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Digital Twin (DT) technologies have increasingly assumed a pivotal function 
within smart manufacturing, particularly in enhancing production efficiency, 
enabling real-time asset monitoring, and supporting predictive maintenance 
(PdM). Nevertheless, the conversion of substantial volumes of physical 
inspection data into actionable predictive models remains a significant 
challenge, especially concerning precision measurement and fault prevention. 
To confront this issue, the present study introduces an integrated Multi-Criteria 
Decision-Making and Digital Twin (MCDM-DT) framework aimed at facilitating 
predictive maintenance and offering effective decision support within smart 
manufacturing environments. The proposed framework is cloud-based, 
thereby enhancing system adaptability and responsiveness by synchronising 
real-time sensor outputs, inspection datasets, and virtual representations of 
assets. Machine learning algorithms, specifically a Starling Murmuration 
Optimiser-enhanced multi-kernel support vector machine (SMO-MK-SVM), are 
employed to assess equipment health and forecast potential failures with high 
accuracy. In parallel, MCDM methods, such as the Analytic Hierarchy Process 
(AHP), are utilised to assist in strategic maintenance planning. These methods 
evaluate various parameters including failure probabilities, potential 
downtime costs, inspection durations, and resource requirements, thereby 
enabling the ranking and prioritisation of maintenance tasks. By combining DT 
with MCDM, the proposed system offers a robust and comprehensive predictive 
maintenance solution, achieving enhanced predictive accuracy (98.2%) while 
ensuring efficient resource allocation and scheduling. This framework presents 
a scalable and practical tool for manufacturers seeking to adopt a proactive 
maintenance strategy, ultimately reducing equipment downtime, increasing 
operational efficiency, and improving overall product quality within smart 
manufacturing systems. 

 
1. Introduction 

Smart manufacturing refers to the advancement of traditional production methods through the 
integration of cutting-edge technologies such as robotics, artificial intelligence, big data analytics, and 
the Internet of Things (IoT). This integration facilitates more flexible production processes, minimises 
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downtime, and enables rapid adaptation to shifts in market demand [24]. The approach utilises cloud 
computing, DT, and cyber-physical systems to support automation and data-driven decision-making 
[15]. Within this context, Predictive Maintenance (PdM) involves the continuous monitoring of 
equipment conditions and operational performance to determine the optimal timing for maintenance 
activities. Unlike conventional preventive or reactive maintenance strategies, PdM enhances 
operational efficiency by anticipating failures, thereby reducing unexpected downtime and improving 
resource allocation [13]. In smart manufacturing, PdM is implemented using IoT technologies, smart 
sensors, and data analytics to ensure consistent performance and reliability. Its primary function is to 
respond to performance degradation and machine wear in a timely and efficient manner [26]. Just as 
choreography brings structure and rhythm to a dance, PdM directs the flow of data and machine 
insights to ensure a seamless and synchronised production environment. 

PdM is especially critical in sectors such as aerospace, automotive, electronics, and heavy 
machinery, where the use of highly complex and expensive equipment renders unplanned disruptions 
particularly costly in terms of both revenue and productivity [18]. It is commonly applied to maintain 
essential assets including conveyor systems, industrial pumps, robotic units, and computer numerical 
control (CNC) machinery. PdM is particularly beneficial for high-volume production environments, 
where delays in maintenance can lead to disruptions across the supply chain and result in significant 
delivery setbacks [5]. Figure 1 illustrates the operational workflow of PdM within smart 
manufacturing systems.  

 
Fig.1: Process of PdM in Smart Manufacturing 

Smart factories generate vast volumes of sensor and operational data, which have been analysed 
using both traditional machine learning (ML) and deep learning (DL) methods to support PdM. 
Classical ML algorithms such as Decision Tree, Support Vector Machine (SVM), Random Forest (RF), 
and k-Nearest Neighbours (KNN) have been widely adopted to classify equipment states or to predict 
the Remaining Useful Life (RUL) of machinery [1]. With the increased availability of large-scale data 
and high computational capabilities, DL approaches such as Long Short-Term Memory networks 
(LSTMs), Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and 
autoencoders have gained significant traction. These models are particularly effective in capturing 
complex patterns and managing high-dimensional, non-linear relationships by autonomously learning 
from raw sensor data [19].  

