulated 

based on first-order shear deformation theory. The total displacements in the longitudinal and 
transverse directions for an arbitrary point within the composite curved beam are assumed to 
follow the expressions outlined in [28]. 

(1) 
( ) ( ) ( )

( ) ( )

, , , ,
0

, , ,
0

u x z t u x t z x t

w x z t w x t

= +

=
 

 The mid surface displacement for x and y, respectively, is represented by 0u
 and 0w

. As 
presented in [2], the vertical and shear strain components at an arbitrary point along the beam are 
defined as follows: 
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 where 
1

x  denotes curvature changes, and 
0

x , 
0

xz
 are the vertical and shear strain in the mid 

surface, respectively, as follows: 
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In accordance with Hooke’s law, the stress–strain relationship within layer 𝑘 of the curved 

laminated beam is expressed as follows: 

(5) 
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Where   and z  represent vertical and shear stresses, respectively.
k

xE
 is the equivalent 

elasticity modulus of each stratum, and 55

kQ
 is the transformed elastic stiffness coefficient, as 

defined in [18]: 
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Where 
k  stands for the angle among the x-axis and the fibres of the kth stratum. The elastic 

modulus 22E
 is the moduli of elasticity of the composites in perpendicularly to the fibres, while 11E

 

is the modulus of elasticity in the side of the fibres. Poisson's ratio is denoted by 12
, while shear 

modulus is represented by 13G
, 12G

, and 23G
. 

2.2  Relations of Energy 
The curved beam's strain energy is described as follows: 



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 2 (2025) 71-95 

76 

 
 

 

(7) 

0

0

02

0
2

0 1 0

0

1
(1 ) dzdθ=

2

1
dθ

2

h

h z z

z

z
U b R

R

N M Q R



   



     

   

  

−
 = + + 

 + + 

 


 

 
The corresponding expressions for the resultant forces and moments derived from the 

aforementioned stress–strain relationship are obtained as follows: 

(8) 
1 1 1

1 1 1

, ,
k k k

k k k

n n n
z z z

z
z z z

k k k

N b dz M b zdz Q b dz       
+ + +

= = =

= = =    
 

Where 
Q  and 

M  stand for shear force and curving moment, respectively, and N  represents 
axial force. In Figure 1, the coordinates of the lowest and highest point of the kth layer are 

represented by kz
 and 1kz + , and n is (level No). 

The relationship between the internal forces and moments with respect to variations in 
curvature, shear strain, and normal strain is obtained by substituting equation (5) into equation (8): 
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 Where the stiffness coefficients 11A
, 11B

, 11D
, and 55A

 are denoted as:  

(10) 

( )

( ) ( )

( ) ( )

1
11

1

1
11 1

1

1 1

11
2 11

3 3

55 55 1 12
1

2 2

  ln

  ln

1
( ( 2

2
 

ln

5

) )

4

4 3

n
k k
x

k k

n
k k
x k k

k k

k k k k
n

k

x

kk

k

n
k

k k k k

k

R z
A Rb E

R z

R z
B Rb E z z R

R z

R z R z R z z

D Rb E
R z

R
R z

A b Q z z z z
h

+

=

+
+

=

+ +

+=

+ +

=

 +
=  

+ 

  +
= − −  

+  

 
+ − + − − 

 =
 + 

+   +  

 
= − − −

 







 
 

Accordingly, the strain energy of the curved composite beam is represented as follows: 
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The kinetic energy of the curved beam is defined as follows: 
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Where TotV
 is the total absolute speed, which encompasses both linear and rotational factors. 

Additionally: 
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2.3 Hamilton’s Principle 
This principle is effectively applied to derive the governing equations for the composite curved 

beam, as outlined in [35]: 

( ) 0
0
t

U W T dt  + − =
 

(14) 

𝑇, 𝑈, and 𝑊 show the locomotive energy, straining latent vigour, and work of outer forces, 
correspondingly. 

The following equation describes the variation in the dynamic energy of the composite curved 
beam as the moving mass M travels along the beam at a constant horizontal velocity V. 
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(15) 

The variations in the strain energy of the curved beam are given as follows: 
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(16) 

The variation in energy resulting from the external action of the moving mass M on the specified 
composite curved beam is expressed as follows: 
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(17) 

In the aforementioned connection, D  represents Dirac's delta function. 
By substituting the relationships obtained from equation (14), carrying out the standard spatial 

and temporal integrations, and subsequently simplifying, the governing equations for the composite 
curved beam are effectively formulated in terms of the displacement field components. 
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disregarded.  By performing algebraic manipulations and simplifying the previously established 
expressions, the partial differential equations governing the motion of the system in the axial, 
flexural, and radial directions are derived as follows: 
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2.4  Exact Solution 
This study investigates a simply supported curved composite beam, employing Navier’s method 

to discretise the system’s differential equations within the spatial domain. To satisfy the boundary 
conditions, the displacement field components are defined as follows: 
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(24) 

Where N  represents (count of considered modes), 𝐿 denotes the beam length, and 𝑖 indicates 

the required mode number. Furthermore,
( )iu t

,
( )iw t

, and 
( )i t

 the generalized coordinates of 
the structure. 

