
Decision Making: Applications in Management and Engineering, Volume 8, Issue 2 (2025) 1-20 

 

 

1 
 

 
 

_______________________ 
*Corresponding author.  
E-mail address: dpamucar@gmail.com  

 

https://doi.org/10.31181/dmame8220251473 

 

Decision Making: Applications in 

Management and Engineering 

 

Journal homepage: www.dmame-journal.org    
ISSN: 2560-6018, eISSN: 2620-0104 

 

Equivalence of MCDM Methods and Synthesis of Solution Based on 
Ratings Obtained in Different Models 
 

 Irik Z. Mukhametzyanov1, Dragan Pamucar2* 

  
1 Institute of Socio-Economic Research – subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 

Russia  
2 Széchenyi István University, Győr, Hungary 
   

ARTICLE INFO ABSTRACT 

Article history: 
Received 29 January 2025 
Received in revised form 1 June 2025 
Accepted 9 July2025 
Available online 10 August 2025 

Synthesis of solutions based on a set of models is a modern trend in the 
field of multi-criteria choice. It is assumed that a solution based on many 
methods increases the reliability of the decisions made. One of the 
important tasks is to select an independent set of models. Comparison of 
various multi-criteria methods is performed using two lists: rank and 
rating. To compare the rating of alternatives obtained using different 
MCDM models, the article uses the Relative Performance Indicator (RPI). 
Using RPI, six identical methods for aggregating private attributes of 
alternatives are established: Weighted Sum Model (WSM), Ratio System 
approach (RS), Multi-Attributive Border Approximation area Comparison 
(MABAC), Technique for Order Performance by Similarity to Ideal Solution 
(TOPSIS) with L1 metric, Multi Atributive Ideal-Real Comparative Analysis 
(MAIRCA) and Ranking of Alternatives with Weights of Criterion (RAWEC) 
provided that each aggregation method combines the same method of 
linear normalization of attributes. This allows avoiding duplication of 
equivalent methods in the Multi-Method Model (3M) approach combining 
different MCDM models. When solving MCDM problems, it is 
recommended to use the simplest and most easily interpreted of them: 
WSM. The presented methodology is recommended as mandatory for the 
analysis of new or hybrid MCDM methods to eliminate duplication of 
existing methods. A synthesis of a solution based on ratings obtained in 
different MCDM models within the 3M approach is proposed. The method 
includes coordinating the common goal of several models and bringing the 
ratings obtained in different MCDM models to a common scale, which 
allows comparing and aggregating the ratings. The resulting rating is more 
informative than a rating based on ranks, such as Borda rules or similar, 
since it reflects the real proportions of the effectiveness of alternatives in 
different models. 
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1 Introduction  
The problem of multi criteria decision making (MCDM) on a discrete set of alternatives has the 

following description [1, 2]: there are m objects (alternatives) Ai, each of which is characterized by n 
attributes (features) defined within the framework of the selected criteria Cj (j=1,…, n). The attributes 
are quantitative estimates (aij) of the selected (important) properties of the objects.  

On the other hand, the attributes are criteria for choosing the best alternative. The selection 
problem is complicated by a conflict of criteria, when one of the alternatives surpasses a certain set 
of other alternatives by one (or several) features, but not by the remaining features. It is required to 
make an optimal choice on a finite set of alternatives. One of the common approaches to solving 
MCDM problems is to transform the feature vector of each alternative into a scalar feature ― the 
alternative rating (assessment score, performance indicator). Rating of the alternative is determined 
using an aggregation function, the arguments of which are the normalized values of features and the 
weights of the criteria. A specially constructed aggregation function defines the MCDM method. 
According to the method of construction, the MCDM methods can be a classification into three 
groups: 

(1) Value Measurement methods, such as WSM (Weighted Sum Model) [1]; RS (the Ratio System 
approach) by Brauers and Zavadskas [3], WPM (Weighted Product Model) by Chakraborty and 
Zavadskas [4], MABAC (Multi-Attributive Border Approximation area Comparison) by Pamučar and 
Ćirović [5], etc., 

(2) Goal or Reference Level models, such as TOPSIS (Technique for Order Performance by 
Similarity to Ideal Solution) by Opricovic [6] and VIKOR (VIse Kriterijumska Optimizacija kompromisno 
Resenje, in Serbian) by Opricovic and Tzeng [7], 

(3) Outranking Techniques, such as PROMETHEE (Preference Ranking Organization METHod for 
Enhancement of Evaluations) by Brans et al., [8], ORESTE (Organization, Rangement Et Synthesis de 
donnéEs relarionnelles, in French) [9]. 

Based on the ranking of alternatives, a ranking list is constructed. 
Normalization and weighting of criteria are standard MCDM methods, independent of the 

aggregation method. Hence, there is a tendency in MCDM to create hybrid models that combine the 
best methods of normalization/inversion, weighting and subsequent aggregation of attributes of the 
alternatives [10-14]. For example, the combination of the Max normalization method, the AHP/EV 
weighting method and the TOPSIS aggregation represent one of the hybrid models. This approach 
aims to provide more reliable results. By integrating different methods, hybrid MCDM methods can 
more effectively handle diverse information, conflicting criteria and different stakeholder 
preferences. 

As a justification for their effectiveness, the authors of hybrid methods use a comparison of the 
results with those obtained using basic MCDM methods, such as cost measurement methods or the 
proximity to the “ideal” model. The comparison is made based on the Spearman rank correlation (for 
rank lists) or Pearson correlation (for rating lists) see, for example [15, 16], or on some general 
arguments and principles [17]. 

It is obvious that the large number of available methods creates a problem of choosing a solution 
method. Different methods of solving a problem (different models) lead in some cases to different 
results. Sometimes this difference is significant. At the same time, there is no objective criterion for 
choosing an effective method for solving a problem. In such a situation, when choosing a method, 
researchers adhere to the principle of the success of a particular method in solving problems of a 
certain class in the application area of interest Zavadskas et al. [18, 19]. The frequency of using a 
method is also important. 

