
Decision Making: Applications in Management and Engineering, Volume 8, Issue 1 (2025) 690-707 

690 

 

Decision Making: Applications in 

Management and Engineering 

 
Journal homepage: www.dmame-journal.org  

ISSN: 2560-6018, eISSN: 2620-0104 

An Intelligent Decision-Support Framework for Substation Fault 
Management Using BOA-Optimized Deep Learning and IoT-Based Image 
Processing 

Fan Zhang 1*, Liang Zhao2, Qian Wang3 

1 Shandong Electric Power Engineering Consulting Institute Corp., Ltd., Jinan Shandong 250013, China. Email: zhangfansdepci@163.com 
2 Shandong Electric Power Engineering Consulting Institute Corp., Ltd., Jinan Shandong 250013, China. Email: sdepcizhaoliang@126.com 
3 Shandong Electric Power Engineering Consulting Institute Corp., Ltd., Jinan Shandong 250013, China. Email: wang425928@163.com 

ARTICLE INFO ABSTRACT 

Article history: 
Received 5 December 2024 

Received in revised form 20 Feb 2025 

Accepted 10 Apr 2025 

Available online 20 June 2025 

Keywords: 
IoT, YOLOv8, Botox Optimization 

Algorithm, Power Auxiliary Control, 

Residual Neural Network. 

Achieving operational efficiency and reliability in power substations becomes 
increasingly difficult as system complexity rises, necessitating the deployment of 
advanced monitoring and control technologies. The proposed Intelligent Power 
Auxiliary Control and Monitoring System integrates Internet of Things (IoT) 
technology with two-dimensional image processing to facilitate real-time 
monitoring and fault detection within substation environments. The system 
employs IoT-based sensors to capture critical auxiliary control parameters, 
including voltage, current, temperature, and equipment status. For image-based 
analysis, the YOLOv8 algorithm is utilised as an object detection mechanism, 
enabling precise identification of substation components and anomalies. Deep 
learning analysis is conducted using a Residual Neural Network (ResNet), which 
supports high-accuracy fault recognition through comprehensive monitoring of 
system parameters. The ResNet’s performance is further refined through weight 
parameter optimisation via the Butterfly Optimisation Algorithm (BOA), which 
improves convergence speed and classification accuracy. The system's 
effectiveness is validated through empirical analysis using actual substation data, 
demonstrating improvements in both fault detection accuracy and operational 
responsiveness. Evaluation findings confirm that the BOA-optimised ResNet 
model outperforms conventional deep learning approaches in terms of diagnostic 
accuracy and computational efficiency. The research contributes to the 
development of autonomous, intelligent auxiliary control systems capable of 
enhancing the safety and stability of substation operations. To aid in maintenance 
scheduling and operator decision-making, the system incorporates a fuzzy rule-
based decision layer that interprets predictive outputs and initiates context-aware 
operational responses. 

 
1. Introduction 

Power transmission and distribution systems rely heavily on substations, which serve as critical 
infrastructure components for ensuring consistent and dependable electricity supply. However, 
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conventional monitoring approaches have become inadequate due to the increasing complexity of 
substation equipment Davoodi et al. [4], as well as the growing need for real-time fault detection 
and predictive maintenance. Manual inspections remain widely used, yet these methods are time-
consuming, labour-intensive, and often lack reliability [1], leading to prolonged delays in identifying 
potential issues. Substation apparatus is frequently subjected to harsh environmental conditions, 
heightening the risk of overheating, insulation degradation, corrosion, and oil leakage [8]. Delays in 
identifying such issues can pose significant threats, including service interruptions, financial losses, 
and safety hazards. Hence, an accurate and fully automated detection system is essential to 
facilitate early fault identification and enable timely responses under prevailing operational 
challenges [18].  

Recent advancements in computer vision and neural network technologies have facilitated the 
application of deep learning techniques in defect identification, thereby improving monitoring 
effectiveness [7]. Enhancements to the YOLOv5 model have yielded improved detection rates and 
accuracy in identifying substation components. Furthermore, adaptations involving Faster R-CNN 
have been employed to better recognise small-scale targets such as cracks, insulation failures, and 
oil stains. Integrating adapter-based transformer modules within YOLOv5 has also strengthened the 
model’s performance and adaptability, particularly in scenarios with limited datasets [16]. These 
advancements have enabled substation fault detection systems to exceed previously established 
technological benchmarks, achieving greater accuracy and dependability across various monitoring 
functions.  

Nevertheless, several technical challenges remain unresolved. Identifying small targets within 
complex substation environments continues to be problematic, as many current techniques fall 
short in detection accuracy [11]. Feature extraction by existing models is frequently compromised 
by background noise and overlapping equipment, which contributes to false alarms and diminished 
precision. Additionally, the computational intensity of transformer-based models restricts their 
suitability for real-time operations in resource-constrained monitoring systems. Many existing 
solutions prioritise accuracy improvements at the expense of operational efficiency. In response to 
these limitations, the proposed study introduces an advanced fault detection framework that 
integrates YOLOv8 for real-time object recognition with ResNet for classification, further enhanced 
by the BOA to optimise system performance. The resulting system achieves notable improvements 
in diagnostic accuracy, computational efficiency, and adaptability, positioning it as an effective and 
lightweight solution for real-time monitoring and predictive maintenance in substations.  