Despite these advancements, several limitations and challenges hinder the application of PdM 
strategies in smart manufacturing settings [27]. Traditional ML models often rely on labour-intensive 
feature engineering, which may incur high costs and potentially fail to detect subtle indicators of 
failure. Meanwhile, supervised DL techniques typically necessitate large volumes of labelled data, 
which are often difficult and costly to obtain in real-world manufacturing environments. Moreover, 
legacy systems and concerns surrounding cybersecurity further complicate the integration of PdM 
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technologies into existing production architectures [3]. To overcome these constraints, a novel SMO-
MK-SVM method has been proposed to provide accurate assessments of equipment condition and 
facilitate failure prediction.  

The remaining structure of this paper is as follows: Section 2 presents the related works, Section 
3 describes the methodology, Section 4 discusses the results and their implications, and Section 5 
concludes the study.  

 
2. Related Works 

To assess the predictive performance of commonly employed ML algorithms, a DT-based 
architecture was introduced by Khan et al. [12] for use in PdM within smart manufacturing 
environments. The results demonstrated that Random Forest Regression (RFR) yielded the highest 
accuracy in forecasting surface roughness. Terziyan and Vitko [28] proposed multiple context-aware 
ML frameworks, encompassing deep supervised ML, self-aware ML, reinforcement learning (RL), and 
adversarial ML strategies. Sharma and Villányi [23] employed both analytical and descriptive methods 
to identify and evaluate functional and non-functional, technological, social, economic, and 
performance-related factors critical to the assessment of smart manufacturing systems (SMS). A 
predictive analytics framework was integrated into decision support systems to evaluate enterprise 
demands and to recommend and prioritise relevant SMS services.  

Feng et al. [6] presented a multi-level PdM decision-making (DM) structure inspired by DTs. This 
model incorporated inter-component relationships, varying decision time horizons, and extensive 
maintenance data. Their work further examined how variations in manufacturing capacity, failure 
thresholds, and maintenance inventories influenced the optimisation of DM systems within DT-driven 
contexts. Liu et al. [14] provided a structured overview of the IoT-smart predictive maintenance (IoT-
SPM) sector, proposing a reference framework while analysing the quality challenges inherent in IoT 
data and traditional mitigation strategies. A layered IoT Big Data ecosystem for PdM was proposed 
by Yu et al. [29], integrating edge computing platforms with autoencoder-based DL models to 
enhance operational efficiency. Kumar et al. (2023) explored the influence of artificial intelligence (AI) 
on PdM, revealing its transformative role in monitoring tool wear and addressing bearing-related 
challenges via data-driven modelling. A cross-sector analysis by Mallioris et al. [16] highlighted the 
evolution of data-driven PdM as a validated and increasingly prominent strategy within smart 
manufacturing under Industry 4.0 paradigms.  

Hung et al. [10] developed a hybrid PdM approach that combines simulated annealing (SA) and 
deep neural network (DNN) algorithms to identify and predict device failures. This solution 
demonstrated enhanced capability in recognising unanticipated failure patterns. The SIMPLE initiative 
was established to facilitate collaboration among diverse industrial stakeholders in the development 
of PdM strategies. Rosati et al. [22] introduced an ML-based framework alongside a feature extraction 
method to estimate the time-to-failure of ATMs. Comparative analysis with other widely used ML 
techniques for RUL prediction substantiated the effectiveness of their approach. Akter et al. [2] 
proposed an IoT-integrated DT environment aimed at improving maintenance planning and 
minimising downtime in complex industrial systems. Their model supported a highly optimised 
manufacturing process by automating maintenance tasks, reducing unexpected interruptions, and 
improving resource efficiency. These studies collectively underscore how PdM strategies, when 
integrated with DTs and AI, perform like a well-choreographed dance—each component moving in 
synchrony to anticipate failures and optimise performance in real-time. 

Somu and Dasappa [25] presented the IntelliPdM framework, which integrates advanced AI 
techniques, flexible edge-cloud architectures, and robust synthetic data generation systems. This 
structure demonstrated scalability and efficacy for PdM in large-scale manufacturing facilities, 
achieving high fault detection accuracy, reduced operational disruptions, cost savings, and minimised 
downtime. Gadde and Gannavarapu [9] evaluated the application of CNNs in PdM during milling 
operations. Their findings confirmed that CNNs, when tailored to sensor data, could offer real-time 
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failure prediction, thereby extending tool life and minimising equipment downtime. Bharot et al. [4] 
introduced a PdM framework enhanced by DL and data quality management strategies. The 
integration of advanced DL models with data quality-focused methodologies resulted in significant 
improvements in accuracy, achieving 96.4% predictive performance.  

