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The global expansion of power infrastructure has highlighted the growing 
necessity for advanced safety control mechanisms that exceed the capabilities of 
conventional manual systems, particularly as the number of substations and their 
operational complexities continue to rise. This study presents an intelligent 
integration framework that combines a three-dimensional (3D) virtual 
environment with automated operation tickets to enhance substation safety and 
intelligent control. The system adopts a multi-source heterogeneous information 
fusion approach to achieve improved operational performance and enhanced 
reliability. Central to the architecture is a 3D visualisation platform for 
substations, which facilitates real-time simulation of substation operations, 
scheme login access, equipment status monitoring, and automated management 
of operation tickets. Real-time data processing and execution of decisions are 
achieved through the deployment of multiple smart hardware components, 
including multi-dimensional sensing devices, high-efficiency wearable tools, pre-
aligned rods, and substation inspection robots. Substation predictive maintenance 
capabilities are strengthened through a forecasting model that integrates Long 
Short-Term Memory (LSTM) neural networks with the Orangutan Optimisation 
Algorithm (OOA), specifically targeting space-time data prediction of transformer 
oil temperatures. The Attention-LSTM model demonstrates superior short-term 
predictive precision, enabling early fault detection and automated diagnostics. To 
enhance strategic decision-making within the intelligent control system, the 
Analytic Hierarchy Process (AHP) is incorporated to establish prioritised action 
plans. Experimental validation confirms the system’s ability to generate timely 
alerts regarding abnormal equipment conditions within substations. The 
proposed integrated safety control framework represents a comprehensive and 
practical solution for substation automation, significantly improving operational 
effectiveness, system reliability, safety management, and data-informed decision-
making. 

 
1. Introduction 

The ongoing evolution of power grid infrastructure, paired with the rising intricacy of substation 

 

* Corresponding author. 
E-mail address: zhangfansdepci@163.com 

https://doi.org/10.31181/dmame8120251465  

http://www.dmame-journal.org/
mailto:sdln2024@126.com
mailto:wanglet2874@163.com
mailto:zhangfansdepci@163.com
mailto:15653102517@163.com
mailto:zhangfansdepci@163.com
https://doi.org/10.31181/dmame8120251465


Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 708-724 

709 

 
 

 

operations, necessitates the deployment of highly advanced safety and control frameworks. 
Conventional techniques currently employed in the operation and maintenance of substations are 
increasingly incapable of satisfying contemporary industry expectations [25]. This mismatch 
between capability and demand results in notable inefficiencies and heightened safety 
vulnerabilities across substation systems [14]. Although prevalent digital solutions concentrate on 
connecting physical assets via sensors, they frequently disregard essential components such as 
workforce safety, real-time environmental assessment, and proactive monitoring of equipment 
health status [28]. As the scale and technical complexity of grid maintenance expand, there emerges 
an urgent requirement for technologically integrated systems that can simultaneously enhance 
automation, operational productivity, and hazard mitigation in substations [19].  

Modern substation supervision contends with the absence of a cohesive solution that can 
effectively address safety enforcement in tandem with predictive maintenance functionality. Many 
current safety mechanisms offer limited protection against exposure to hazardous high-voltage 
zones and adverse environmental elements [11]. Moreover, the exclusion of predictive analytics in 
these systems impedes the anticipation of equipment failures, leading to extended downtime, 
inflated operational costs, and ineffective asset upkeep [4]. To overcome these issues, this research 
introduces a unified system combining 3D virtual modelling with intelligent hardware and 
automated operation ticketing. Through virtual interfaces, operators gain real-time access to 
substation processes, which improves situational insight and reduces exposure to physical risk [26]. 
Integrated smart hardware—including body-worn sensors, spatial localisation modules, and 
autonomous inspection units—facilitates dynamic monitoring of personnel location, ambient 
conditions, and machinery status. This comprehensive technological arrangement acts to minimise 
accidents, refine procedural execution, and enhance overall substation operational capability [20].  

Beyond intelligent automation and surveillance, present-day substations must facilitate 
adaptive, criteria-driven decision-making structures to manage complex conditions and uphold 
safety assurance. As the influx of data from sensors, fault predictions, and alert systems intensifies, 
it becomes increasingly critical to convert raw inputs into practical, responsive decisions. 
Embedding a formal decision-support approach, such as the Analytic Hierarchy Process (AHP), 
within the substation control framework enables prioritisation based on factors including severity of 
failures, equipment significance, associated repair expenditure, and safety implications. This 
enhances not only the ability to detect and forecast faults but also enables well-informed, 
transparent, and risk-sensitive decision execution for both immediate and strategic planning.  