The dynamic response of the curved beam is determined by substituting equations (24) into the 
equations of motion (21) to (23). Consequently, the resulting differential equations are as follows: 

          M X + C X + K X = F
 (25) 

In the aforementioned connection, 
 M

 is the mass matrix, 
 C

 the damping matrix, 
 K

 the 

stiffness matrix, 
 X

 the acceleration vector, 
 X

 the velocity vector, 
 X

 to the displacement 
vector, and GH is the force vector. 

The analytical solution to the aforementioned problem is obtained using the Newmark central 
difference method in the time domain. 

 
3. Multi-Criteria Decision-Making (MCDM)  

In modern structural engineering, particularly within high-speed railway systems and aerospace 
applications, selecting the most suitable composite curved beam configuration requires a careful 
trade-off among several often-conflicting performance factors. These include stability under 
dynamic loading, structural weight, cost-efficiency, and stiffness performance. To navigate this 
complexity, a MCDM framework was employed subsequent to the dynamic parametric analysis, 
enabling a comprehensive assessment and informed selection of optimal beam configurations [24]. 

3.1 Identification of Decision Criteria 
Based on prior analytical simulations and engineering relevance, four core performance 

indicators were selected as decision criteria:  
• Natural Frequency (f): Higher natural frequencies are indicative of enhanced dynamic stability 

and are thus considered a benefit criterion.  
• Static Deflection (δ): Reduced deflection under applied loads reflects superior structural 

rigidity, making this a cost criterion.  
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• Mass per Unit Length (M₀): A lower mass per unit length is favourable as it minimises inertial 
effects and simplifies handling and installation, qualifying it as a cost criterion.  

• Estimated Cost (C): Approximated through the product of material density and volume, with 
lower costs being preferable; this is also classified as a cost criterion.  

These selected criteria align with practical engineering priorities in the design of composite 
structures such as bridge decks, railway components, and aircraft fuselages, where dynamic load 
performance, durability, and cost-efficiency are critical considerations [8; 13].  

3.2 Evaluation Using TOPSIS Method 
To evaluate and rank alternative beam configurations, the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) was employed, given its computational efficiency, scalability, 
and capability to incorporate both benefit-oriented and cost-oriented criteria [21]. 

Step 1: Constructing the Decision Matrix 
Let 𝑋 =  [𝑋 − 𝑖𝑗] represent the decision matrix, where each row i is a beam configuration, and 

each column j is a criterion. 
Step 2: Normalizing the Matrix 
Each parameter value was subjected to vector normalisation using the following expression: 
 

𝐫𝐢𝐣 =
𝐱𝐢𝐣

√∑

𝒎      
𝒊 = 𝒋       𝒙𝟐
              𝒊𝒋 

 

(𝟐𝟔) 

Step 3: Weight Assignment 
The normalised values were subsequently weighted to represent the relative significance of 

each criterion:  
 

𝐯_𝐢𝐣 = 𝐰_𝐣 ⋅  𝐫_𝐢𝐣 (𝟐𝟕) 

Step 4: Determining Ideal and Negative-Ideal Solutions 

𝐀+ = {𝐦𝐚𝐱 𝐯_𝐢𝐣 |𝐣 ∈  𝐉_𝐛𝐞𝐧𝐞𝐟𝐢𝐭 𝐦𝐢𝐧 𝐯_𝐢𝐣 | 𝐣 ∈  𝐉_𝐜𝐨𝐬𝐭 } 

A- = {{ min v_ij │j ∈ J_benefit ; max v_ij| j ∈ J_cost } 

(𝟐𝟖) 

Step 5: Calculating Separation Measures 

𝐒+
𝒊 = √∑(𝐯𝐢𝐣 − 𝐯𝐣 +)𝟐

𝐧

𝐣=𝟏

 

𝐒_
𝐢√∑(𝐯_𝐢𝐣 −  𝐯_𝐣−)𝟐

𝒏

𝒋=𝟏

 

 

(𝟐𝟗) 

Step 6: Computing the Closeness Coefficient 

𝐂𝐂𝐢 =
𝐒_

𝐢

𝐒_𝐢 +  + 𝐒_𝐢 −
 

(𝟑𝟎) 