2.1 Problem Statement 
Most traditional approaches, such as the surface roughness prediction using RFR Khan et al. [12] 

or CNN-based fault detection in milling operations [4], tend to focus on isolated parameters or 
individual system components. While multi-level DM models Feng et al. [6] and context-aware ML 
strategies [28] have introduced greater flexibility and allowed for real-time optimisation, these 
frameworks generally depend on the availability of consistent and high-quality datasets. However, 
challenges associated with data integration and reliability frequently arise within IoT-SPM platforms 
[14] and large-scale big data ecosystems [29] designed to support PdM, which can significantly 
compromise predictive accuracy and system robustness. Further complications are observed in AI-
driven and hybrid models, particularly those that incorporate advanced DL techniques for data quality 
enhancement [22] or merge SA with DNN to predict equipment failures [10]. The proposed SMO-MK-
SVM framework addresses these limitations by removing the need for complex feature engineering 
through optimiser-guided multi-kernel integration. It enhances prediction accuracy even in noisy or 
incomplete data environments, reduces reliance on consistently high-quality data inputs, and 
facilitates robust pattern classification through adaptive feature selection mechanisms.  

 
3. Methodology 

The MCDM-DT framework facilitates intelligent maintenance decision-making by integrating 
predictive analytics with criteria-driven prioritisation to enhance the efficiency of smart 
manufacturing operations. The dataset used for this analysis, pertaining to maintenance in smart 
manufacturing, was obtained from the Kaggle platform. Data pre-processing was conducted using the 
Kalman filter technique to eliminate noise and improve signal reliability. To evaluate equipment 
condition and anticipate potential failures with precision, the proposed SMO-MK-SVM method was 
implemented. A schematic representation of the SMO-MK-SVM approach is provided in Figure 2. 

 
Fig.2: Overall Flow of SMO-MK-SVM Approach 
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3.1 MCDM-DT 
The MCDM-DT architecture integrates intelligent decision support with real-time asset 

monitoring to enhance PdM within smart manufacturing systems, as illustrated in Figure 3. Through 
DT technology, a virtual representation of physical assets is created, allowing for continuous data 
transmission and condition surveillance. A key challenge lies in converting vast and heterogeneous 
datasets into actionable maintenance strategies. This is addressed by incorporating the MCDM 
approach within the DT framework, enabling comparative evaluation of maintenance alternatives 
based on multiple factors such as asset criticality, likelihood of failure, associated costs, and potential 
downtime implications. This integrated architecture reduces the occurrence of unexpected 
equipment failures and optimises maintenance scheduling through informed, data-driven decisions. 
Much like dancers following choreographed movements, each system component in the MCDM-DT 
framework performs its role in synchrony, ensuring a seamless, adaptive maintenance rhythm across 
the production floor. By leveraging simulation capabilities, real-time analytics, and structured 
decision-making techniques, the MCDM-DT system supports the implementation of an effective 
preventive maintenance strategy. As a result, operational efficiency is enhanced, asset longevity is 
increased, and equipment performance is improved. This framework represents a significant 
advancement in the evolution of intelligent, robust, and adaptive smart manufacturing systems.  

 
Fig.3: The Framework of the MCDM-DT Process 

3.2 Data Collection 
The dataset used for this study was sourced from Kaggle and supports research focused on 

decision support and PdM within smart manufacturing environments. It enables maintenance 
planning based on failure risk and operational constraints by integrating real-time sensor data, cost-
related variables, and decision-making criteria. This dataset serves as a foundation for exploring 
aspects of smart factory operations, including asset condition assessment and the development of 
proactive maintenance strategies. 

3.3 Kalman Filter 
Kalman filtering significantly enhances PdM by providing accurate real-time estimations of system 

states and promptly detecting anomalies, thereby facilitating proactive maintenance, minimising 
equipment downtime, and improving overall operational efficiency. Recognised as one of the most 
fundamental and widely adopted estimation methods, the Kalman filter operates within a state space 
framework that comprises both state transition and observation models. Equations (1) and (2) below 
define these models and illustrate how the system evolves over time. 