The proposed framework further incorporates an optimised Long Short-Term Memory (LSTM) 
model designed to advance defect prediction, maintenance scheduling, and safety monitoring. This 
deep learning algorithm processes a wide array of input variables—ranging from sensor feedback 
and equipment performance metrics to environmental indicators—to forecast equipment 
degradation and suggest maintenance strategies that minimise operational disruption [24]. By 
coupling LSTM-driven predictive intelligence with 3D virtual substation simulations, the system 
supports early detection of operational anomalies while reducing the likelihood of unplanned 
outages. Maintenance tasks, initiated via automated operation ticketing, ensure full compliance 
with established safety standards and lower the probability of human error. Collectively, this 
integrated solution reinforces worker safety, raises substation operational efficiency, and provides a 
resilient, intelligent response to contemporary grid infrastructure demands [10].  

 
2. Literature Review 

The rapid advancement of power infrastructure necessitates innovative strategies to enhance 
system management, security, and monitoring capabilities. The integration of 3D modelling, deep 
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learning, data fusion, and optimisation algorithms has recently emerged as a promising solution to 
challenges related to power infrastructure development, equipment monitoring, and grid 
administration. A high-level combination of technologies, including Light Detection and Ranging 
(LiDAR), photogrammetry, neural networks, and hierarchical optimisation, contributes to improved 
decision-making by increasing both accuracy and operational efficiency. These techniques provide 
applicable approaches to modernise power systems by ensuring operational reliability, addressing 
integration complexities, and overcoming computational limitations. This section outlines key 
developments in this evolving field.  

A real-time visual monitoring framework has been introduced using an octree-based structure 
to observe power construction environments [30]. This system integrates LiDAR and 
photogrammetry to generate 3D point cloud data, which is organised hierarchically via octree 
structures to enhance visualisation efficiency and minimise memory consumption. The approach 
effectively reduces processing time and improves monitoring accuracy; however, it remains 
vulnerable to noise sensitivity and occlusion-related tracking issues, and it requires significant 
computational power. Despite these limitations, the framework offers a balanced trade-off 
between accuracy and performance, making it suitable for overseeing large-scale construction 
operations. An improved 3D reconstruction technique has also been developed by enhancing 
Neural Radiance Fields (NeRF) for heterogeneous power equipment data processing [18]. This 
method leverages multi-source input from LiDAR-generated point clouds and RGB imagery to 
produce accurate adaptive 3D reconstructions. By improving spatial resolution and minimising 
surface distortion, the approach advances precision in structural modelling. It also facilitates rapid 
evaluation of complex equipment geometries and supports diverse data inputs. Nevertheless, the 
technique exhibits sensitivity to noisy data and imposes substantial computational demands, 
particularly in real-time operational contexts. Despite these challenges, it provides a sophisticated 
solution for high-precision 3D modelling of power assets.  

Another proposed system involves multi-source data fusion to support joint safety management 
within substations [31]. This framework integrates sensor networks, smart hardware, and real-time 
monitoring tools to enable enhanced situational awareness, predictive diagnostics, and fault 
detection. Although the approach strengthens decision-making processes, it introduces 
complications related to data synchronisation, computational load, and infrastructure compatibility. 
Even with these constraints, the model contributes a structured and intelligent framework for 
advancing safety and control in substation environments. A further development involves a power 
grid monitoring and management platform that employs 3D visualisation in combination with deep 
learning algorithms [25]. This system constructs a digital twin of the grid infrastructure, enabling 
real-time visual tracking and continuous evaluation of grid components. Through deep learning 
integration, it supports the identification and optimisation of anomalies, maintenance schedules, 
and operational decisions. While the method significantly enhances fault detection and situational 
insight, it faces barriers related to high computational requirements, complex data handling, and 
limited integration with legacy systems. Nonetheless, it offers a novel and effective pathway toward 
modernising power grid management practices.  A summary of the identified research gaps is 
presented in Table 1.  

Existing power infrastructure monitoring systems face several technical constraints, including 
data synchronisation challenges, sensitivity to noise, occlusion-related errors, and limited 
compatibility with legacy platforms, all of which contribute to substantial computational burdens. 
To address these limitations, the proposed framework integrates LSTM networks with OOA. In time-
series applications, LSTM demonstrates exceptional capability in capturing and retaining long-term 
dependencies, which is essential for identifying anomalies within dynamic operational settings. 
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Simultaneously, OOA is employed to optimise LSTM hyperparameters, thereby improving both 
computational efficiency and predictive precision. This integrated approach reduces processing 
demands while enabling a more resilient and adaptive monitoring solution, particularly suited for 
remote infrastructure oversight in power systems. 