Within the evolving landscape of modern power substations, effective decision-making has 
become increasingly vital due to the growing intricacy of operational dynamics, diverse fault 
scenarios, and the pressing need for real-time responsiveness. Conventional manual approaches are 
often inadequate for processing the large volumes of sensor-generated data or for initiating prompt 
and targeted maintenance interventions. Consequently, the incorporation of intelligent decision-
making frameworks within substation monitoring architectures has become a necessity. Approaches 
such as fuzzy logic, Multi-Criteria Decision-Making (MCDM), and optimisation-driven analytics 
facilitate the conversion of raw diagnostic outputs into structured, actionable directives. These 
methodologies enable the prioritisation of maintenance operations, optimal resource deployment, 
and the minimisation of system interruptions by supporting operators in making informed decisions 
grounded in the severity, urgency, and associated risk of detected faults. The system presented in 
this study not only performs fault identification through deep learning and optimisation-enhanced 
classification but also integrates a fuzzy rule-based decision module. This addition ensures that 
operational responses are contextually guided, thereby improving the overall safety, reliability, and 
efficiency of substation management.  
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There is significant potential for future developments in intelligent power auxiliary control and 
monitoring systems based on IoT and two-dimensional image processing. The integration of 
artificial intelligence (AI), machine learning, and deep learning algorithms can further enhance 
predictive analytics for early fault identification and failure forecasting in power equipment [8]. 
Deep learning methodologies, in particular, can increase the precision of image-based anomaly 
detection. Additionally, the deployment of edge computing will support real-time data processing 
directly at the substation, improving system responsiveness and reducing latency, especially in 
remote locations with limited internet access. The incorporation of blockchain technologies may 
further reinforce data integrity and security by offering tamper-resistant logging of operational 
data. Future research directions could also explore the development of energy-efficient IoT devices 
with embedded self-diagnostic capabilities, which would improve overall system longevity and 
reliability. Moreover, the implementation of 5G communication networks is expected to 
significantly enhance real-time monitoring and control capabilities.  

Despite these promising advancements, certain limitations persist. Integrating modern systems 
with legacy power infrastructure remains costly and complex, with high initial investment 
requirements. Additionally, the inclusion of IoT and image processing functionalities introduces 
potential cybersecurity vulnerabilities, which must be mitigated through robust encryption 
protocols and stringent security measures. Other technical challenges include variability in lighting 
conditions, environmental interference, and occlusion, which can compromise the accuracy of two-
dimensional image analysis tasks [2]. Efficient data management also poses a challenge, given the 
substantial volumes of real-time data generated by the system that require reliable storage and 
processing. In rural or remote areas, connectivity problems and network instability may affect the 
reliability of IoT-based monitoring. For intelligent auxiliary control and monitoring systems to be 
successfully implemented within substations, continuous advancements in hardware, software, and 
cybersecurity frameworks will be essential to overcome these existing constraints.  

 
2. Related Works 

Security concerns within power substations form a critical basis for maintaining the reliability of 
both transmission and distribution systems. Prioritising the identification of equipment defects and 
implementing stringent construction safety protocols is essential, as such measures help to avert 
power system failures, reduce maintenance expenditure, and enhance operational efficiency. 
Progress in technologies such as deep learning, computer vision, and multi-sensor fusion has 
enabled the creation of highly accurate real-time fault detection methods. The integration of neural 
network architectures with multivariate data fusion frameworks and infrared imaging—often 
supported by Generative Adversarial Networks (GANs) and lightweight artificial neural networks—
has proven effective in identifying hidden anomalies without compromising safety standards. A 
comprehensive analysis of current research on substation fault detection is necessary to evaluate 
the key technical strategies employed, understand their advantages, and identify limitations to 
guide further development. The problem formulation is presented in Table 1.  

One such approach is the lightweight fault detection model based on YOLOv8, designed to 
enhance the identification of small-scale targets in substation environments while maintaining low 
computational demands [25]. This model incorporates three fundamental components to improve 
detection in complex conditions: feature fusion mechanisms, attention-based modules, and shared 
convolutional heads. These elements collectively contribute to network optimisation, rendering the 
system suitable for use in edge computing scenarios. The model offers notable advantages, 
including improved sensitivity to small defects and reduced resource consumption. However, it also 
faces limitations in identifying extremely small or ambiguous defects, highlighting a performance 
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trade-off between detection precision and real-time operational efficiency.  