A beam configuration with a higher CC_i value is closer to the optimal performance vector. 
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3.3 Application to Parametric Beam Results 
Using results derived from the vibration analysis of composite curved beams, with span L = 1 m 

and curvature ratios L/R = 0.2 and L/R = 0.4, values for the first four natural frequency modes, static 
deflections (calculated through beam theory), and masses (M₀ = 2.7 kg; ρ = 1580 kg/m³) were 
determined. Cost estimations were based on approximate material volume and unit pricing models, 
such as cost per kilogram of CFRP. These values were used to construct the decision matrix, which 
was then analysed using the TOPSIS algorithm to produce a ranked sequence of beam 
configurations. For example, a beam with a curvature ratio of L/R = 0.4 may exhibit improved 
weight characteristics while presenting a slight reduction in stiffness. The proposed framework 
effectively facilitated the identification and justification of performance trade-offs, based on the 
proximity of each alternative to the ideal solution vector.  

3.4 Engineering Implications and Decision Support 
The incorporation of MCDM through the TOPSIS method signifies a transition from traditional 

single-metric design approaches to multi-objective decision-making frameworks that account for 
practical constraints and stakeholder priorities. This methodology is especially critical in the 
following contexts:  

• High-speed rail systems, where elevated dynamic amplification may result in structural fatigue 
and service interruptions.  

• Aerospace structures, where controlling both weight and vibration is essential for optimising 
fuel efficiency and maintaining structural integrity.  

This framework offers engineers a quantifiable, transparent, and reproducible tool for 
evaluating composite beam alternatives, thereby supporting informed decision-making during both 
the initial design phase and retrofit evaluations.  

3.5 Proposed Integrated Framework 
To facilitate the identification of the optimal design, the following framework integrates the 

analysis of the dynamic response with MCDM methods. With this integrated approach, 
performance-based comparison of design alternatives is made against essential measures like 
stiffness, weight, deflection, and cost. 

 
Fig.2: Proposed Decision-Support Workflow used in this Study. 

4. Results and Discussion  
This part comprises the presentation of the numerical outcomes, attempting to address the 
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effect of various parameters on the non-uniform system's dynamic response as a result of the 
moving mass presence. Before the presentation of the research findings, it was confirmed using the 
available references towards the assurance of the accuracy of the findings. Upon the successful 
corroboration, the effect of various variables on the non-uniform dynamic behavior of the curved 
composite beam in the presence of the moving mass was analyzed. 

4.1 Validation 
To verify the reliability of the current results, a comparative analysis was conducted involving 

the fundamental frequencies of the free vibration response of the composite curved beam. These 
were evaluated against those reported in a previous benchmark study [34]. The outcomes of this 
validation process, illustrated in Figure 3, confirm the precision of the present model through close 
correspondence with the reference data.  

 
Fig.3: Validating the Dynamic Responding Related to One-Layered Beam to Dynamic Mass [32]. 

The geometric specifications of the beam, along with the material properties utilized in the 
analysis are presented in Table 1.  

Table 1 
Mechanical Properties of the Composite Beam being Curved 

𝐿(𝑚) 𝑏(𝑚) ℎ(𝑚) 𝐸11(𝐺𝑃𝑎) 𝐸22(𝐺𝑝𝑎) 𝐺12(𝐺𝑃𝑎) 𝜈 
𝜌(

𝑘𝑔

𝑚3
) 

1 0.05 0.025 200 8.96 7.1 0.3 1580 

 
Table 2 contains a comparative evaluation of the dimensionless natural frequencies, which 

supports the validation of the model. To further validate the dynamic response of the curved beam 
under a moving mass, the deflection characteristics of a single-layered beam were systematically 
compared with previously reported analytical results, particularly those documented in [32].  

Table 2 
Comparative Analysis of Dimensionless Natural Frequency for a Composite Beam being Curved with a Simple 
Support for the Porcelain Layer 

𝐿

𝑅
= 0.2 

𝐿

𝑅
= 0.4 

n Present [16] Present [16] 
1 3.2887 3.283 3.229 3.224 
2 13.02 12.94 12.96 12.89 
3 28.65 28.29 28.59 28.23 
4 49.43 48.39 49.38 48.34 

The material specifications and geometric parameters used in this validation exercise are 
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summarized in Table 3. 

Table 3 
The Geometric Mechanical Features of a Single-Layer Beam for Validation  

𝐿(𝑚) 𝑏

𝐿
 

ℎ

𝐿
 

𝐸(𝐺𝑃𝑎) 𝜈 
𝜌(

𝑘𝑔

𝑚3
) 

𝑀0(𝑘𝑔) 𝑉(
𝑚

𝑠
) 

20 0.02 0.05 07 0.25 2700 2.7 25 

4.2 Parametric Results and Engineering Implications 
Upon completing the model validation, multiple parameters were systematically altered to 

evaluate their influence on the dynamic response of the composite curved beam subjected to a 
moving mass. The resulting observations offer valuable insights applicable to engineering design 
and policy formulation. 