𝑊𝑙+1 = 𝐴𝑋𝑙 + 𝐴𝜇𝑙 + 𝜔𝑙                                                                                                               (1) 
𝑌𝑙 = 𝐻𝑋𝑙 + 𝑢𝑙                                                                                                                                  (2) 
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Where,  
𝐵=State Transition Matrix, 
𝜇𝑙= Control Variable, 
𝑢𝑙= Random Noise Vector, 
𝑊 = System State,  
𝑌𝑙 = Measurement Vector, 
𝜔𝑙 = Process Noise or Disturbance, 
𝐴 = Control Matrix, and,  
𝐺 = Observation Matrix.  
The 𝑅𝑙 𝑎𝑛𝑑 𝑄𝑙  are the covariances of 𝜔𝑙  𝑎𝑛𝑑 𝑢𝑙. The Kalman filter operates through two principal 

stages: the prediction phase and the correction phase. The computational procedures for these two 
steps are outlined in Equations (3) to (7) below. 

�̂�𝑙+1|𝑙 = 𝐴�̂�𝑙|𝑙 + 𝐴𝜇𝑙                                                                                                                    (3) 

𝑂𝑙+1|𝑙 = 𝐴𝑃𝑙|𝑙𝐵
𝑆 + 𝑅𝑙                                                                                                                   (4) 

𝑂𝑙+1|𝑙+1 = (𝐽 − 𝐿𝑙+1𝐺)𝑂𝑙+1|𝑙                                                                                                      (5) 

𝐿𝑙+1 = 𝑂𝑙+1|𝑙𝐺𝑆(𝐻𝑃𝑙+1|𝑙𝐺𝑆 + 𝑄𝑙+1)
−1

                                                                                     (6) 

�̂�𝑙+1|𝑙+1 = �̂�𝑙+1|𝑙 + 𝐿𝑙+1(𝑌𝑙+1 − 𝐻�̂�𝑙+1|𝑙)                                                                               (7) 

Where,  
�̂�𝑙+1|𝑙  =  The System's Anticipated State Vector at Time Step 𝑙,  
𝑂𝑙+1|𝑙 = The Anticipated Estimate Covariance Matrix for the Subsequent State,  
𝑆𝑢𝑝𝑒𝑟𝑠𝑐𝑟𝑖𝑝𝑡ˆ = An a-Priori Estimate,  
�̂�𝑙+1|𝑙+1 = The System's Predicted State Vector at Time Step 𝑙 + 1, 
𝑂𝑙|𝑙  = The Present State's Estimated Covariance Matrix, 
�̂�𝑙+1|𝑙  = Projected System State Vector at Time Step 𝑙, and 
𝐿𝑙+1 = Kalman Filter Gain at Time Step 𝑙 + 1.  
A further explanation of the covariance matrix is provided through Equations (8) to (10), which 

detail its formulation and role within the Kalman filtering process. 

𝑓𝑙+1 = 𝑊𝑙+1 − �̂�𝑙+1|𝑙+1                                                                                                               (8) 

𝑂𝑙+1|𝑙+1 = 𝐹(𝑓𝑙+1𝑓𝑙+1
𝑆 )                                                                                                                 (9) 

= 𝐹 ((𝑊𝑙+1 − �̂�𝑙+1|𝑙+1) × (𝑊𝑙+1 − 𝑊𝑙+1|𝑙+1))
𝑆

                                                                   (10) 

Equation (8) illustrates that a lower covariance matrix value corresponds to a more reliable state 
estimation. To achieve an optimal state estimate, the Kalman filter gain is determined by minimising 
the trace of the covariance matrix. This matrix not only conceals prior information about the 
estimated state but also captures the correlation between the predicted and observed values. Figure 
4 presents the real-time sensor data following application of the Kalman filter technique. 

 
Fig.4: Real-Time Sensor Data after the Kalman Filter Approach 
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3.4 SMO-MK-SVM 
PdM within smart manufacturing is aimed at minimising unexpected equipment failures, 

enhancing operational performance, and extending the service life of machinery. To strengthen 
existing PdM strategies, a novel SMO-MK-SVM model has been introduced. The SMO component, 
inspired by the collective dynamics and adaptive behaviour of starling flocks, efficiently tunes the 
parameters of the SVM, offering rapid convergence and superior global search capabilities. By 
integrating multiple kernel functions into the SVM structure, the model is capable of identifying 
complex, nonlinear patterns within diverse sensor data streams, such as vibration, temperature, and 
acoustic signals. The hybrid SMO-MK-SVM framework enables early detection of anomalies and 
accurate forecasting of equipment failures. Much like a synchronised dance ensemble interpreting 
cues with precision, the model fluidly aligns with sensor inputs, dynamically adjusting to shifting 
machine states with coordinated grace. Beyond delivering reliable diagnostics, it also facilitates 
adaptive maintenance scheduling, contributing to the advancement of fully autonomous and 
intelligent maintenance systems. This technique represents a significant step forward in merging 
biologically inspired optimisation with kernel-based learning for industrial applications.  