Table 1 
Problem Formulation 

Author(s) Techniques Involved Advantages Disadvantages 

Wang et al. 
[25] 

YOLOv8, Feature Fusion, 
Attention Modules 

High Accuracy, Low Computation, 
Edge-Device Friendly 

Struggles with Very Small/Occluded 
Defects, Complexity Trade-Offs 

Wu et al. 
[29] 

YOLOv5, Global-Local Fusion, 
Multi-Granularity Subsampler 

High Precision, Real-Time Infrared 
Detection 

Limited Efficiency for Small/Low-
Contrast Defects 

Zhang et al. 
[30] 

ADD-GAN, Joint Discriminator, 
Local Feature Preservation 

Enhances Training Data, Prevents 
Distortions 

High Computational Cost, GAN 
Training Complexity 

Zhang et al. 
[31] 

IL-GAM, IL-C3, IL-SPPFCSPC, 
Multi-Scale Processing 

91.2% Accuracy, 90 FPS, Robust 
Detection 

Needs Optimization for Variable 
Conditions 

Ke et al. 
[12] 

Multi-Sensor Fusion, Cloud-Edge 
AI, Anomaly Detection 

Real-Time Warnings, Improved 
Situational Awareness 

High Sensor and Computational 
Requirements 

 
A real-time infrared detection model for substation equipment has been developed based on 

the YOLOv5 framework, referred to as ISE-YOLO [29]. This system integrates global–local feature 
extraction, multi-granularity subsampling, and heavy parameter separation to enhance object 
detection within complex environments. It is available in two versions, ISE-YOLO-L and ISE-YOLO-S, 
each offering a trade-off between detection precision and processing efficiency. An extensive 
infrared image dataset was compiled and systematically pre-processed to support detection 
accuracy. While the model strengthens real-time performance and object recognition capabilities, it 
faces ongoing challenges in the efficient identification of extremely small or faint faults. Another 
study addresses the issue of limited defect datasets by employing deep learning-based image 
generation techniques [30]. Through the use of a Generative Adversarial Network named ADD-GAN 
(Abnormal Defect Detection GAN), defect images are synthetically created while preserving local 
image features. This method targets local segmented areas rather than relying on global 
characteristics, improving the representation of defects. A dual-discriminator training strategy 
focuses detection learning on defect zones, thus enhancing accuracy. Despite these strengths, 
challenges persist regarding the complexity of training procedures, computational demands, and 
the applicability of synthetic data in operational environments.  

Further developments include a detection approach aimed at insulator faults within 
transmission lines, where backgrounds are often cluttered and visually complex [31]. The proposed 
model integrates a Global Attention Mechanism (IL-GAM) to suppress background interference, a 
modified convolution module (IL-C3) to enhance feature extraction, and a spatial pyramid pooling 
structure (IL-SPPFCSPC) to process multi-scale information. Results indicate a detection accuracy of 
91.2%, which represents a 3.6% improvement over previous YOLOv5 models. Additionally, the 
system demonstrates real-time processing capabilities with a speed of 90 frames per second. 
Nevertheless, achieving consistent optimisation in diverse operational conditions remains a 
significant concern.  

A separate contribution involves the development of a substation safety framework that 
employs multi-dimensional sensor fusion to support risk detection and early warnings [12]. The 
system incorporates sensors for electromagnetic fields, meteorological parameters, toxic gas 
concentrations, and oxygen levels, supplemented by video surveillance for situational monitoring. 
Cloud–edge collaborative techniques are applied to facilitate real-time data processing and fusion. 
Advanced analytics, including semantic segmentation, anomaly detection, and transfer learning, 
enable timely alerts concerning operational violations, hazardous gases, and construction errors. 
This comprehensive approach enhances both operational intelligence and substation construction 
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safety. Although notable progress has been made in substation defect detection, limitations 
continue to affect small-target recognition, visual obstruction handling, and processing efficiency. 
Deep learning models often require substantial computational resources, restricting their use in 
energy-constrained devices. Furthermore, older systems underperform when operating in low-
contrast environments. To address these issues, an enhanced detection framework is proposed, 
integrating YOLOv8 for real-time object identification, a ResNet for fault classification, and the BOA 
for system efficiency enhancement. This architecture offers a balance between detection accuracy, 
operational speed, and resource usage, resulting in a highly adaptable and dependable solution for 
intelligent substation monitoring and predictive maintenance.  

 
3. Proposed System Model 

The Intelligent Power Auxiliary Control and Monitoring System employs a systematic framework 
that integrates IoT-based data acquisition with real-time image analysis, achieving notable 
advancements in fault detection through deep learning methodologies and system optimisation for 
enhanced substation performance [13]. The deployment of IoT-enabled sensors spans all critical 
zones within the substation, facilitating continuous monitoring of key electrical parameters such as 
voltage, current, temperature, and humidity. These sensors relay real-time data to a central 
processing unit through a secured communication infrastructure. In parallel, high-resolution 
cameras capture continuous 2D imagery of vital infrastructure elements to support visual 
inspections. Prior to analytical processing, data undergoes noise reduction and normalisation 
procedures to ensure the quality and reliability of both sensor inputs and image data. The structural 
design of the proposed system is illustrated in Figure 1. 