In many cases, the ranks of alternatives in different methods are consistent with each other, 
which increases the reliability of solutions. This can be easily established using rank correlation. 



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 2 (2025) 1-20 

3 
 

Meanwhile, the ratings of alternatives (assessment score) for the same set of methods are less 
correlated. It is obvious that a rating list, unlike a ranked list, reflects the “fine” structure of 
relationships. The difference between the rating value of two (or more) alternatives may be 
insignificant. Given the high sensitivity of ratings to the parameters of the MCDM model, such 
alternatives should have the same preference status (the same ranks) Mukhametzyanov and 
Pamucar [20]. The availability of many methods (including hybrid models) at the disposal of 
researchers has determined the modern trend in the field of MCDM: the synthesis of solutions based 
on many models, designated in the study [20] as the Multi-Method Model (3M). It is assumed, that a 
solution based on many methods increases the reliability of the decisions made. This is consistent 
with the majority principle as the main method of making collegial decisions. Although, historical 
experience shows that this principle is not fulfilled in some cases. 

The main problems of decision making based on the 3M approach, which currently do not have 
a final solution, are the following [20]: 
(i) which MCDM methods to include in the list of methods used to solve a specific problem - 

qualitative and quantitative composition, 
(ii) how to compare the results obtained in different methods, 
(iii) how to evaluate the significance (weight) of methods, 
(iv) whether to group methods and how to form groups, 
(v) what is the solution synthesis method. 

In terms of grouping MCDM methods the current result is a ranking obtained by aggregating the 
results of three ranking methods: value measurement methods, reference level models and the full 
multiplicative form within the MULTIMOORA concept [21-23]. 

In terms of solution synthesis, various tools can be used, such as dominance theory, 
arithmetic/geometric mean, Borda rule Hafezalkotob et al., [23-24] or similar ones, for example, the 
Copeland method Özdağoğlu et al., [25], dominance-oriented graph, optimization model, ORESTE 
method, rank position method and exact order preference method. 

This study solves two of the above problems. Namely, the selection of an independent set of 
models in the list of methods used to solve a specific problem. This study presents a methodology for 
comparing various multi-criteria methods based on comparing the relative performance indicator 
(RPI) of alternatives. Another problem solved in this paper is a method for synthesizing the results of 
various models. The authors propose an approach that preserves information about the ratio of 
ratings in each individual model as much as possible. 

The paper has the following structure. The second section presents an interpretation of MCDM 
methods in the form of an MCDM model that combines various methods for normalizing the decision 
matrix, various methods for estimating the weight of criteria and various methods for aggregating 
the attributes of alternatives. A brief description of the MCDM methods for which the equivalence of 
the models has been established is given, and some author's comments on the use of the MAIRCA 
(Multi Atributive Ideal-Real Comparative Analysis) and RAWEC (Ranking of Alternatives with Weights 
of Criterion) methods are given. Section 2.3 presents a description of various linear procedures for 
normalizing the initial decision matrix included in various MCDM models in the subsequent analysis. 

The third section presents a comparison of the methods. Using the relative performance indicator 
(RPI) of alternatives, six identical methods for aggregating private attributes of alternatives are 
established: WSM, RS, MABAC, TOPSIS (L1), MAIRCA and RAWEC, provided that each aggregation 
method combines the same method of linear normalization of attributes. This allows avoiding 
duplication of equivalent methods in the synthesis procedures of various methods. When solving 
MCDM problems, the simplest and most easily interpreted of them is recommended for use: WSM. 
The presented methodology is recommended as mandatory for the analysis of new MCDM ranking 
methods to eliminate duplication of existing methods. 
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The fourth section presents the harmonization of the common goal of several models and the 
reduction of ratings obtained in different MCDM models to a common scale, which allows comparing 
and aggregating ratings. Based on the linear transformation of the rating of alternatives obtained in 
different models, a synthesis of the results in the form of a weighted sum is performed. The resulting 
rating is more informative than the rating based on ranks (Borda's rule and similar), since it reflects 
the real proportions of ratings. 

Each of the properties and statements of this article is provided with a corresponding numerical 
example. This is an example of the equivalence of 6 different MCDM models and examples of 
synthesizing a solution based on ratings obtained in different MCDM models. 
The conclusion and findings follow. 
 
2 Methods 
2.1 Designation 

Ai   alternatives (objects) (i=1,…, m) 
Cj

+, Cj
-  criteria or objects properties (j=1,…, n), (+) benefit, (-) cost 

aij   natural value of the jth attribute of the ith alternative (elements of the decision matrix D) 
xij  normalized elements of decision matrix aij 
  average value of jth criterion 
aj

max   maximum element in criteria j 
aj

min   minimum element in criteria j 
wj   weight or importance of criteria (j=1,…, n) 
Qi   the performance indicator (assessment score) of alternatives (objects) (i=1,…, m) 
dQi  Relative Performance Indicator (RPI) of alternatives 

 
2.2 MCDM rank model 

One of the common approaches to solving MCDM problems is to transform the feature vector of 
each alternative into a scalar feature ― the alternative rating. The alternative rating is determined 
using an aggregation function whose arguments are the normalized feature values and criterion 
weights: 
 
Qi=F(xij, wj).             (1) 
 

The rating list Q is sorted in descending (or ascending) order, based on which a ranking list of 
alternatives is formed. Without loss of generality, we will assume that the sorting and renumbering 
of these two lists is performed in the form: 

 

1 2 ... mQ Q Q   ,           (2) 

1 2 ... mA A Af f f ,           (3) 

 
Where, the sign “≻” means preferable, and the subscripts determine the rank of the alternative. 