Table 1 
Research Gap Validation 

Author(s) Techniques Involved Advantages Disadvantages 

Zhang et al. 
[30] 

Octree-Based Visual Monitoring 
with LiDAR & Photogrammetry 

Fast Processing, Optimized Storage, 
Precise Monitoring 

Noise Sensitivity, Occlusion Issues, High 
Computation 

Sun et al. 
[18] 

Multi-Objective Hierarchical 
Optimization for PIoT Security 

Accurate Risk Assessment, Adaptive 
Analysis, Efficient Resource Use 

High Computation, Inconsistencies in 
Decision-Making 

Zou et al. 
[31] 

Improved NeRF-Based 3D 
Reconstruction for Power 
Equipment 

High Accuracy, Multi-Source 
Compatibility, Complex Structure 
Handling 

High Computation, Noise Sensitivity, 
Real-Time Constraints 

Wu and Hu 
[25] 

Multi-Source Information 
Fusion for Substation Safety 

Better Fault Detection, Situational 
Awareness, Predictive Maintenance 

Data Sync Issues, High Computation, 
Legacy System Integration 

Wang et al. 
[21] 

3D Model Visualization & Deep 
Learning for Grid Monitoring 

Real-Time Tracking, Anomaly 
Detection, Grid Optimization 

High Computation, Complex Processing, 
Legacy System Challenges 

 
3. Proposed System Model 

The modern electrical system, encompassing power generation, distribution, and consumption, 
increasingly relies on integrated data and communication technologies to develop intelligent 
substations. The emergence of new elements—such as decentralised renewable energy sources, 
connected residential systems, electric mobility, advanced communication devices, and remote-
control units—requires grid infrastructures to evolve into more complex and efficient architectures.  

 
Fig.1: Proposed Architecture in 3D Virtual Environment for Substation Safety 
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This transformation generates a significant volume of data that energy providers must process 
and manage effectively. Moreover, determining the most suitable big data analytics approach from 
among various available techniques presents an additional challenge. With the growing number of 
substations worldwide, particularly in developing nations, the demands associated with daily 
operation and maintenance of these facilities are intensifying [5]. To address these increasing 
complexities, the system design enables station-level architecture to be more intuitive and 
controllable by allowing operators to issue commands via a tiered 3D visual interface of the 
substation. In response to the rising demand for intelligent, efficient, and comprehensive 
monitoring and control systems, this research proposes an advanced solution that incorporates 
wearable smart devices supported by multi-source heterogeneous data fusion. The complete 
architecture of the proposed system is illustrated in Figure 1. 

Virtual simulation through 3D technology is employed to replicate substation layouts with high 
fidelity, offering a clear and comprehensive visualisation of the operational environment. This 
significantly enhances task efficiency, facilitates data sharing, and strengthens the capabilities and 
effectiveness of safety control within substation operations [25]. The research focuses on 
constructing a virtual 3D substation, wherein equipment models are imported at a one-to-one scale 
to ensure precision and close alignment with actual devices. Within the Unity development 
platform, these components are positioned to mirror the real-world substation layout accurately. 
Architectural features such as the main control room and relay room are also replicated to achieve a 
high level of structural and temporal consistency with the physical substation. This virtual layout 
forms the core upon which the simulation framework is built.  

Simultaneously, data collected from multiple sensors supports real-time tracking of internal and 
external operational states of substation equipment. These data streams contribute to the 
enhancement of a dynamic simulation environment that can be visualised in real time. Based on 
this virtual model, a human-computer interaction and control platform is developed to support 
substation management activities [1]. The software interface enables users to engage with 
simulation-based substation functions. These functionalities include the ability to lock and store 
variable settings and are structured across user categories such as administrators, operators, and 
other managerial roles. In addition, the simulation integrates 2D animations to model routine 
operational procedures. The system employs work orders generated from the simulation 
architecture to produce step-by-step 2D animated representations of standard operational 
scenarios. These include primary wiring diagrams accompanied by instructional guidance and 
annotations. This feature helps users quickly familiarise themselves with standard workflows, 
reducing the potential for errors during live operations. By streamlining the interpretation and 
execution of work orders, the system supports smoother day-to-day substation functions and 
improves operational reliability [30].  