 
Fig.1: System Architecture  

The system initiates real-time object detection within the substation after YOLOv8 processes the 
acquired data. YOLOv8 identifies equipment such as transformers, circuit breakers, and insulators, 
while simultaneously detecting potential hazards including damaged infrastructure and foreign 
objects. This automation enhances operational efficiency by streamlining inspection and 
maintenance workflows without requiring human involvement. Subsequently, the processed data is 
fed into the RNN, which integrates IoT sensor data and image-based detection patterns to monitor 
and identify faults such as overheating, insulation degradation, and voltage irregularities [26]. 
Residual connections within the RNN address the vanishing gradient problem, facilitating effective 
learning of the complex behaviour inherent in power systems [9]. The BOA is applied to optimise 
weight parameter selection and improve processing speed within the RNN, resulting in refined 
hyperparameters that reduce errors and bolster responsiveness under variable substation 
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conditions. When abnormal states or hardware faults are detected, automatic notifications and 
control commands are dispatched to operators via a single graphical user interface. The auxiliary 
power control system continuously monitors power distribution during anomalies to ensure 
uninterrupted operation. Performance evaluations utilising real substation data demonstrate 
enhanced fault detection accuracy and computational efficiency in comparison with conventional 
deep learning methods. The developed framework constitutes a comprehensive automated 
monitoring solution that elevates substation reliability and operational effectiveness [6].  

3.1 Object Detection 
YOLOv8, evolved from YOLOv5, functions as an enhanced algorithm designed to address 

multiple object recognition challenges within architectural surveillance applications. It comprises 
three fundamental components: the backbone architecture, the neck architecture, and the head 
architecture. The design structure of YOLOv8n is illustrated in Figure 2. All backbone functions 
originate from the integration of SPPF, C2f, and CBS modules. The CBS module performs 
convolution combined with SiLU activation and batch normalization techniques to facilitate feature 
extraction and down sampling [24]. The C2f module operates by employing bottleneck feature 
extraction based on YOLOv7, where the extracted features are concatenated to provide a more 
comprehensive representation. The SPPF module starts with 1*1 convolution operations to reduce 
feature map dimensions, followed by three max-pooling layers controlling the process. This 
combination effectively merges local and global features [15].  

 
Fig.2: Architecture of YOLOv8 for Object Detection 

The neck architecture processes backbone-extracted features across multiple scales. The right 
branch transmits precise spatial information from shallow layers in a bottom-up manner, while the 
left branch executes top-down feature fusion from deep to shallow layers. The integration of 
shallow and deep features, alongside the enhancement of feature integrity, results in a robust 
architectural design. The decoupled head design incorporates three detection layers with feature 
maps of varying sizes, each layer connected for both target detection and object classification tasks 
[33]. Object classification utilises Varifocal loss, while target identification relies on CIoU loss 
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combined with distribution focal loss. The system improves accuracy by analysing multiple output 
scales and branches through interconnected sections during detection. The YOLO series constitutes 
the prevailing approach for object detection, with YOLOv8 serving as the core architecture 
employed for substation equipment identification in this study [17].  

3.2 Residual Neural Network 
ResNet operates as a fault monitoring system while executing detection tasks, comprising 

multiple architectural blocks that define its structure. Each block includes batch normalization, 
convolutional operations, and ReLU activation layers. Both the convolutional layers and residual 
connections share several common attributes. Standard blocks contain convolutional layers with 
3*3 filters, where the number of filters aligns with the dimensions of the feature maps. When the 
spatial dimensions of the feature maps are halved, the number of filters increases proportionally. 
Dimension matching is managed by 1*1 convolutions, and shortcut connections are incorporated 
within the residual block to accommodate varying feature map sizes [22]. The residual block can be 
mathematically expressed as follows:  

𝐻(𝑋) = 𝐹(𝑋) + 𝑋  (1) 
After rearranging, the equation can be presented as follows:  
𝐹(𝑋) = 𝐻(𝑋) − 𝑋 (2) 
The feedforward network containing identity short cuts operates through block-level mapping 

while handling computational complexity using  𝐹(𝑋) + 𝑋    where 𝐻(𝑋) stands for output.  The 
residual function utilises identity shortcut connections directly when the input and output 
dimensions correspond. All residual functions 𝐹(𝑋) are trained within the ResNet framework that 
activates these shortcut connections [34]. 

ResNet employs identity mapping and skip connections as its fundamental mechanisms. It 
operates by bypassing entire inactive layers that accumulate within the network during detection 
tasks. The model transfers complete activations from preceding layers directly into subsequent 
operations. This design achieves superior performance relative to earlier architectures by skipping 
outputs at the skip-level during accelerated training phases. Consequently, network layers learn at 
speeds comparable to the final layers, transmitting enhanced gradients to initial layers while 
circumventing blocked connections [27]. Further research has focused on refining various 
parameters within the ResNet architecture. Its design is notable for utilising hyperparameter-
defined cardinality to establish multiple parallel paths, which enhance accuracy metrics. One recent 
variation, known as stochastic depth, retains the full architecture during testing but randomly drops 
layers during training to address the extensive learning periods required by deep networks [5]. A 
related architecture, the Dense network, connects individual layers more tightly. By concatenating 
feature maps, this design increases output diversity and promotes repeated utilisation of network 
components. Dense networks effectively mitigate the vanishing gradient problem, improving overall 
performance.  