Historically, the MCDM method is primarily understood as the procedure for aggregating private 
features of alternatives F according to (1). However, it is well known that three main components of 
MCDM methods: the method for assessing the importance of attributes (criteria weight), the method 
for normalizing the decision matrix, and the distance metric for Reference Level methods (TOPSIS, 
etc.) are essential and in many cases (tasks) determine the ranking result. 

Researchers have at their disposal: 

jx
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- more than 10 main methods for determining the weight of criteria in the absence of a preference 
criterion in choosing a method, 

- more than 5 main methods for normalizing the decision matrix, the choice of which is based on 
principles, 

- 3 main distance metrics in the n-dimensional feature space for MCDM methods based on the 
distance from the “ideal” (L1 - CityBlock; L2 - 'Eucludean’, L∞ - ‘Chebyshev’). 

The choice of the three methods (F, w, x) is not formalized and is carried out based on some 
general principles by Mukhametzyanov [26]. It follows that the number of MCDM problem solution 
options for only one aggregation method is determined by the number of possible (admissible) 
combinations of model arguments [13, 14, 20]. Using WSM aggregation, it is possible to implement 
50 different options or models within the framework of only the 3 main arguments. Obviously, the 
ratings of alternatives in different models will differ, and in some models, the ranks will also differ. It 
should be noted that none of the arguments used in the model (1) has priority over another. This 
means that all models are equal. Considering the above arguments, instead of the term MCDM 
method, it is advisable to use the term” MCDM model” with the obligatory indication of the argument 
methods used in solving the problem. For example, model: 

 
Qi=TOPSIS(L1,‘w’= AHP-EV, ‘Norm’=Max) 
 

uses the TOPSIS method with L1-distance metric (CityBlock), and the Max-method of normalization, 
and implements a weight estimate based on a matrix of paired comparisons of criteria in the AHP 
process and eigenvector method. 

The MCDM rank model includes a method for assessing the significance of criteria wj, a method 
for normalizing the decision matrix xij =Norm(aij), and a method F for aggregating private features of 
alternatives into the performance indicator Qi of each alternative. The model can also contain 
additional parameters determined by the method for constructing the aggregation function. 

In many cases, combining model parameters does not significantly change the ratings, and the 
ranking of alternatives does not change. This situation characterizes the stability of the solution to 
variations in the model parameters. In this situation, the final choice is not complicated by a 
multitude of options. Another situation, on the contrary, characterizes the instability of the solution, 
in which variations in the model parameters change the ranking and the final choice is not 
determined. For example, in the studies of Mukhametzyanov and Pamucar [20, 26] examples of 
decision matrices are presented, for which the alternatives of rank 1 for 5 different normalization 
methods are different. Structurally, each admissible triple: normalization, weighting and aggregation 
method} is interpreted as one of the MCDM models. To use the “MCDM model” approach, it is 
necessary to determine which normalization, weighting and aggregation methods should be selected 
and how to further integrate the ranking results. For subsequent integration, it is important to 
analyze the independence of the models to ensure equal “voting” conditions for each of the models 
in the final selection of the contender. 

 
2.2.1 Weighted Sum Method (WSM) 

WSM has a simple form: 
 

1

n

i j ij

j

Q w x
=

= ,      (4) 

 
Where, xij are the normalized values of the decision matrix, wj are the weights of the criteria. 
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The best alternative corresponds to the highest value of the performance indicator Q. 
 
2.2.2 The Ratio System approach [3] 

In Ratio System, the non-beneficial sum is subtracted from the beneficial sum: 
 

1

( )
n

i j j ij

j

Q sign C w x
=

=   ,      (5) 

1, beneficial criteria
( )

1, non beneficial criteria

j

j

j

if j C
sign C

if j C

+

−

  −
= 

−  −
,     (6) 

 

The best alternative corresponds to the highest value of the performance indicator Q. 
 
2.2.3 Multi-Attributive Border Approximation area Comparison (MABAC) [4] 

MABAC is a cost measurement method. The performance indicator of alternatives is defined as: 
 

1

( )
n

i ij j

j

Q v g
=

= − ,      (7) 

( 1) , 1,..., ; 1,...,ij ij jv x i m j n= +  = = ,     (8) 

min

max min

max

max min

, for benefit criteria

Max-Min( )  

for cost cr, iter ia

ij j

j j

ij

j ij

j j

a a

a a
x a

a a

a a

 −


−
= = 

−
 −

,     (9) 

1/

1

m
m

j ij

i

g v
=

 
=  
 
 .      (10) 

 
The best alternative corresponds to the highest value of the performance indicator Q. 

 
2.2.4 Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [7]: 

To determine the performance indicator of the ith alternative Qi, a homogeneous function was 
used: 
 

i

i

i i

S
Q

S S

−

+ −
=

+
,      (11) 

, ( , ) , ( , )ij ij j i ij j i ij jv x w S d v v S d v v+ + − −=  = = ,     (12) 

{max ; min }j ij j ij j
ii

v v if j C v if j C+ + −=   ,     (13) 

{min ; max }j ij j ij j
i i

v v if j C v if j C− + −=   ,     (14) 

 

Si
+ and Si

- were the distances d between the ideal and anti-ideal objects respectively. Whereas, the 
alternative Ai in the n-dimension attributes space, which are defined in one of the Lp-metrics.  
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( ) ( )
1/

1

, ( ) , 1 ; , max

p
m

p

p i i i i
i

i

L X Y x y p L X Y x y

=

 
= −    = − 
 
 ,    (15) 

 
The TOPSIS ranking result depends on the choice of distance metric. Let us denote the TOPSIS 

method with the L1 City Block metric as TOPSIS(L1). 
The best alternative corresponds to the highest value of the performance indicator Q. 
 