Effect of Beam Curvature (L/R Ratio): An increase in curvature was observed to decrease the 
dynamic amplification factor, indicating enhanced load distribution efficiency. Nonetheless, 
excessive curvature induced localised stress concentrations, necessitating a balance between 
structural stiffness and manufacturability constraints.  

Influence of Moving Mass Velocity: Elevated velocities of the dynamic mass resulted in 
pronounced mid-span deflections and heightened stress responses. This effect is particularly 
relevant for applications in railway bridge decks and high-speed transportation infrastructures, 
where operational speeds can vary significantly.   

Material Configuration (Layer Orientation): Variations in fibre orientation within the laminate 
structure produced notable differences in both damping characteristics and stiffness behaviour. 
Laminates with balanced layups featuring alternating fibre angles exhibited superior dynamic 
response, underlining the importance of orientation design in optimising performance.  

4.3 MCDM-Based Evaluation of Design Alternatives 
To complement the parametric analysis, a MCDM framework was utilised to methodically 

evaluate and rank different beam design configurations according to their performance under 
moving mass conditions. The assessment criteria included: 

• Dynamic Amplification Factor (DAF) – to minimize structural vibration 

• Maximum Mid-Span Deflection – to ensure serviceability 

• Natural Frequency Stability – to avoid resonance 

• Material Cost Estimate – to reflect practical implementation 

• Manufacturing Feasibility Score – derived from curvature ratios and layup complexity. 
The TOPSIS method was applied to normalise the selected criteria, assign weights reflecting 

engineering priorities, and generate a ranking of various beam configurations. These configurations 
included combinations of: 

• Lamination Schemes (e.g., [0/90/0], [0/±45/90], symmetric and antisymmetric) 

• Span-to-Radius Ratios (L/R) = 0.2, 0.3, 0.4 

• Velocities of Moving Mass = 10 m/s, 20 m/s, 30 m/s. 
All of the design options were assigned performance scores, the latter of which appear in Table 

4. The highest-scoring setup is the most well-balanced design, striking the optimal combination of 
the dynamics of performance as well as utilitarian considerations of weight, stiffness, and economy. 
Overall, ranking-wise, Alternative A1, intermediate in curvature, smaller in velocity, is the best-
performing of all, optimal for low-cost, dynamically stable applications, e.g., lightweight pedestrian 
bridges or low-speed railway crossers.  In contrast, configurations exposed to high-speed loading or 
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pronounced curvature (A3) received the lowest rankings, reflecting an increased susceptibility to 
vibration-related damage. This integration of MCDM facilitates a quantitative evaluation of trade-
offs, thereby strengthening the engineering decision-making process in selecting optimal beam 
configurations within practical constraints.  

Table 4 
MCDM Ranking of Design Alternatives using TOPSIS 

Al ternative ID Lamination L/R Velocity (m/s) DAF Score Deflection Cost Manufacturing Score Final Rank 

A1 [0/90/0] 0.2 10 0.18 0.25 Low High 1 
A2 [0/±45/90] 0.3 20 0.35 0.31 Med Med 3 
A3 [0/90/0] 0.4 30 0.42 0.45 High Low 5 
A4 [0/±45/90] 0.2 20 0.25 0.28 Med High 2 
A5 [0/90/0] 0.3 30 0.39 0.41 High Med 4 

 
5. Numerical Findings 

5.1 Convergence Analysis for the Dynamic Responding of the Composite Curved Beam 
The convergence behaviour related to the dynamic response analysis of a composite curved 

beam subjected to a moving mass is shown in Figure 4. This figure demonstrates how the numerical 
solution stabilises as the number of modes or terms in the series, denoted by N, increases. It is 
observed that the displacement responses become effectively identical once N reaches a value of 3. 
This indicates that the solution achieves sufficient accuracy beyond this point with minimal 
additional computational effort. Based on this convergence analysis, all subsequent simulations and 
result interpretations in this study use N = 3. This choice balances computational efficiency with 
numerical precision. The truncation at this mode number confirms the robustness of the adopted 
method and facilitates dynamic evaluations of the beam across varying moving mass and curvature 
conditions. Furthermore, the observed convergence supports the parameter selection for the 
optimisation phase, where computational economy is important. This approach ensures that the 
proposed decision-support framework remains practical for iterative assessments within a multi-
objective context, particularly when combined with metaheuristic optimisation algorithms.  

 
Fig.4: Dynamic Responding Related to the Curved Composite Beam When Depended upon the Non-Constant 

Mass: Convergence Analysis. 