3.3 Botox Optimization Algorithm  
This paper proposes an Enhanced ResNet-BOA framework, wherein the BOA optimizes ResNet’s 

weight parameters to improve convergence speed and classification accuracy. Inspired by the 
mechanism of Botox, BOA selectively inhibits neural transmissions through a controlled inhibition 
process. In deep learning, BOA effectively accelerates convergence by reducing unnecessary weight 
updates and refining learning rates. The enhancement of facial appearance is often regarded as a 
complex challenge, primarily due to the presence of wrinkles that cause emotional distress [3]. 
Wrinkles arise from dermal atrophy combined with repeated muscle contractions in the facial 
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structure. The medical procedure of injecting a small amount of botulinum toxin into active muscles 
addresses these issues by relaxing regional muscles and simultaneously smoothing the skin surface 
in areas of muscle overactivity. Botox administration consequently improves facial appearance and 
reduces wrinkles. The development of the proposed algorithm was informed by this medical 
intervention, using Botox injections in facial areas to measure wrinkles and thereby formulating the 
theoretical basis of the algorithm [28]. The model’s fitness function is presented as follows:  

𝐹𝐹 = 𝑀𝐼𝑁 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟)        (3) 
The optimal weighting parameter, which enhances the detection process selection, is derived 

from the error function. BOA employs iterative methods that utilise cooperative behaviour among 
participants to perform population-based optimisation of feasible solutions in complex optimisation 
problems. Within this context, the group representing Botox injections corresponds to members of 
the BOA population. The pseudocode for the proposed methodology is provided in Table 2.  

Table 2 
Pseudo Code of the Algorithm 

Initialize the random weighting parameter of RNN 

Input problem formulation 

Initialize the BOA population size 

𝑍 =

[
 
 
 
 
 �⃗�1

…

�⃗�𝐼

…

�⃗�𝑁]
 
 
 
 
 

𝑁×𝑀

=

[
 
 
 
 
𝑍1,1 … 𝑍1,𝐷 … 𝑍1,𝑀

… … … … …

𝑍𝐼,1 … 𝑍𝐼,𝐷 … 𝑍1,𝑀

… … … … …
𝑍𝑁,1 … 𝑍𝑁,𝐷 … 𝑍𝑁,𝑀]

 
 
 
 

𝑁×𝑀

 

𝑍𝐼,𝐷 = 𝐿𝐵𝐷 + 𝑅𝐼,𝐷 . (𝑈𝐵𝐷 − 𝐿𝐵𝐷), 𝐼 = 1,… ,𝑁, 𝐷 = 1,… ,𝑀 

Fitness evaluation 

𝐹𝐹 = 𝑀𝐼𝑁 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟) 

Compute the optimal candidate solution 

For T=1 to t 

Update count of decision variables for Botox injections 

𝑁𝐵 = ⌊1 +
𝑀

𝑇
⌋ ≤ 𝑀 

For I=1 to  

Compute the parameters which are defined for Botox Injection 

𝐶𝐵𝑆𝐼 = {𝐷1, 𝐷2, … , 𝐷𝐽, … , 𝐷𝑁𝑏}, 𝐷𝐽𝜖{1,2, … ,𝑀}  𝑎𝑛𝑑 ∀ℎ, 𝑘𝜖{1,2, … ,𝑁𝑏}: 𝐷𝐻 ≠ 𝐷𝐾 

Compute the count of Botox injection 

�⃗⃗�𝐼 = {
�⃗�𝑀𝑒𝑎𝑛 − �⃗�𝐼 𝑇 <

𝑇

2

�⃗�𝐵𝑒𝑠𝑡 − �⃗�𝐼 𝐸𝑙𝑠𝑒

 

For J=1 to NB 

Compute the new location of the BOA member 

�⃗�𝐼
𝑁𝐸𝑊: 𝑍𝐼,𝐷𝐽

𝑁𝐸𝑊 = 𝑍𝐼,𝐷𝐽 + 𝑅𝐼,𝐷𝐽. 𝐵𝐼,𝐷𝐽 

End 

Compute the objective function 
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Upgrade the BOA member 

�⃗�𝐼 = {
�⃗�𝐼

𝑁𝐸𝑊, 𝐹𝐼
𝑁𝐸𝑊 < 𝐹𝐼

�⃗�𝐼 ,    𝐸𝑙𝑠𝑒
 

End 

Save the optimal candidate solution achieved so far 

End 

Save the optimal solution of weights of RNN 

Save the BOA 

 
Participants choose their parameters based on a mathematical vector representation 

corresponding to their problem-solving phase [14]. This vector forms the population matrix, which 
includes the selection parameters, as illustrated below.  