2.2.5 Multi Atributive Ideal-Real Comparative Analysis (MAIRCA) 
The basic version of the method is as follows Pamucar et al. [27]: 
 
Step 1. Define m alternatives and n criterion. Define decision matrix: D=(aij) [m×n]. Define weights 

of criterion wj [1×n]. 
 
Step 2. Defining preferences for the choice of alternatives PAi. If decision maker is neutral to the 

selection probability of each alternative, then PAi =1/m. 
 
Step 3. Calculation of the elements of the theoretical ratings matrix Tp : 
 

= 
ij

p Ai jt P w .            (16) 

 
Step 4. Definition of the elements of the real ratings matrix Tr : 
 

= 
ij ij

pr ijt t x ,            (17) 

( )=ij ijx Norm a . 

 
As a normalization method, the authors of [27] use Max-Min normalization: 
 

max

max min

−
=

−

j ij

ij

j j

a a
x

a a
 , for benefit criteria, and 

min

max min

−
=

−

ij j

ij

j j

a a
x

a a
, for cost criteria. 

 
Step 5. The calculation of the total gap matrix G: 
 

= − = −
ij ij

p rp rG T T t t .           (18) 

 
Step 6. The calculation of the final values of criteria functions (Qi) by alternatives. 
 

1=

=
n

i ij

j

Q g             (19) 

 
The best alternative corresponds to the highest value of the performance indicator Q. 
 
Comments on the MAIRCA method 
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1) Setting the priority PAi for a part of alternatives in Step 2 is an essential parameter of the 

MAIRCA model and affects the ratings and ranking. For the MAIRCA method, the equivalence of WSM 
is fulfilled in the absence of alternative priority, If DM is neutral to selection probability of each 
alternative, then PAi = 1/m. The MAIRCA method is equivalent to WSM in the absence of priority of 
alternatives: PAi = 1/m, ∀i, i.e. the decision maker is neutral to the probability of choosing each 
alternative. 

2) Max-Min normalization transforms the values of all attributes to [0, 1]. It may seem that 
normalization with different range of attribute values, for example, Max, will affect the ranking. The 
answer is negative. The ratings change for different aggregation methods, but PRI and ranking remain 
unchanged. 
 
2.2.6 Ranking of Alternatives with Weights of Criterion (RAWEC) 

The basic version of the method is as follows Puška et al. [28]: 
 

Step 1. Define m alternatives and n criterion. Define decision matrix: D=(aij) [m×n]. Define 
weights of criterion wj [1×n]. 

 
Step 2. Normalization. Define two decision matrix rij and r’ij : 
 

rij=aij /aj
max for benefit criteria, and rij= aj

min/ aij for cost criteria (inversion),   (20) 
 

r’ij= aj
min/ aij for benefit criteria (inversion), and r’ij=aij /aj

max for cost criteria.   (21) 
 
Since strictly monotone functions are used in normalization and inversion of values, then for 

each j, the alternative i*, which has the maximum value of the attribute maxi(rij), has the minimum 
value r’i*j = mini(r’ij), and vice versa. 

 
Step 3. Determine the weighted ratings of the ith alternative: 
 

1

(1 )
=

=  −
n

i j ij

j

v w r ,           (22) 

' '

1

(1 )
=

=  −
n

i j ij

j

v w r .           (23) 

 
The deviation from 1 (the best value) for the first standardized list (rij) should preferably be as 

small as possible, and the deviation for the second value (r’ij) should be as large as possible. 
 
Step 4. Determine the rating of alternatives: 
 

'

'

−
=

+

i i

i

i i

v v
Q

v v
.            (24) 

 
The best alternative corresponds to the highest value of the performance indicator Q. 
 
Comments on the RAWEC method 
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1) As a normalization function Norm(aij), the authors of the method use the transformation 

Max(aij)=aij /aj
max for cost criteria and the inverse transformation iMax(aij)= aj

min/ aij,, which is 
nonlinear and, therefore, for normalized data, the dispositions of attribute values do not correspond 
to natural values. Thus, benefit attributes have a linear normalization, and cost attributes have a 
nonlinear one for rij (and vice versa for r’ij), which leads to a distortion of the original data. We use 
and recommend the linear inverse transformation ReS(rij)= - rij + rj

max + rj
min [29]. 

2) Calculating the deviations in step 3 from the best value equal to 1 seems to require that the 
best normalized value for each criterion should be equal to 1. These are the Max, dSum, Max-Min 
methods. However, dQ will also be the same when using methods such as Sum, Vec, Z[0,1], i.e. the 
RAWEC method is equivalent to the WSM method when using linear normalization methods 
(including ReS inversion). 

3) From the formulas of step 3 it follows that vi ∈ (0, 1), v’i ∈ (0, 1), since ∑wj=1 and rij ≤1. The limit 
values 0 and 1 are not considered, since they represent complete dominance of one of the attributes. 
From which it follows that Qi ∈ (-1, 1). 
 
2.3 Linear normalization/inversion methods 

The general formula for linear normalization is as follows [29]: 
*

( ) , 1,..., , 1,...,
ij j

ij i j

j

a a
x Norm a i m j n

k

−
= = = = .       (25) 

Typical methods are defined by the following parameters of displacement and compression 
stretching: 
 

max 2 max max min

1 1 1

* * * * max * min

, , , ( ),

0 0 0

Max:               Sum:                Vec:            dSum:                   Max-Min:      

m m m

j j j jj j ij i j j ij j j

i i i

j j j j j j j j

k a k a k a k a a k a a

a a a a a k a a

= = =

= = = = − = −

= = = = − =

  
 

 

( )

*

* * 2

1

–

 

–  

–

,

1
, ( ), ( )

( ) / –

for cost criteria (iZ : nversio[0,1  n)] min max

ij ij j j

min max min

m
ij j

ij j

i

ij j

j

ij j

i

ij

j

a a
u a mean

C

a

a a a a j

x u

s

u u

a

u

a
s m =

−

−

+

= =

+ 

=

 −

=

= 
 

 
The universal ReS algorithm [30] for transforming cost criteria into benefit criteria (inversion) is 

as follows:  
 