5.2 Examining the Impacts of Differing Parameters on the System's Response 
This section investigates the dynamic response of the curved composite beam subjected to a 

non-constant moving mass, focusing on key parameters such as the mass of the moving object, the 
beam’s radius of curvature, the velocity of the moving mass, the modulus of elasticity, the fibre 
orientation angle, and the material density.  
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The non-dimensional time parameter is defined as follows:  

* V
t t

L
=

 
(31) 

The velocity is presumed to be 𝑉 = 5
𝑚

𝑠
, and the gravitational acceleration is assumed to be 𝑔 =

9.81 
𝑚

𝑠2 in the results. The mass that’s moving is also supposed to be equivalent to M=1 kg and the 

mass of this beam is equivalent to: 

1.975bm bhL kg= =
 (32)  

Figure 5 depicts the dynamic response of the composite curved beam to the moving mass as the 
mass of the object increases. The figure demonstrates that the maximum dynamic response of the 
curved beam rises with increasing moving mass, consistent with previous studies. This behaviour is 
explained by the increase in inertia associated with the larger mass, which in turn intensifies the 
applied load. This finding highlights the structural response’s sensitivity to the inertial effects of the 
moving mass, emphasising the necessity of precise modelling of mass variations in predictive 
analyses. Additionally, it underscores the importance of optimising design parameters for 
composite beam systems frequently subjected to dynamic loading from moving bodies, such as 
those found in railway and mechanical transport applications.  

 
Fig.5: The Impact of Mass Size on the Dynamic Responding of the Composite Curved Beam in the Form of the 

Layered 
 

2
0 / 90

 under the Non-Constant Mass. 

Figure 6 illustrates the influence of velocity on the dynamic response of a non-constant moving 
mass applied to a composite curved beam. With increased moving object speed, the displacement 
of the beam initially increases, mirroring increased excitation as the kinetic energy grows. This 
pattern is evident until the threshold speed for deflection is obtained, at which point the 
displacement starts to diminish. It was discovered that the maximum deflection increased by about 
3.7% with increased object speed, showing a non-linearity in this relationship between structure 
response and object speed. This indicates a resonance-like effect at medium speeds, after which 
there is inertial stabilisation at increased velocities. Besides amplitude, the time duration of forced 
vibration is also notably affected by the changes in speed of the object. With increased object 
speed, the time duration in which the beam has large scale oscillations decreases, indicating the 
relatively fast passage of the load along the structure, reducing the duration of the excitations 
experienced by the system as well as the time it takes for the system to stabilise. Layup of the 
composite, given as [0/90]₂, is responsible for this characteristic in that it supplies the structure with 
directional stiffness, further shaping the vibrational response of the system. These results hold 
particular significance in the optimisation of designs in high speed passage applications across 
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curved composites in the structural components involved. 

 
Fig.6: The Influence of Varying Velocity on the Dynamic Responding Related to the Composite Curved Beam in 

the Form of the Layered 
 

2
0 / 90

 under the Non-Constant Mass. 

The influence of varying the modulus of elasticity on the dynamic response of the composite 
curved beam is examined in Figure 7. The modulus of elasticity plays a pivotal role in defining the 
structural stiffness of the beam and, consequently, its vibrational response when subjected to a 
moving mass. When a stiffer material layer, such as porcelain, is introduced, the beam exhibits 
reduced susceptibility to deformation. This enhancement in stiffness substantially lowers the 
dynamic displacement experienced by the structure. The results presented in Figure 7 exhibit a 
clear trend: beams with a higher modulus of elasticity demonstrate significantly reduced deflection 
across the entire motion path of the moving load. The reduction in displacement becomes more 
pronounced as the stiffness differential between the composite layers increases. This outcome 
underscores the critical influence of elastic properties on dynamic performance, particularly in 
layered composite structures such as the [0/90]₂ configuration. The elevated bending stiffness 
effectively dampens the vibrational response induced by inertial forces from the moving mass, 
thereby contributing to overall structural stability.  

 
Fig.7: The Influence of Diverse Modulus of Elasticity on the Dynamic Responding of the Composite Curved Beam 

in the Form of the Layered 
 

2
0 / 90

 under the Dynamic Mass. 

From a quantitative perspective, doubling the modulus of elasticity leads to a reduction of 
approximately 45.55% in maximum displacement. This marked decrease in dynamic deflection 
confirms the efficacy of enhancing stiffness as a vibration control strategy in composite curved 
beams. These findings are highly relevant for engineering applications where dynamic performance 
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is a critical design concern, such as in aerospace, civil infrastructure, and transportation systems, 
where materials must balance strength, lightness, and vibrational resilience. A practical example 
includes scenarios involving high-speed rail or heavy vehicular movement across curved bridge 
decks, where controlling dynamic response through strategic stiffness optimisation is essential. The 
insights gained here support the development of effective material layering techniques that 
enhance structural durability, reduce maintenance demands, and improve safety under transient 
loading conditions.  