𝑍 =

[
 
 
 
 
 �⃗�1

…

�⃗�𝐼

…

�⃗�𝑁]
 
 
 
 
 

𝑁×𝑀

=

[
 
 
 
 
𝑍1,1 … 𝑍1,𝐷 … 𝑍1,𝑀

… … … … …
𝑍𝐼,1 … 𝑍𝐼,𝐷 … 𝑍1,𝑀

… … … … …
𝑍𝑁,1 … 𝑍𝑁,𝐷 … 𝑍𝑁,𝑀]

 
 
 
 

𝑁×𝑀

      (4) 

𝑍𝐼,𝐷 = 𝐿𝐵𝐷 + 𝑅𝐼,𝐷 . (𝑈𝐵𝐷 − 𝐿𝐵𝐷), 𝐼 = 1,… ,𝑁, 𝐷 = 1,… ,𝑀     (5) 

The search dimension 𝑍𝐼,𝐷  utilizes the BOA member vector �⃗�𝐼 in a matrix form of Z while M 
stands for decision variables and N represents population members. The bound parameters include 
lower value 𝐿𝐵𝐷 and upper value 𝑈𝐵𝐷 alongside random interval numbers 𝑅𝐼,𝐷. BOA is a 

population-based optimisation algorithm that addresses optimisation problems through an iterative 
process [19]. Drawing analogy from Botox injection procedures, the BOA framework assists 
population members in finding improved positions within the search space. The population within 
BOA comprises all individuals considered for Botox treatment. In a similar manner to how physicians 
administer Botox to particular facial muscles to regulate facial movement and reduce wrinkles, the 
BOA model operates by iteratively decreasing the number of muscles requiring Botox treatment 
based on its architectural parameters [23]. The quantity of muscles necessitating Botox injections is 
determined by the following equation:  

𝑁𝐵 = ⌊1 +
𝑀

𝑇
⌋ ≤ 𝑀           (6) 

The number of Botox injection muscles 𝑁𝐵 participates with an ongoing count parameter T. 
During the decision-making process, facial features and wrinkle patterns of applicants are assessed 
to identify suitable Botox injection targets [20]. Population members select their injection 
parameters by applying the following equation.  

𝐶𝐵𝑆𝐼 = {𝐷1, 𝐷2, … , 𝐷𝐽 , … , 𝐷𝑁𝑏}, 𝐷𝐽𝜖{1,2, … ,𝑀}  𝑎𝑛𝑑 ∀ℎ, 𝑘𝜖{1,2, … ,𝑁𝑏}: 𝐷𝐻 ≠ 𝐷𝐾 (7) 

𝐷𝐽 indicates the position of the decision parameter whereas 𝐶𝐵𝑆𝐼  stands for the pair of 

potential decision criteria applicable to population members who receive Botox injections. Within 
the BOA framework, a procedure is employed to determine the quantity of Botox treatment for 
each population member. This methodology reflects the clinical expertise and patient-specific 
considerations that inform doctors' current decisions regarding medication dosages.  

�⃗⃗�𝐼 = {
�⃗�𝑀𝑒𝑎𝑛 − �⃗�𝐼 𝑇 <

𝑇

2

�⃗�𝐵𝑒𝑠𝑡 − �⃗�𝐼 𝐸𝑙𝑠𝑒
          (8) 

The objective of the optimization process is to find the optimal population member which is 

designated �⃗�𝐵𝑒𝑠𝑡 while the population location becomes �⃗�𝑀𝑒𝑎𝑛. �⃗⃗�𝐼 = (𝑏𝐼1, … . , 𝑏𝐼,𝐽, … , 𝑏𝐼𝑀) 

represents the number of Botox injections received by each member. 
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Facial appearance is altered after Botox relaxes muscles to reduce wrinkles. Each BOA member 
receiving Botox injections updates their position according to the following equation within the BOA 
framework [10]. As the objective function parameter increases, the new position of the respective 
member adjusts from its previous location as described by the equation below.  

�⃗�𝐼
𝑁𝐸𝑊: 𝑍𝐼,𝐷𝐽

𝑁𝐸𝑊 = 𝑍𝐼,𝐷𝐽 + 𝑅𝐼,𝐷𝐽. 𝐵𝐼,𝐷𝐽          (9) 

�⃗�𝐼 = {
�⃗�𝐼

𝑁𝐸𝑊, 𝐹𝐼
𝑁𝐸𝑊 < 𝐹𝐼

�⃗�𝐼 ,    𝐸𝑙𝑠𝑒
                   (10) 

The Botox dimension of BOA member represented as 𝐵𝐼,𝐷𝐽 takes place with a random value 