3.1 The System Function 

The functional design of the system integrates both manual and automated handling of 
procedural tasks, along with capabilities for monitoring electrical equipment and analysing standard 
operational tickets. By incorporating simulated accident parameters, the platform facilitates 
multiple emergency training scenarios, retaining historical event data to improve operators’ 
response effectiveness based on the system’s predefined architecture [13]. All operations are 
conducted within the parameters established by the complete manual for fault diagnosis and logical 
framework construction. The inspection module utilises virtual reality technology to execute 
procedural walkthroughs of equipment and circuit assessments for both internal and external 
components of the substation.  
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Furthermore, the system includes a weather simulation feature that displays real-time 
environmental data, including current time, temperature, meteorological conditions, and seasonal 
context, which are continuously updated and shown within the interface framework [9]. The 
information exchange mechanism is supported by secondary physical devices that synchronise 
monitoring data gathered from real hardware with the virtual simulation model. This 
synchronisation is securely transmitted to the simulation control platform using secure protocols 
and intelligent wearable technology. The system also supports collaborative operations through a 
dual-user reverse gate functionality, allowing two users to operate individual terminals within a 
shared simulation environment, thereby enhancing cooperative task execution and training 
efficiency.  

3.2 Data Collection 

When maintenance is required at a specific substation location, the pre-installed alignment rod 
can be either raised or lowered using a dedicated electronic positioning mechanism. By adjusting 
the rod’s position along the relevant axis, one or more installation points can be determined. 
Following selection, the system transmits precise instructions to the installation computation 
module, directing it to execute the placement according to the identified area coordinates, thus 
initiating the related operational procedure. This function supports the broader objective of 
developing fully autonomous substation operations by providing the foundational basis for 
deploying a practical and effective inspection robot capable of functioning independently.  

The proposed inspection robot operates under both remote switching and real-time video 
feedback modes. It is equipped with a high-definition visible light camera and an infrared imaging 
unit, enabling users to access both infrared and live video streams through a network interface. 
Navigation is achieved using Radio Frequency Identification (RFID) tags in combination with pre-
installed magnetic guide paths [8]. Once manually activated by a remote user, the robot begins 
autonomous movement to inspect devices equipped with RFID tags. During the inspection process, 
it transmits real-time data, including visual and thermal images, allowing for the monitoring of 
equipment conditions such as surface temperature and operational status, along with the robot’s 
current location.  The mechanical design of the robot integrates components from both domestic 
and international manufacturers and adopts a wheel-driven configuration for precise angular 
movement control. Its four-wheel drive mechanism enables effective manoeuvring in confined or 
complex environments, improving inspection flexibility. Upon task completion, the robot 
automatically returns to its designated docking area for self-recharging, maintaining uninterrupted 
operational readiness [6].  

3.3 Multi-Source Heterogeneous Data Fusion Analysis Technique 

In this configuration, data collection for substation equipment is primarily conducted through 
inspection robots, wearable devices, electronically positioned full rods, and sensor modules 
integrated into multidimensional terminal units. Although these data originate from various 
hardware sources and edge-level devices, the decentralised nature of the information flow hinders 
the ability to obtain a comprehensive, real-time view of substation operations. Moreover, the 
collected data are often affected by overlapping or inconsistent signals, leading to increased 
complexity and time consumption in the processing phase. As a result, there is a critical 
requirement for a robust and efficient data fusion and anomaly detection framework [16]. To 
address this, the current section proposes a data integration and sharing strategy that aligns 
multiple substation devices to represent real-time operational states and to generate early 
warnings relevant to control personnel. A data fusion model based on LSTM is developed to process 
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and analyse multi-source spatiotemporal inputs. This model performs data refinement, fault 
classification for high-voltage substation equipment, assessment of failure severity, and condition 
evaluation for large-scale machinery. Furthermore, it continuously validates changes across all 
monitored equipment parameters to provide timely and reliable operational insights [18].  

3.4 LSTM Spatio-Temporal Data Detection Processing 

Secondly, a validation method for limited substation data is proposed, combining multi-source 
information integration with LSTM model optimisation. This approach establishes a systematic 
mechanism to assess the integrity of incoming data, guided by two primary validation criteria [23]. 
The first criterion involves operational phase verification based on spatiotemporal parameters, 
specifically including checks on temperature, humidity, and arc detection. The second validation 
focuses on operator-related data during emergency conditions to ensure the reliability of control 
responses [12]. The LSTM model, known for its ability to retain both short-term and long-term 
dependencies, is applied within this framework. It extends the basic structure of the RNN by 
incorporating three gate mechanisms: input, output, and forget gates [3]. The forget gate facilitates 
the linkage between the current hidden state and the preceding one using an activation function. It 
probabilistically discards a portion of irrelevant data, thereby refining the output and enhancing the 
relevance of the resulting predictions, as represented in the system’s computational flow.  