Step 1: Linear normalization  xij=Norm(aij) 
Step 2: Reverse sorting algorithm (ReS) 
 

( ) ––   for cost criteria,  min max

ij ij j jReS x x x x j C= + +  − .     (26) 
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3 Equivalence of MCDM methods 
 
3.1 Relative Performance Indicator (RPI)  

The presence of many multi-criteria decision-making methods requires the development of a tool 
that can be used to compare them with each other and to synthesize solutions. As noted in the 
introduction, comparison of different MCDM methods is performed to a greater extent based on 
Spearman's rank correlation (for a rank list) or Pearson's correlation (for a rating list). 
Comparison of ranks of different methods is simple, but it is rather rough, since ranks do not reveal 
the degree of superiority of alternatives among themselves. A rating list, in contrast to a rank list, 
reflects the “fine” structure of relationships between alternatives [20]. However, ratings of different 
methods are defined in different scales determined by the method of aggregating private attribute 
values. 

As a result of applying two different MCDM models, two rating lists are obtained: Qi
(1) and Qi

(2), 
i=1,…, m. The subscript corresponds to the ith alternative; the superscript corresponds to the model 
number. If the goal of both methods is consistent, then we order both rating lists by decreasing rating 
for the goal Larger-The-Better (LTB), or by increasing rating for the goal Smaller-The-Better (STB). If 
the goal of two methods conflicts, for example, LTB vs STB, then it is necessary to reconcile the goals. 
To do this, it is sufficient to apply the ReS transformation to one of the list [30]: 
 

max min– i i ii
Q Q Q Q= + + .    (27) 

 

As a result of the ordering (considering the coordination of the goals of the two methods), two 
ranking lists are obtained: Ri

(1) and Ri
(2) , i=1,…, m. The subscript corresponds to the rank of the 

alternative. Rank 1 determines the best rating value. The value of Ri determines the number of the 
alternative that has the ith rank. 
 
Definition 1: Two rank lists are identical if Ri

(1) ≡Ri
(2) , ∀i. 

 
Definition 2: Two rating lists are equivalent if they have identical rank lists and if they are transformed 
into each other using a linear transformation: 
 

(2) (1) , , ,i iQ k Q b i k b Const=  +  − .    (28) 

 

To show that the two rating lists are equivalent, it is necessary to determine the constants k and 
b by solving the system of equations (19), which is not rational. Another way is to determine the 
pairwise correlation coefficient (Pearson) of the two rating lists, which should be equal to 1. For 
comparison, it is rational to transform both lists (after ordering and considering the coordination of 
goals) to the form of the Relative Performance Indicator (RPI) [20]. 
 

1

1

d 100%, 1,..., 1
i i

i

m

Q Q
Q i m

Q Q

+ −
=  = −

−
,         (29) 

 
In this case, the indicator dQ is the relative (given in the Q scale) increase or decrease in the 

efficiency indicator for the ordered list of alternatives and the property is satisfied: 
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1

1

100
m

p

p

dQ
−

=

= .            (30) 

 
Definition 3: Two rating lists are equivalent if they have identical rank lists and if they have the same 
RPI: 
 
dQi

(1) = dQi
(2), ∀ i=1,…, m-1.          (31) 

 

Example: Consider two rating lists: 
 
Qi

(1)={0.2948  0.7995  0.3337  0.4127  0.3956  0.5646  0.4573  0.5299}    (32) 
Qi

(2)={0.6017  0.7279  0.6114  0.6312  0.6269  0.6692  0.6423  0.6605}    (33) 
 

Offhand, it is difficult to establish a relationship between these two sets. Let's sort them in 
descending order and simultaneously set the ranks of the elements (element number in the ordered 
list): 
 
Qsi

(1)={0.7995  0.5646  0.5299  0.4573  0.4127  0.3956  0.3337  0.2948} 
Qsi

(2)={0.7279  0.6692  0.6605  0.6423  0.6312  0.6269  0.6114  0.6017} 
Ri

(1)={2     6     8     7     4     5     3     1} 
Ri

(2)={2     6     8     7     4     5     3     1} 
 

It turned out that both ranking lists Qi
(1) and Qi

(2) produce identical ranking lists Ri
(1) ≡Ri

(2).Let us 
present a graphical illustration for Qi

(1) and Qi
(2) regardless of the scale (Figure 1). 

 
Fig. 1. Positions of the ratings of alternatives Qi

(1) and Qi
(2) after reduction to a 

common numerical scale 

 
Only by carefully analyzing the figures can we assume that the distances between adjacent 

elements for the two lists are proportional. Indeed, using formula (29) we obtain: 
 
dQi

(1)={46.5444  6.8698   14.3956  8.8325  3.3856   12.2668  7.7053} 
dQi

(2)={46.5444  6.8698   14.3956  8.8325  3.3856   12.2668  7.7053} 
 

Note that the two presented rating lists (32) and (33) are related by a linear dependence: 
Qi

(2)=0.2501∙Qi
(1)+0.528 and the correlation coefficient is equal to 1. That is, these two lists are 

equivalent by definition 2. 
Initially, the first list represents the ratings Qi of alternatives of the decision-making problem with 

the matrix D0 by (34) for the WSM(Max-Min(D0), w) model with the ReS inversion and weight 
coefficients w=(0.1 0.2 0.4 0.2 0.1). The decision matrix D0 of this example defines 8 alternatives for 
5 attributes, of which the 2rd and 5th criteria are cost criteria: 
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0

71 4500 150 1056 478

85 5800 145 2680 564

76 5600 135 1230 620

74 4200 160 1480 448

82 6200 183 1350 615

81 6000 173 1565 580

80 5900 160 1650 610

85 4700 140 1750 667

D

 
 
 
 
 =
 
 
 
  
 

.    (34) 

The second list represents the rankings of alternatives of the same problem, for a similar model, 
but using the normalization proposed by Lai and Hwang method [31]. 