𝑅𝐼,𝐷𝐽  drawn from [0,1] to calculate 𝐹𝐼
𝑁𝐸𝑊 , 𝑍𝐼,𝐷𝐽

𝑁𝐸𝑊 is the dimension, and �⃗�𝐼
𝑁𝐸𝑊 is the BOA member's 

new location following Botox injection [32]. 
This study presents a novel metaheuristic approach, referred to as BOA, designed to optimise 

deep learning model parameters with the aim of enhancing fault monitoring and detection systems. 
The process begins with data collection, including the acquisition of real-time measurements such 
as voltage, current, and temperature from the monitored system. Pre-processing is then applied to 
eliminate irrelevant features and normalise the data to facilitate effective fault classification. 
Subsequently, a deep learning model, exemplified by ResNet, is initialized to perform fault pattern 
analysis. The BOA algorithm commences with a randomly generated population of weight 
parameters and iteratively optimises these parameters to improve accuracy while accelerating 
convergence [2]. The algorithm employs selective inhibition to suppress non-essential weight 
updates, evaluating each candidate solution according to classification performance. To address 
challenges related to overfitting and slow convergence, adaptive learning rate adjustments are 
incorporated to ensure stable training. Through iterative enhancement, BOA reinforces relevant 
parameters and discards those deemed insignificant, continuing training until a defined 
convergence criterion is met, thereby ensuring optimal fault detection [21]. Finally, the model 
configuration is refined for real-time fault classification, improving the reliability and response time 
of critical applications.  

3.4 Fuzzy Decision-Making for Intelligent Substation Maintenance 
To ensure that predictive outputs are converted into timely and practical interventions within 

complex substation environments, the proposed ResNet-based monitoring framework, enhanced 
through BOA optimisation, incorporates an embedded fuzzy logic decision-making component. This 
module systematically translates quantitative indicators—such as anomaly detection scores, 
thermal deviations, and equipment health metrics—into qualitative risk assessments categorised as 
“low,” “medium,” or “high.” By applying a structured set of expert-derived IF-THEN rules, the fuzzy 
logic system interprets these descriptors to rank maintenance tasks according to both urgency and 
severity. For instance, when a transformer displays a high probability of failure in conjunction with 
critical temperature readings, the system autonomously initiates inspection directives and allocates 
necessary operational resources. This integration enhances the model's resilience to sensor 
variability and environmental uncertainty, ensuring greater responsiveness and consistency in 
performance. As a result, the framework evolves from a conventional diagnostic tool into a 
comprehensive decision-support system, capable of context-sensitive, adaptive maintenance 
planning grounded in real-time operational data. 

 
4. Performance Evaluation 

A comparative analysis of the proposed Intelligent Power Auxiliary Control and Monitoring 
System has been carried out against established techniques such as Convolutional Neural Networks 
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(CNN), YOLOv5, Support Vector Machines (SVM), and Recurrent Neural Networks (RNN). The 
system’s performance is primarily determined by its accuracy in detecting faults, its ability to 
classify various fault types, and its computational efficiency. The utilisation of deep learning 
architectures combined with optimisation algorithms supports real-time monitoring of substations, 
with Python serving as the implementation environment for both deployment and fault detection 
processes. The YOLOv8-ResNet-BOA framework exhibits superior detection precision and 
classification capabilities, thereby enhancing the dependability and operational effectiveness of 
substation monitoring systems in comparison to traditional detection models. The operational 
parameters of the proposed system are detailed in Table 3.  

Table 3 
Simulation Parameters 

S. No Description Parameters 

1 Population Size 30 
2 Maximum Iterations 100 
3 Learning Rate Adjustment 0.001 
4 Exploitation 40% 
5 Convergence Time 100 
6 Efficiency Gain 15% 
7 Adaptive Response Time 100 
8 Detection Latency 50 to 150 
9 Sensor Data Variability 5% 
10 Fitness Rate 0-1 

 
Representative examples of input and output data are shown in Figure 3, while Figure 4 

provides the confusion matrix as an additional measure of system performance.  

 

 
Fig.3: Sample Input and Classified Output    
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Fig.4: Confusion Matrix 

Figure 5 presents the performance evaluation, revealing that YOLOv8 attains an accuracy of 
94.8%, surpassing YOLOv5, which achieves 88.3%, due to improved feature extraction and 
localisation techniques. The integration of BOA with RNN results in a fault classification accuracy of 
96.2%, while CNN and SVM record accuracies of 89.5% and 85.7%, respectively. The false positive 
rate for the BOA-optimised RNN is 2.5%, markedly lower than the 5.2% and 6.8% rates observed for 
CNN and SVM, respectively, thereby enhancing system reliability. The computational efficiency 
gained through BOA optimisation reaches 25%, contributing to a reduced average processing time 
of 150 ms, which outperforms traditional models that typically require 250 ms, thus enabling real-
time performance. Overall, the YOLOv8-RNN-BOA approach demonstrates superior outcomes 
compared to existing detection techniques, offering improved substation monitoring capabilities by 
increasing accuracy, lowering false alarm rates, and enhancing response times.  
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Fig.5: Loss Validation 

Figure 6 illustrates the comparative performance of various models based on their AUC scores, 
highlighting the superior efficacy of the proposed approach. The model achieves the highest AUC 
score of 0.995, reflecting exceptional classification capability. In comparison, YOLOv5 attains an AUC 
of 0.942, indicating a slight reduction in effectiveness. The RNN outperforms YOLOv5, with an AUC 
of 0.955, attributable to its capacity for sequential learning. The CNN registers an AUC of 0.912, 
representing moderate performance but remaining below that of both the RNN and YOLOv5. The 
SVM exhibits the lowest AUC score of 0.875, demonstrating limited ability to manage complex 
feature representations. Overall, the proposed model surpasses conventional techniques by 
delivering enhanced classification accuracy and robust operational reliability.  