𝐹𝑇 = 𝜎(𝑊𝐹. [𝐻𝑇−1, 𝑍𝑇] + 𝐵𝐹)        (1) 

𝑊𝐹 is the heaviness of the hidden layer towards the gate and 𝐵𝐹 is the bias course in this case, 𝜎 
is the activation purpose. The symbol σ refers to the activation function. The parameter output 
generated through this process ranges between 0 and 1, which allows the system to regulate the 
influence of prior state information. The input gate plays a role in refining the internal cell state and 
typically utilises two activation functions: the sigmoid function and the hyperbolic tangent (tanh) 
function. In the present framework, data from the final hidden state and current input are first 
passed through the sigmoid function to produce an activation output constrained within the [0, 1] 
interval [17]. This value is used to determine the level of importance for updating cell states, where 
0 indicates non-essential and 1 indicates essential information. Subsequently, the hidden state of 
the previous layer is combined with the current input through a processing function that generates 
a set of candidate parameters. The tanh function is then applied to this candidate information, and 
its output is multiplied with the output of the sigmoid activation to update the internal cell state [7]. 
The resulting information from the tanh output is deemed significant and is retained as part of the 
model’s learning process, contributing to both short-term memory and long-term contextual 
interpretation. 

𝐼𝑇 = 𝜎(𝑊𝐼 . [𝐻𝑇−1, 𝑍𝑇] + 𝐵𝐼)         (2) 

�̂�𝑇 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [𝐻𝑇−1, 𝑍𝑇] + 𝐵𝐶)        (3) 

The cell state of the final layer is further updated by integrating it with the output of the forget 
gate. If the values produced by the parameter are close to zero, it indicates that the associated data 
in the updated cell state should be discarded as irrelevant [27]. The remaining useful information is 
then combined with the input gate's output to incorporate newly generated data from the 
underlying neural architecture. This process results in an enhanced and refined cell state that 
carries forward only relevant contextual information, contributing to more accurate modelling and 
learning within the LSTM framework. 

𝐶𝑇 = 𝐹𝑇 . 𝐶𝑇−1 + 𝐼𝑇 . �̂�𝑇         (4) 
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Output Gate: Based on the latest input, the output gate determines the parameters for the next 
hidden state. To achieve this, the newly updated cell state is first passed through the tanh activation 
function, while the current input and the previous hidden state are simultaneously processed by the 
sigmoid function [29]. The values derived from these two functions are then multiplied to produce 
the data that should be retained in the hidden state. This computed hidden state represents the 
current output of the cell and, together with the updated cell state, is forwarded to the next time 
step in the sequence.  

𝑂𝑇 = 𝜎(𝑊𝑂. [𝐻𝑇−1, 𝑍𝑇] + 𝐵𝑂)        (5) 

𝐻𝑇 = 𝐵𝑂. tanh(𝐶𝑇)         (6) 

The OOA supports the optimisation of weighting parameters within the LSTM architecture, 
enhancing model accuracy and convergence efficiency. 

3.5 Orangutan Optimization Algorithm  

OOA is a biologically inspired optimisation algorithm modelled on the behavioural 
characteristics of orangutans. In this approach, each member of the orangutan population 
represents a candidate solution within the optimisation problem space. These solutions are 
inherently diverse, as each orangutan is positioned at a distinct location within the 
multidimensional search space, ensuring exploration across a wide solution range [22]. This 
framework specifically refers to the mathematical representation of solution variables in the form 
of vectors. 

𝑌 =

[
 
 
 
 
𝑌1

…
𝑌𝐼

…
𝑌𝑁]

 
 
 
 

𝑁×𝑀

=

[
 
 
 
 
𝑌1,1 … . 𝑌1,𝐷 … 𝑌1,𝑀

… … … … …
𝑌𝐼,1 … 𝑌𝐼,𝐷 … 𝑌𝐼,𝑀

… … … … …
𝑌𝑁,1 … 𝑌𝑁,𝐷 … 𝑌𝑁,𝑀]

 
 
 
 

𝑁∗𝑀

     (7) 

𝑌𝐼,𝐷 = 𝐿𝐵𝐷 + 𝑅. (𝑈𝐵𝐷 − 𝐿𝐵𝐷)        (8) 

The term is denoted by 𝑈𝐵𝐷, by 𝐿𝐵𝐷, the random number in the interval [0,1] by 𝑅,𝑀 is the 
number of decision parameters, 𝑌𝐼,𝐷 is the dimension in search space, and 𝑌𝐼 is the orangutan. 