The dynamic response of the composite curved beam under a non-stationary moving mass is 
examined with respect to variations in beam length, as illustrated in Figure 8. The results indicate 
that an increase in beam length leads to a corresponding rise in deflection. This behaviour arises 
from the inherent reduction in bending stiffness associated with longer spans, rendering them more 
susceptible to dynamic excitation caused by moving loads. The diminished structural resistance 
results in greater deformation along the beam’s length. Moreover, as the beam's length is 
increased, the duration of the moving mass's contact with the structure is accordingly increased as 
well. This increased duration of interaction provides for increased transfer of dynamic as well as 
inertial force to the beam. With increased exposure, the response of the structure is increased, 
particularly for the lower-frequency vibration modes of easy excitation in longer beams. This 
behavior of the beam's length is thus aided by mechanical flexibility as well as increased time 
intervals of dynamic loading. 

 
Fig.8: The Influence of Diverse Lengthiness on the Dynamic Responding of the Composite Curved Beam in the 

Form of the Layered 
 

2
0 / 90

 under the Mass Moving. 

The combined effect of reduced stiffness and longer loading duration results in displacement 
amplitude increasing appreciably for longer beams. Graphical results explicitly reveal that the 
shortest beam experiences least deformation, while the longest beam exhibits large deflection. This 
is evidence for the requirement for optimisation of beam length in structural applications for 
dynamic moving loads. This is true for bridge span design, aerospace structural members, as well as 
in railway infrastructure design, in which the curvature along with the length conclusively determine 
the performance in the dynamics regime. Insight of the relationship between beam-length and 
dynamic deflection can impart wiser structural design optimisation. Optimum beam geometry in the 
form of optimal length, optimal curvature, as well as optimal material stiffness, must, therefore, be 
optimised to enable resistance in the face of transient loading conditions. These findings influence 
prudent engineering choices for the purposes of improving structural integrity as well as improving 
safe operating conditions in reality applications. 
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Figure 9 depicts the influence of the variation of the radius of curvature on the structural 
response of a curved composite beam to a moving mass load. Increasing the radius decreases the 
curvature, in effect, reducing the geometry more towards that of a straight beam. Results indicate 
that this geometric variation, although relatively modest, produces a quantifiable impact for the 
structural dynamic performance. Specifically, the increase in the radius results in increased 
deflection of the beam, thus corroborating the structural vulnerability to variation in the degree of 
curvature when the conditions of load are of the dynamic kind. This is attributable to the increased 
rigidity in the direction of bending that is associated with the larger radii. A smaller extent of 
curvature thus implies a more flexible geometric outline, which is intrinsically less resistant to 
excitations of the dynamic kind. Consequently, for the same moving load, the displacement of the 
latter is larger for the beam of the increased radius. This magnitude of the differential deflection is, 
on the whole, not large, but the result is systematic, measurable, and thus corroborates the fact 
that ostensibly minor variations in the extent of the degree of curvature can impact structural 
response when the system is constrained by non-stationary, dynamic conditions of loading. 

 
Fig.9: The Influence of Varying Lengthiness on the Dynamic Responding of the Composite Curved Beam in the 

Form of the Layered 
 

2
0 / 90

 under the Moving Mass. 

The quantitative analysis shows that the increase in the radius of curvature by 30% corresponds 
to about 2.62% deflection rise of the beam. Whilst this is relatively moderate, it further manifests 
the significance of optimisation of the curvature during the design of the composite structural 
components. This is of particular significance in applications whereby mechanical effectiveness as 
well as geometric flexibility is essential. The findings further indicate that the curvature is not only 
merely a geometric parameter but also provides the determinant of the dynamic performance of 
the system, particularly in applications whereby moving mass loads come into action. Such findings 
present profound applications in structural applications involving curved railway bridges, arched 
transport platforms, as well as aerospace components of support, whereby the direct deflection as 
well as vibrational response is directly influenced by the curvature. In layered composite structures, 
fine-tuning the radius of curvature contributes to a more effective balance between stiffness and 
flexibility, enhancing overall performance under varying operational scenarios.  

The dynamic response of the composite curved beam, as depicted in Figure 10, demonstrates 
the effect of varying porcelain layer configurations. The system's range of forced oscillations for 

layering 
 45 / 45 / 45 / 45− −

 and 
 0 / 90 / 90 / 0

 has the highest and lowest values, respectively, as 
indicated by the results. Modifying the fibre layering arrangement directly influences the stiffness 
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characteristics of the composite beam, thereby affecting its overall flexibility.  

 
Fig.10: Dynamic Responding of the Composite Beam Being Curved under Moving Mass: Influence of Various 

Porcelain Layers. 