 
Fig.6: AUC Output 

Figure 7 presents the performance evaluation of different models using accuracy, precision, 
recall, and F1-score metrics. The proposed model achieves the highest values across all these 
measures, reflecting its outstanding classification capability. Although YOLOv5 performs effectively, 
its results fall short of the proposed model due to certain limitations. The RNN exhibits stronger 
performance, achieving higher recall and F1-score compared to both CNN and SVM, owing to its 
specialised ability to handle sequential data. CNN ranks in the middle across the evaluated metrics 
when compared to YOLOv5 and RNN. Conversely, SVM records the lowest scores in all metrics, 
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indicating its limited effectiveness in managing complex pattern recognition tasks. Overall, the 
proposed model surpasses other methods by delivering superior classification accuracy, precision, 
and robust fault detection performance.  

 
Fig.7: Performance Evaluation 

The Receiver Operating Characteristic (ROC) curve illustrates the performance of various models 
by plotting the true positive rate against the false positive rate, thereby facilitating the assessment 
of their classification effectiveness. As shown in Figure 8, the proposed model attains an Area Under 
the Curve (AUC) value of 0.99, indicating its exceptional capability in fault detection. YOLOv5 
exhibits a comparable performance with an AUC of 0.98. The RNN outperforms both CNN and SVM 
by achieving an AUC of 0.96, which is attributed to its strength in analysing sequential patterns. In 
contrast, the CNN and SVM models demonstrate reduced fault detection effectiveness according to 
the AUC evaluation, reflecting their limited ability to distinguish between faulty and non-faulty 
cases. These results confirm that the proposed model achieves the highest classification accuracy 
among all methods assessed.  

 
Fig.8: AUC Analysis 

Figure 9 presents the performance analysis of the False Positive Rate (FPR) and False Negative 
Rate (FNR). The proposed method achieves the lowest rates for both FPR and FNR, each remaining 
below 1.5%. While YOLOv5 exhibits robust performance, its FPR and FNR values are approximately 
3%, indicating room for further optimisation. The RNN model records a more favourable FPR 
compared to YOLOv5, but its FNR approaches 2.5%, reflecting moderate reliability. Conversely, the 
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CNN shows elevated false positive and false negative rates exceeding 4%, suggesting frequent 
misclassifications. The SVM performs the poorest, with both FPR and FNR surpassing 6%, which 
indicates inadequate fault detection accuracy. These findings highlight the proposed model’s 
effectiveness in minimising both false alarms and detection errors, thereby enhancing overall 
accuracy and dependability.  

 
Fig.9: Analysis of FPR and FNR 

The in-depth assessment of the YOLOv8-ResNet-BOA-based Intelligent Power Auxiliary Control 
and Monitoring System confirms its superior performance in substation fault detection, exhibiting 
higher classification accuracy, lower error rates, and enhanced computational efficiency when 
compared to conventional approaches such as CNN, SVM, YOLOv5, and RNN. In addition to its 
technical advantages, the system incorporates a fuzzy rule-based decision-making layer that 
elevates it from a mere predictive tool to a functional decision-support mechanism. This component 
facilitates informed interpretation of fault classifications by maintenance personnel, enabling 
responses that account for factors such as severity, urgency, false alarm likelihood, equipment 
status, and operational risk. For example, the detection of a critical fault with minimal response 
time requirements may prompt automatic initiation of dispatch protocols, allowing for optimal 
resource utilisation and reduced service disruption. By embedding intelligent decision logic within 
the monitoring framework, the system not only detects anomalies but also provides substation 
operators with structured, data-informed guidance for prioritised and timely intervention, thereby 
enhancing operational reliability and supporting strategic maintenance practices.  

 
5. Conclusion 

The proposed model significantly enhances substation power auxiliary control by integrating 
IoT-enabled data acquisition with advanced image processing capabilities. The newly developed 
system achieves a classification accuracy of 99.5%, outperforming existing models such as YOLOv5 
(94.2%), recurrent neural networks (95.5%), convolutional neural networks (91.2%), and support 
vector machines (87.5%). During validation, the model recorded low false negative and false 
positive rates of 1.5% and 1.2%, respectively, indicating superior reliability over comparative 
approaches. The incorporation of the Butterfly Optimisation Algorithm contributes to optimal 
weight parameter tuning, which improves both response latency and diagnostic precision in fault 
detection. The comparative evaluation highlights the model’s robust stability, establishing its 
suitability for modern substation monitoring and fault management applications. Overall, the 
system not only advances detection accuracy but also incorporates a fuzzy rule-based decision 
layer, enabling context-aware prioritisation of maintenance activities. This fusion of predictive 
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analytics and intelligent decision-making transforms raw diagnostic outputs into structured, 
actionable strategies, thereby enhancing operational effectiveness. Future research could 
investigate the application of more adaptive MCDM methods to accommodate dynamic operational 
environments.  
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