3.5.1 Stage 1: Foraging Technique 

Orangutans are known to spend considerable time foraging in their natural habitats, searching 
for resources such as fruits and tree leaves. Within established colonies, their extensive movements 
and careful environmental assessment enable them to explore a wide range of locations for 
sustenance. When these foraging behaviours are translated into the OOA framework, the 
algorithm's exploration capacity is significantly enhanced, allowing it to adapt more effectively while 
scanning the global search space of the optimisation problem [2]. However, despite being modelled 
with a random search component, the algorithm remains relatively limited in its search precision 
and depth. 

𝑓𝑠𝑖 = {𝑌𝐾: 𝐹𝐾 < 𝐹𝐼  𝑎𝑛𝑑 𝐾 ≠ 𝐼}        (9) 

That is, in this case, 𝑌𝐾  is the orangutan with the optimal goal function parameter 𝐹𝐾 the 
objective function parameter 𝑓𝑠𝑖  is the pair of potential food sources. 
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3.5.2 Stage 2: Nesting Skill (Exploitation Stage) 

Orangutans demonstrate remarkable cognitive ability, evident not only in their foraging patterns 
but also in their nesting behaviours. Each day, they construct nests in trees using surrounding 
branches and leaves, exhibiting a purposeful strategy that reflects a form of localised optimisation. 
This nesting activity represents a focused search to maximise space utilisation in a controlled area. 
In the second phase of the OOA, this behaviour is simulated by directing the orangutan towards a 
nearby tree to establish a new nest location [15]. Algorithmically, this nesting strategy is modelled 
by determining the orangutan’s updated position based on its current location, facilitating a more 
refined and targeted local search within the solution space. 

𝑌𝐼,𝐽
𝑃2 = 𝑌𝐼,𝐽 + (1 − 2𝑅𝐼,𝐽).

𝑈𝐵𝐽−𝐿𝐵𝐽

𝑇
       (10) 

𝑌𝐽 = {
𝑌𝐼,𝐽

𝑃2 𝐹𝐼,𝐽
𝑃2 ≤ 𝐹𝐼

𝑌𝐼 𝐸𝑙𝑠𝑒
         (11) 

where, 𝑇 is the iteration counter of the DCA algorithm, 𝐹𝐼,𝐽
𝑃2, and 𝑡 is the maximum number of 

iterations allowed by DCA algorithm. 𝑌𝐼,𝐽
𝑃2 is an objective function and 𝑃2 is the algorithm 

dimension, and 𝑌𝐼,𝐽
𝑃2 proposed the new location where the orangutan can exist in the second OOA 

phase.  

3.6 AHP-Based Decision-Making for Maintenance Prioritization 

To enhance the decision-making capability of the proposed intelligent substation control 
system, AHP is incorporated as a multi-criteria evaluation layer to support maintenance 
prioritisation. After conducting predictive assessments through the LSTM model optimised via OOA, 
the system considers several risk-based factors, including fault likelihood, equipment criticality, 
transformer oil temperature, component age, repair cost, and safety implications. AHP is used to 
assign relative weights to these criteria through pairwise comparison, generating a prioritised list of 
maintenance actions. This output enables operators to identify and execute the most urgent and 
cost-effective responses. By integrating predictive analytics with structured decision logic, the 
system evolves into a comprehensive decision-support platform that ensures timely, informed, and 
risk-aware management of substation infrastructure. 

 
4. Performance Evaluation  

The proposed intelligent integration of the 3D virtual environment with automated operation 
ticketing was evaluated in terms of real-time monitoring, predictive accuracy, and operational 
efficiency. The use of a three-dimensional interactive platform significantly enhanced workflow 
automation by reducing manual effort and improving fault identification capability. Real-time 
anomaly detection was strengthened through the integration of multi-dimensional sensors, 
wearable technology, and inspection robots, enabling continuous monitoring and increased 
detection accuracy. The system demonstrated high effectiveness in predicting transformer oil 
temperature fluctuations, outperforming alternative models. When benchmarked against LSTM, 
support vector machine (SVM), deep belief neural network (DBNN), and deep neural network 
(DNN), the proposed method achieved superior results by reducing loss values, minimising 
prediction errors, and increasing anomaly detection rates. Performance was assessed using metrics 
including area under the curve, accuracy, precision, recall, and F1-score. The framework enabled 
the generation of early warnings prior to critical failures, thereby supporting proactive maintenance 
strategies. Moreover, the automated operation ticket mechanism contributed to a reduction in the 
response time required for maintenance-related workflows. Overall, the system delivered higher 
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predictive accuracy and classification performance compared to conventional techniques.  