Figure 11 illustrates the influence of material density variation on the dynamic response of a 
curved composite beam subjected to a moving mass. The analysis considers how changes in density 
affect the beam’s displacement profile and vibration characteristics. The deflection curves 
corresponding to different densities appear closely aligned, indicating that variations in density have 
a minimal effect on the beam’s maximum dynamic displacement under the given loading 
conditions. While the deflection amplitude is largely unaffected, the vibrational frequency of the 
system is considerably affected by changes in density. Increasing the material density makes the 
natural frequencies of the beam lower accordingly, largely due to the increase in inertial resistance. 
This effect is evident in the mode shapes of the vibration waveform for different cases of density. 
This response is in line with classical vibration theory, which states that while the added mass need 
not necessarily affect displacement adversely in the presence of dynamic excitation, it always has 
the effect of reducing natural frequencies. 

 
Fig.11: The Influence of Various Density on the Dynamic Responding Related to the Composite Curved Beam in 

the Form of the Layered 
 

2
0 / 90

 under the Mass Moving. 

This finding has design implications for engineers seeking to optimise the dynamics of composite 
curved beams. Whilst displacement behaviour is significantly regulated by flexural stiffness, 
material density is the fundamental parameter in the alteration of resonance features. In this 
context, density is an effective design parameter for adjusting vibrational frequencies without 
significant deformation control when subjected to dynamic loading. This separation of displacement 
control based on stiffness from mass-induced frequency variation has particular applicability in 
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precision engineering applications. Displacement responses remain significantly controlled by the 
beam's rigidity, whilst frequency tuning of the dynamics is more reliant upon the mass distribution 
of the structure. This separation provides for the design of selective optimised density strategies in 
which vibration modes can be changed without compromising the structural performance in 
response to transient loads. Such design strategies have particular applicability in aerospace, civil 
engineering, and car.manufacturing applications, in which the suppression of vibration as well as 
frequency control is of significance. Manipulation of the vibrational characteristics via the adjusting 
of density provides for the design of intelligent composite systems for vibration-intensive 
applications. Specifically, the control of the material density as applicable affords resonance 
mitigation in applications involving periodic or variable dynamic loading. Thus, the inclusion of 
density-optimised composite ply applications provides for the design of superior vibrational control 
without the compromise of structural deflection performance or stability. 

 
6. Conclusion  

The present study focused on the dynamic analysis of a composite curved beam subjected to a 
travelling mass. The displacement response was investigated using first-order shear deformation 
theory. To derive the governing equations of motion, Hamilton’s principle was systematically 
applied. These partial differential equations were addressed in the spatial domain using Navier’s 
analytical technique, while the Newmark method was employed in the temporal domain to capture 
time-dependent behaviour under simply supported boundary conditions applied at both ends of the 
beam. The dynamic performance of the beam was examined across a range of influential 
parameters, including the magnitude of the moving mass, its velocity, beam length, elastic modulus, 
curvature radius, lamination angle, and material density. The principal findings of this investigation 
are summarised as follows:  

• An increase in the moving mass significantly amplifies the dynamic deflection of the beam. 
Specifically, when the ratio of moving mass to beam mass is doubled, the maximum deflection 
increases by approximately 99.87%.  

• With rising velocity of the moving mass, the beam exhibits a moderate increase in deflection, 
accompanied by a notable reduction in the duration of forced vibration, indicating a shorter 
excitation period.  

• By incorporating the 
 

2
0 / 90

 porcelain layer into the beam, the bending rigidity increases, 
resulting in reducing the locomotive elasticity of the beam. Specifically, the elasticity of the 
beam decreases by 45.55% when the modulus of elasticity is doubled. 

• The dynamic deflection increases by 330.52% when the lengthiness of the composite curved 
beam is doubled, as beam’s deflection also rises up considerably. 

• The deflection of the beam, dynamically, increases marginally as radius gets increasing. 

• The dynamic responding of the composite curved beam is significantly influenced by the 

porcelain layers 
 45 / 45 / 45 / 45− −

 and 
 0 / 90 / 90 / 0

, which produce the maximum and 
lowest dynamic spring values, respectively. 
The engineering significance of the parametric findings offers practical design insights. An 

increase in the curvature ratio (L/R) enhances the distribution of applied loads across the beam 
span, although this benefit is offset by the emergence of localised stress concentrations. This 
necessitates a careful balance between curvature and stiffness in the structural configuration.  
Increased moving mass velocities yield increased mid-span deflection as well as increased internal 
stresses, of immediate design relevance in high-speed transport deck as well as rail bridge 
applications. The laminate's layer orientation is revealed as the dominant design variable, with 
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balanced configurations demonstrating enhanced stiffness as well as damping behavior.  Also, the 
ensuing convergence characteristics constitute evidence of the parameter choices adopted during 
the optimisation process, of specific benefit in schemes based upon the deployment of 
metaheuristic optimisation algorithms. The results confirm the system's strong inertial effect 
sensitivity due to the moving mass, consequently further underscoring the requirement for accurate 
modelling for the purposes of dynamic simulation as well as the selective beam property tailoring 
for operational loading scenarios. 