 

max min

2 ij

ij

i i

a
x

m a a
= 

− , (35) 

 
The coefficient 2/m in the previous formula represents a scaling factor that does not affect the 

RPI. The shift coefficient in the formula for Max-Min normalization also does not affect the RPI. Thus, 
the two ranking lists are equivalent and both ranking models are equivalent, as demonstrated in the 
presented example. 

The equivalence of two rating lists can also be established using the usual Pearson pair correlation 
coefficient. Unlike the pair correlation coefficient, the dQ vector contains important information 
about the degree of distinguishability of alternatives by rating [20], i.e. it is more informative. 
 
3.2 Equivalence of the MABAC, Ratio System approach, TOPSIS(L1), MAIRCA, and RAWEC methods of 
the MCDM to the Weighted Sum Method 

Despite the significant difference in the aggregation formulas of the WSM, RS, MABAC, 
TOPSIS(L1), MAIRCA and RAWEC methods, these methods are identical in RPI values, provided that 
each model uses the same linear normalization method and the same vector of criteria weight 
coefficients. The difference in the aggregation formulas (4), (5)-(6), (7)-(10), (11)-(15), (16)-(19), (20)-
(24) naturally lead to different values of the performance indicator of alternatives Qi. Why then do 
the dQi values coincide? This is a consequence of the scaling effect: transformations of the decision 
matrix D0 (aggregation formulas of features) do not change the relative distances (invariance of 
dispositions of the Qi values). In all cases, the authors failed to obtain rigorous proof of this effect. 
The presence of long chains in the formulas for calculating the rating of alternatives for different 
methods complicates rigorous calculations. However, the authors conducted numerous 
computational experiments with variations in the problem dimension, the solution matrix, 
normalization methods (performed only for linear transformations) and weight coefficients in a wide 
range. In all cases, dQi coincide. 

Figure 2 shows the results of one of the numerous tests confirming the equivalence of the WSM, 
RS, MABAC, TOPSIS(L1), MAIRCA and RAWEC methods. 
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Fig. 2. Equivalence of WSM, RS, MABAC, TOPSIS(L1), MAIRCA and RAWEC 
methods. Decision matrix by (34) 

The models include 6 aggregation methods and 6 normalization methods: 
 
Agg(k)={WSM, RS, TOPSIS(L1), MABAC, MAIRCA, RAWEC}, k=1, …, 6. 
Norm(s)={Max, Sum, Vec, dSum, Max-Min, Z[0,1]}, s=1,…,6. 

 
The linear inversion method ReS [30] was used for normalization of cost criteria. Number of 

models: N=k∙s=36. 

 
The calculation results for each model are presented in Figure 2 in three scales: ratings Qi 

(numeric scale), dispositions dQi (fractions from 1) and ranks Ri (alternative numbers in ascending 
rank from 8 to 1). The rating values of each alternative in Figure 2 are indicated by triangular pixels. 
In each of the methods, the ratings of alternatives are defined in their own measurement scale and 
are difficult to compare. There is a shift and stretching-compression of the results for different 
methods. But the calculation of dQi for each of the methods shows their equality. In Figure 1, dQi are 
presented as segments in fractions from 1. dQi denotes the relative distance between the rating 
values of alternatives Ai and Ai+1, i.e. alternatives i and i+1 of rank. Thus, all rating lists are equivalent, 
which also means the equivalence of the MCDM models. What are the implications of the 
equivalence of the aggregation methods: 

- the MABAC, RS, TOPSIS(L1), MAIRCA and RAWEC methods should be excluded from the 
MCDM methods collection since the simpler WSM method yields the same results. 

- the identity of RS and WSM shows that the ReS inversion [27] used in WSM to transform the 
cost criterion values includes the –r inversion and ensures the continuity of the aggregation 
method, 

- the significance of the additive WSM method (Value Measurement method) increases since 
its results coincide with the results of the TOPSIS(L1) method using the anti-ideal approach 
(Reference Level models) and coincide with the results of the non-linear MABAC aggregation 
method using a multiplicative component. In particular, the equivalence of WSM and 
TOPSIS(L1) means that both approaches have the same character and shows that Value 
Measurement models and Reference Level models are interrelated. 
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The first statement is true only if the model uses a linear normalization method. For example, in 
the basic descriptions of the methods under study, the Max normalization method is used in 
combination with a nonlinear method of inversion of cost criteria of the xj

min/xij. type. In this case, 
the relative dQ ratings obtained in different methods differ. However, as noted in the study [29], the 
use of nonlinear transformations leads to data (information) distortion. The use of nonlinear 
normalization should be motivated.  

 
Fig. 3. Ranking of alternatives for the WSM model in combination with normalization 
methods Max, Sum, Vec, dSum, Max-Min, Z[0,1]. Decision matrix by (34) 

 
Thus, the example shows that, out of 36 different MCDM models, only 6 are relevant. When 

combining the WSM method and various normalization methods, the relative dQ ratings obtained in 
different methods differ. Figure 3 shows the results of one of the many tests confirming this thesis. 

 
The presentation of the results in this figure is like Figure 2. For each model, the results are 

presented in three scales: Qi ratings (numeric scale), dQi dispositions (proportions from 1) and Ri 
ranks (alternative numbers in ascending rank from 8 to 1). It is easy to see that the dispositions of 
the alternatives (dQ scale) are different in each of the methods. In three different models (WSM.Sum, 
WSM.Vec, WSM.dSum) out of 6, the first-rank alternatives are different. But the analysis of the 
results shows that the distances between the rating values of the 2nd and 4th alternatives and the 
6th alternative are insignificant (dQ is small). Following the study [20], these alternatives are poorly 
distinguishable. Due to this, alternative A6 most likely has formal priority. Since there are no rational 
criteria for choosing a normalization method, each of the results reflects the ratings of the 
alternatives considering the transformation of the measurement scales and the distribution of values 
for each attribute. All results are equivalent. In this situation, it is necessary to perform a solution 
synthesis based on the results of several models, which is presented in Section 4. 