  
Fig.2: Sample Images 

Figure 2 illustrates sample input and output images, while Figure 3 displays the confusion matrix. 

 
Fig.3: Validation of Confusion Matrix 

Figure 4 presents a comparative analysis of the proposed model alongside LSTM, DNN, DBNN, 
and SVM, evaluated using four key performance metrics: accuracy, precision, recall, and F1-score. 
The proposed model demonstrated robust classification capability, achieving an accuracy of 
approximately 98.5%, precision of 98.2%, recall of 98.7%, and an F1-score of 98.4%. These results 
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indicate high reliability and consistency in predictive performance. In contrast, the LSTM model 
attained slightly lower results, with an accuracy of 95.8%, precision of 94.6%, recall of 95.1%, and an 
F1-score of 94.8%, suggesting a minor trade-off in prediction consistency. The DNN model delivered 
comparable outcomes, reaching 96.2% accuracy, 95.4% precision, 96.0% recall, and an F1-score of 
95.7%, though it remained marginally less effective than the proposed approach. Performance 
decline was more evident in the DBNN model, which recorded an accuracy of 92.4%, precision of 
91.2%, recall of 90.9%, and an F1-score of 91.0%, indicating a reduced ability to manage 
classification errors. The SVM model exhibited the weakest results, with accuracy, precision, recall, 
and F1-score values of 88.1%, 86.5%, 87.0%, and 86.7%, respectively, highlighting its limited 
capacity to handle complex substation data. Overall, the proposed model consistently 
outperformed all baseline models in terms of predictive accuracy and anomaly detection, 
confirming its effectiveness as a reliable tool for intelligent safety control in substation 
environments.  

 
Fig.4: Performance Measures 

Figure 5 presents the ROC curves for the proposed model, LSTM, DNN, DBNN, and SVM, 
illustrating the relationship between the false positive rate and the true positive rate across all 
models. The AUC values are used to assess each model’s classification capability in terms of its 
effectiveness at distinguishing between classes. The proposed model achieves the highest 
performance, with an AUC of 0.99, indicating near-perfect classification accuracy. An AUC of 0.98 
for LSTM also reflects strong predictive capability. The DNN model closely follows, recording an AUC 
of 0.96, which confirms its reliability in classification tasks, although slightly below that of the 
proposed approach and LSTM. In contrast, the DBNN model yields an AUC of 0.93, signifying a 
moderate decline in discriminative performance. The lowest AUC value of 0.91 is observed in the 
SVM model, indicating its reduced ability to manage complex substation data patterns effectively. 
Overall, the proposed model consistently surpasses conventional deep learning and machine 
learning approaches in terms of classification accuracy, reduced false positive rates, and enhanced 
robustness. These outcomes underscore its practical applicability in intelligent safety control and 
predictive maintenance of substation systems.  
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Fig.5: AUC Validation  

Figure 6 presents the mean squared error (MSE) and root mean squared error (RMSE) metrics, 
which are employed to evaluate the prediction accuracy and error minimisation capacity of the 
proposed model in comparison with LSTM, DNN, DBNN, and SVM. Lower MSE and RMSE values 
indicate higher performance quality and more precise predictive capability.The proposed model 
delivers the most accurate predictions, achieving the lowest RMSE of approximately 0.15 and an 
MSE close to 0.02, reflecting minimal prediction errors. In contrast, the LSTM model shows a slight 
decline in predictive accuracy, recording an RMSE of 0.32 and an MSE of 0.08. The DNN model 
maintains competitive results with an RMSE near 0.28 and an MSE of 0.07, indicating reasonable 
predictive strength. However, both error metrics increase substantially for the DBNN model, with an 
RMSE of 0.40 and an MSE of 0.12, highlighting reduced prediction precision. The SVM model 
exhibits the weakest performance, with RMSE exceeding 0.5 and MSE reaching 0.18, signifying poor 
error management and diminished prediction capability. Overall, the proposed model demonstrates 
superior accuracy in predictive tasks, validated by its consistently lower MSE and RMSE values, 
reinforcing its suitability for intelligent safety control within substation environments. 