These results present specific interest for engineering applications in the real world, particularly 
in aerospace and transport infrastructure applications, in which the composite curved beam often 
experiences transient dynamics loading. Changes in beam curvature and beam length present 
substantial structural resilience improvements along with operational performance enhancement 
provisions. Differentiation of stiffness-controlled displacement response against mass property-
controlled frequency behaviour provides for the intentional design potential in material density so 
that it is materially varied in select applications to control the vibration modes without detrimental 
impact upon structural deformation upon load conditions. This potential enables the realization of 
intelligent composites in select vibration sensitive applications including arched bridge decks, 
curved rail supporting members, as well as aerospace structural components.  In order to aid 
rational design selection, the MCDM approach was adopted, using the TOPSIS amongst others. This 
facilitated the systematic design ranking of design options against performance parameters 
involving the dynamic deflection, stiffness, mass per unit length, as well as the costing parameters. 
MCDM application provided for the in-depth evaluation of design trade-offs, thus facilitating 
optimal decisions with regards to beam span, radius of curvature, fibre orientation, as well as the 
material density. This unifying strategy closes the theoretical results of the vibration analysis with 
the engineering design, making the findings of the study applicable to the transport as well as the 
structural system advancements. 

 
7. Implications 

Results of this research hold broad implications for structural engineering, specifically in the 
design and analysis of composite curved members under the action of dynamic loading. Through 
the identification of the effect of design parameters of central importance—the magnitude of 
moving mass, velocity, beam length, radius of curvature, elastic modulus, and laminate 
configuration—the research provides engineers with essential information to optimise structural 
performance in high-demand sectors like transport infrastructure, aerospace systems, and robot 
applications. Analysis shows that careful stacking sequence selection of the laminate, together with 
selective utilisation of the elastic moduli, can substantially suppress unwanted oscillatory responses, 
hence improving structural stability as well as operational efficiency. These findings hold particular 
significance in the face of increasing subjecting of engineering structures to high-speed as well as 
transient dynamic loads. The research provides the foundation for the design of the composites 
system that is not merely efficient in responding to these kinds of loads but also sustainable for 
longer service lifetimes. Besides the design practices, the findings further offer useful information 
for the management of infrastructures. For one, for example, the parameter sensitivities of 
increased deflection resulting from high values can inform the planning of effective maintenance, 
allowing for the design of proactive inspection programmes aimed at reducing the risk of failure. 
From the investment vantage, the findings also inform the design of the composites system whose 
utilisation is justified based on the attainable performance improvements in the response dynamics, 
hence pertinent to high-speed rail, aerospace applications, among others, in which load-induced 
vibrational effects present key design issues. Through this research, the linkages between the 
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advanced modeller's tools as well as performance-based design practices narrow, yielding the 
potential for the design of composites system that is efficient, sustainable, as well as optimised in 
terms of lifecycle performance. 

 
8. Future Directions 

Future studies could expand upon the findings presented herein by exploring the following 
research directions:  

• Inclusion of Damping Effects: Subsequent research must incorporate the idea of adding damping 
mechanisms in the calculation of the curved composite beam's dynamic response. Since 
structural systems of real applications dissipate energy, the incorporation of damping 
characteristics would critically enhance the accuracy as well as realism of numerical simulations, 
leading to design recommendations as well as prediction capabilities that are more precise. 

• Multiple Moving Masses and Variable Velocities: Future research must generate scenarios of 
multiple moving masses traveling at variable velocities. This would more closely resemble actual 
service conditions, e.g., as is the case in bridge applications during double or simultaneous 
passage of vehicles or in machine-based industries involving multiple dynamic components in 
motion at the same time. 

• Development of New Materials: More research can further explore the performance of high-
performance, new-generation composite materials, such as FGMs, and Nano-reinforced 
polymers. These new-age materials hold bright prospects for the improvement of mechanical 
behavior, enhancing structural responses against new-age loads, thus adding innovation in 
material science as well as design strategies in the fields of engineering. 

• Nonlinear Behaviour and Large Deformations: With the foundation of the current research, 
further contributions can delve into the nonlinear dynamic behaviour of curved composite 
members, specifically large displacement phenomena, geometric nonlinear effects, as well as 
instability effects. These factors hold high priority for the overall system behaviour 
consideration in the presence of high-intensity dynamic excitations. 

• Practical Field Tests and Experimental Work: Empirical validations in the large-scale laboratory 
tests along with in-situ field trials need to be conducted in order to validate the computation 
outcomes derived here. Practical investigations would bridge the gap between theoretical 
modelling as well as implementation, further enhancing the proposed applicability and validity 
of the adopted numerical formulations. 
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