Comparison tests were also performed for the aggregation methods WPM, WASPAS, CODAS, 
COPRAS, VIKOR, TOPSIS(L2), PROMETHEE, ORESTE. The effect of RPI equality was not detected. 
 
4 Synthesis of solutions obtained for different MCDM rank models 
 
4.1 Converting the rating of different MCDM rank models to a single scale 

Let us use the solution of the MCDM problem using the 3M approach (the set of admissible rank 
models of MCDM). Let k models be selected. 

Synthesis of the solution based on the rating scale is preferable to the synthesis of the solution 
based on the rank scale. In the latter case, there is a loss of information. Namely, the degree of 
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closeness-distance of the integral indicator Qi of different alternatives is lost. Earlier, in the study 
[20], the possibility of adjusting the rank list was shown based on dQi. 

Different MCDM models have their own scale, and some have a different focus, for example, in 
the VIKOR method, a lower value of Qi is better. 

We will show how to easily transform different scales into one common scale: 
 

Step 1. The general goal of synthesis, when a higher value of the efficiency indicator Qi is better, 
is taken as the base one. 
 

Step 2. For the methods included in 3M for which a lower Qi value is better, we perform an 
inversion of the values using the ReS algorithm [30]: 
 
Qi =−Qi+ Qi

max+ Qi
min.              (36) 

 
This transformation preserves the proportions between the Qi values. 

 
Step 3. Transform the Qi values for all methods included in 3M to [0, 1] using the linear Max-Min 

transformation: 
 

min

max min

i i

i

i i

Q Q
Q

Q Q

−
=

−
,           (37) 

 
According to [26, 29], for linear transformations, the proportions between the Qp and Qq values, ∀ p, 
q, are preserved: 
 

max min max min

p q p q

i i
i i

Q Q Q Q

Q QQ Q

− −
=

−−
,          (38) 

 
The best Q̅i value for all models is 1 and is indifferent to the rating scale of each model. 
Thus, for all methods included in 3M, the values of the rating of alternatives Q̅i ∈[0, 1] with 

preservation of the ordering and proportions of the original values. 
Let us present an example for a problem defined by the decision matrix according to (34). The 

rating of alternatives for the WSM model in combination with the normalization methods Max, Sum, 
Vec, dSum, Max-Min (M-M), Z[0,1] is defined in the previous section (Figure 3). We will transform the 
ratings in accordance with formula (38). The results of calculating the ratings in the individual scale 
of the model and in a single scale (after transformation) are presented in Table 1. 
 

Table 1  
Rating of alternatives in the model scales and in a single scale (after transformation) 

Ai 
Qi (in the model scales) Q̅i (in a single scale) 

Max Sum Vec dSum M-M Z[0,1] Max Sum Vec dSum M-M Z[0,1] 

1 0.776 0.117 0.327 0.856 0.385 0.407 0.443 0.348 0.361 0.565 0.475 0.470 
2 0.850 0.134 0.374 0.869 0.491 0.504 0.917 1 1 0.686 0.696 0.725 
3 0.707 0.107 0.300 0.794 0.157 0.229 0 0 0 0 0 0 
4 0.847 0.129 0.360 0.904 0.582 0.565 0.897 0.797 0.814 1.000 0.885 0.884 
5 0.811 0.123 0.344 0.884 0.565 0.543 0.662 0.576 0.591 0.822 0.849 0.827 
6 0.863 0.134 0.373 0.900 0.637 0.609 1 0.975 0.987 0.967 1 1 
7 0.790 0.121 0.339 0.853 0.424 0.439 0.532 0.515 0.521 0.536 0.556 0.553 
8 0.726 0.112 0.312 0.802 0.215 0.276 0.116 0.161 0.158 0.075 0.121 0.123 
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This transformation allows us to compare ratings and subsequently aggregate ratings obtained in 
different models. In this example, for example, it is interesting to compare the ratings of the single 
scale of alternative A2. In different models, the rank changes from 4 positions to 1. Linear 
transformation (38) preserves the ranks and dispositions of the alternatives dQ in each of the models. 
The results are presented in Table 2. 
 
 

Table 2  
Ranks and dispositions of dQ alternatives in different models 

rank 
Number of alternative Ai dQi, % 

Max Sum Vec dSum M-M Z[0,1] Max Sum Vec dSum M-M Z[0,1] 

1 6 2 2 4 6 6 - - - - - - 

2 2 6 6 6 4 4 8.3 2.5 1.3 3.3 11.5 11.6 

3 4 4 4 5 5 5 2.0 17.8 17.3 14.4 3.6 5.7 

4 5 5 5 2 2 2 23.5 22.1 22.3 13.6 15.3 10.2 

5 7 7 7 1 7 7 13.0 6.2 7.0 12.1 14.0 17.2 

6 1 1 1 7 1 1 8.9 16.7 16.1 2.9 8.1 8.4 

7 8 8 8 8 8 8 32.7 18.7 20.3 46.2 35.5 34.6 

8 3 3 3 3 3 3 11.6 16.1 15.8 7.5 12.1 12.3 

 

Dispositions dQi complement the ranking information by showing how far apart the ranking 
values of adjacent alternatives are. For example, in models using the Sum and Vec normalization 
methods, the rankings of rank 1 and 2 alternatives (these are alternatives A2 and A6) are poorly 
distinguishable (~2.5 and 1.3%). 
 