 
Fig.6: Error Parameter  
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Figure 7 presents multiple data points representing transformer oil temperature readings, each 
corresponding to a 15-minute interval. The temperature values in the dataset range from -15°C to 
50°C and display periodic fluctuations over time. Peaks near 50°C reflect thermal loading phases, 
while troughs around -15°C indicate cooling periods. These cyclical patterns suggest that both 
environmental conditions and operational dynamics significantly influence transformer oil 
temperature behaviour. The observed regularity in these variations underscores the importance of 
continuous monitoring systems in maintaining transformer performance and ensuring stable power 
delivery. This dataset provides valuable input for predictive maintenance algorithms, facilitating 
early fault detection and supporting operational optimisation within substation environments.  
Figure 8 displays the training and validation loss convergence across 600 iterations. Substantial 
performance improvements occur during the initial 100 iterations, where loss values rapidly decline 
from 1.0 to significantly lower levels. Over the remaining 300 iterations, the loss stabilises near zero, 
indicating successful convergence. The parallel behaviour of training and validation loss curves 
demonstrates minimal overfitting and confirms the model’s generalisation capability. The smooth 
decline in loss values reflects the efficiency of the optimisation process, validating both the model’s 
reliability and predictive precision.  

 

Fig.7: Oil Temperature Data 

Experimental results further confirm the robustness of the proposed intelligent substation 
safety and control system across key performance measures. The system achieves classification 
metrics of 98.5% accuracy, 98.2% precision, 98.7% recall, and 98.4% F1-score, along with an AUC of 
0.99 and low error values (RMSE = 0.15, MSE = 0.02), consistently outperforming traditional models 
such as LSTM, DNN, DBNN, and SVM. Beyond predictive accuracy, the integration of predictive 
outputs with intelligent ranking mechanisms enables real-time decision-making. For example, when 
the predicted fault probability exceeds 0.85 and the transformer oil temperature surpasses 70°C, 
the system recommends deploying Inspection Team A within two hours. This capability highlights 
the platform’s ability to facilitate timely, data-informed interventions. By integrating virtual 
visualisation, sensor-based anomaly detection, and predictive analytics, the proposed framework 
enhances maintenance scheduling, reduces response latency, and mitigates operational risks. 
Ultimately, it evolves from a passive monitoring tool into a proactive and intelligent decision-
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support system that strengthens substation operational resilience, resource efficiency, and fault 
prevention strategies.  

 
Fig.8: Validation of Loss 

5. Conclusion 
This study introduces an intelligent substation safety and control system by integrating 

automated operation ticketing with a 3D virtual environment. By leveraging multi-source 
heterogeneous data fusion, the system enhances real-time monitoring, operational efficiency, and 
predictive maintenance capabilities. The implementation of intelligent hardware—including multi-
dimensional sensors, wearable technologies, and inspection robots—enables precise tracking of 
equipment conditions. The hybrid LSTM-OOA model demonstrated superior predictive 
performance, particularly in forecasting transformer oil temperatures, achieving an RMSE of 0.15 
and MSE of 0.02—surpassing traditional benchmark models. The model also exhibited excellent 
early fault detection, with an AUC of 0.99. Analysis of the loss curves revealed stable model training, 
with both training and validation losses converging near zero after 200 iterations. The proposed 
framework successfully supports predictive maintenance while reducing operational risks and 
enhancing substation reliability. This research presents an effective and forward-looking approach 
to power infrastructure management by combining real-time monitoring with advanced forecasting 
techniques. Future work will explore the development of AI-driven self-healing mechanisms to 
enable automatic fault correction, further enhancing the system's autonomy and adaptability across 
various substation configurations. Efforts will also be directed toward incorporating edge computing 
and 5G communication technologies to facilitate real-time data processing and rapid response, 
thereby strengthening operational resilience.  

To support structured and risk-sensitive decision-making, the system incorporates AHP as a 
multi-criteria evaluation tool for prioritising maintenance actions based on factors such as fault 
probability, equipment criticality, repair cost, and response urgency. This transforms the platform 
from a passive monitoring tool into a comprehensive intelligent decision-support system capable of 
navigating complex operational scenarios. Nevertheless, challenges remain, including reliance on 
precise sensor calibration and the subjectivity involved in AHP weight assignments. To address 
these, future enhancements will involve integrating fuzzy logic and dynamic MCDM approaches to 
manage uncertainty and improve decision adaptability. Collectively, these developments aim to 
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elevate the system’s resilience, intelligence, and practicality, broadening its applicability across 
diverse operational environments within the modern power grid landscape.  
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