4.2 Synthesis of the solution of different methods based on a single rating scale 

Provided that for different methods the rating of alternatives is reduced to a single scale, the 
synthesis of the solution for k MCDM models is possible in the form of a weighted sum: 

( )

1

k
j

i j i

j

Qs Q
=

= ,           (40) 

Where, Qsi is the integral indicator of the ith alternative, θj is the weight of the jth MCDM model in 
the selected 3M structure, Q̅i

(j) is the normalized rating of the ith alternative for the jth model, j=1,…, 
k. 

The best alternative corresponds to the highest value of Qsi. 
We denote the proposed approach as Synthesis of the Rating based on transformation to a Single 

Scale (SRSS). 
The resulting rating is more informative than the Borda rating or similar ones, since it reflects the 

real proportions of ratings (“fine” structure of relations). With the same ordering, the Borda rating 
assigns Borda points proportionally to the rank list, which do not correspond to the real proportions 
of the alternatives’ efficiency indicator. In this method, if there are m alternatives, the first-ranked 
alternative gets m votes and the second ranked gets one vote less, and so on. Continuing the analysis 
of the problem defined by the decision-making matrix according to (34), we will synthesize the 
solution using the WSM model in combination with 6 normalization methods Max, Sum, Vec, dSum, 
Max-Min, Z[0,1]. The Q̅i ratings in a single scale were calculated earlier and are presented in Table 1. 
In this example, all models have the same weights. The results of the rating synthesis for 6 models 
are presented in Table 3. 
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Table 3 
Synthesis of solutions of 6 models according to the 
Borda rule and using the aggregation of ratings of 
different models (SRSS) 

Rank 
Borda rules      Scale C 

Score # of Ai dQ  Score # of Ai dQ 

1 39 6 -  5.929 6 - 

2 34 4 12.8  5.277 4 11.0 

3 32 2 5.1  5.024 2 4.3 

4 27 5 12.8  4.328 5 11.7 

5 17 7 25.6  3.214 7 18.8 

6 13 1 10.3  2.662 1 9.3 

7 6 8 17.9  0.754 8 32.2 

8 0 3 15.4  0.000 3 12.7 

 
The results of Table 3 show a good agreement between the synthetic rating by the Borda rule and 

the rating obtained using the SRSS approach. The disposition indicator dQ is approximately the same 
in both cases. 

The following example demonstrates the difference between the Borda synthesis and the SRSS 
synthesis. The original problem is borrowed from the study Boyaci and Tüzemen [32]. In this example, 
all models also have the same weights. The results of the rating synthesis of 6 models are presented 
in Table 4. 
 
 
 

Table 4  
Synthesis of solutions of 6 models according to the 
Borda rule and using the aggregation of ratings of 
different models (SRSS) 

 

Rank 
Borda rules Scale coordination 

Score # of Ai dQ Score # of Ai dQ 

1 49 2 - 5.775 9 - 

2 48 9 2.2 5.683 2 1.9 

3 43 5 11.1 5.218 5 9.4 

4 36 1 15.6 5.123 1 1.9 

5 26 4 22.2 4.661 4 9.4 

6 25 3 2.2 4.642 3 0.4 

7 25 8 0.0 4.496 8 3.0 

8 8 10 37.8 1.513 10 60.5 

9 6 7 4.4 1.010 7 10.2 

10 4 6 4.4 0.849 6 3.3 

 

For this example, the first-rank alternatives in the Borda and SRSS methods are different. In fact, 
the distance between the 1st and 2nd ranking values is insignificant (dQ is small). In this case, the 
additional information provided by the dQ indicator shows that quantitative estimates do not allow 
one to give preference to any alternative. Decision making in this case is the prerogative of the 
decision maker. 
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4 Conclusion 
 

The tendency to synthesize solutions based on many MCDM models assumes that each method 
includes different relationships between alternatives, which increases the overall information 
content and improves the reliability of the result []. This premise suggests defining a list of acceptable 
methods for solving a specific problem. These methods should be independent and reflect different 
relationships between alternatives. 

To compare the ranking of alternatives obtained using different MCDM models, the article uses 
the Relative Performance Indicator (RPI). Using RPI, six methods of aggregation of private attributes 
of alternatives with identical results were established: WSM, RS, MABAC, TOPSIS(L1), MAIRCA and 
RAWEC, provided that each aggregation method combines the same method of linear normalization 
of attributes. This allows avoiding duplication of equivalent methods in the procedures for 
synthesizing different methods. When solving MCDM problems, it is recommended to use the 
simplest and most easily interpreted of them: WSM. The presented methodology is recommended 
as mandatory for analyzing new or hybrid MCDM methods to eliminate duplication of existing 
methods. Within the 3M approach, a synthesis of a solution based on ratings obtained in different 
MCDM models is proposed. The method includes coordinating the common goal of several models 
and bringing the ratings obtained in different MCDM models to a common scale, which allows 
comparing and aggregating the ratings. Bringing the ratings to a common scale is achieved using the 
Max-Min linear normalization. This is based on the property of invariance of the dispositions of the 
dQi rating under linear transformations. This preserves the original information content of the 
alternatives rating. After reduction to a single scale, the solution synthesis is performed as a weighted 
linear combination of the alternatives rating obtained in different MCDM models. The weights 
determine the significance of the models [35,36]. The synthesis of solutions based on the rating of 
alternatives obtained in various models, in contrast to the synthesis of solutions based on the ranks 
of alternatives, reflects the real proportions of the performance indicator of alternatives. The 
examples provided demonstrate the effectiveness of the proposed approaches. 

According to the authors, the following important questions require further research: 
- which MCDM methods should be included in the list of methods. These methods should be 

independent and reflect different relationships between alternatives in the context of the selected 
criteria, 

- how to evaluate the significance (weight) of the methods, 
- whether to group the methods and how to form the groups. 
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