3.4.1 MK-SVM 
In the context of smart manufacturing, MK-SVM enhances PdM by employing multiple kernel 

functions to manage complex data structures, improve classification precision, and enable early 
detection of potential equipment failures. Many real-world classification problems cannot be 
effectively addressed using linear hyperplanes, necessitating the formulation of more intricate 
decision boundaries. This is achieved through nonlinear transformation, which reduces the likelihood 
of misclassification.To solve the associated constrained optimisation problem, the Lagrange 
multiplier method is applied, where λj and λi are non-negative (λ_i ≥ 0), reflecting the requirement 
for support vectors. The solution to this optimisation task is presented in Equation (11). 

𝑋1 =
1

2
∑ 𝜆𝑗𝜆𝑖𝑧𝑗𝑧𝑖𝐿(𝑤𝑗 , 𝑤𝑖) − ∑ 𝜆 + 𝑏 ∑ 𝑧𝑗𝜆𝑗

𝑚𝑡
𝑗=1

𝑚𝑡
𝑗=1

𝑡
𝑗,𝑖=1                                                              (11) 

Where, 
𝜆𝑗 = Lagrangian Multiplier, 

𝑚 = Total Number of Input-Output Pairs, and 
𝐿 = Kernel Matrix. 
Equation (12) presents the formulation used to compute the weight parameters within the 

optimization process. 

𝜃 = ∑ 𝜆𝑗𝑧𝑗𝑤𝑗
𝑚𝑡
𝑗=1                                                                                                                           (12) 

The offset term is defined in Equation (13) as part of the optimization formulation. 

𝛼 =
1

𝑀𝑇
∑ (𝑧𝑗 − 𝜃. 𝑤𝑗)

𝑚𝑡
𝑗=1                                                                                                              (13) 

As a result, nonlinear transformation can be applied, generating the classifier within a newly 
defined feature space, commonly known as the kernel space. This transformation enables the 
separation of data using hyperplanes within the same space, rather than projecting it into a higher-
dimensional feature domain. The formulation of the optimization problem previously outlined in 
Equation (11) is further expressed in Equation (14). 

𝑋2 =
1

2
∑ 𝜆𝑗𝜆𝑖𝑧𝑗𝑧𝑖𝐿(𝑤𝑗 , 𝑤𝑖) − ∑ 𝜆𝑗 + 𝑏 ∑ 𝑧𝑗𝜆𝑗

𝑚𝑡
𝑗=1

𝑚𝑡
𝑗=1

𝑡
𝑗,𝑖=1                                                         (14) 

Limitations comparable to those found in non-kernel SVM, as described in Equations (13) and 
(14), are represented in Equation (15). 

𝑏 =
1

𝑀𝑇
∑ (𝑧𝑗 − ∑ 𝜆𝑖𝑧𝑖. 𝐿(𝑤𝑗, 𝑤𝑖)

𝑚𝑡
𝑗=1

𝑚𝑡
𝑗=1 )                                                                                     (15) 

The decision function is formulated as shown in Equation (16). 
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𝑒(𝑤) = 𝑠𝑔𝑛(∑ 𝜆𝑗𝑧𝑗 . 𝐿(𝑤, 𝑤𝑗) + 𝑏) 
𝑚𝑡
𝑗=1                                                                                       (16) 

A homogeneous polynomial kernel, where 𝑐 ≥ 1 is 𝐿(𝑤𝑗 , 𝑤𝑖) = (𝑤𝑗 , 𝑤𝑖)
𝑐
. 𝑐 = 1 is referred to as 

the kernelized model of the linear SVM when it comes to linear kernels. 

Where, 𝑐 ≥ 1 is the polynomial kernel 𝐿(𝑤𝑗 , 𝑤𝑖) = (𝑤𝑗 , 𝑤𝑖)
𝑐
. 

The standard deviation of the Gaussian distribution can be represented by 𝜎, and the Gaussian 

kernel is 𝐿(𝑤𝑗, 𝑤𝑖) = 𝑒−𝛾|| 𝑤𝑗−𝑤𝑖||2
, where 𝛾 =

1

2𝜎2. 

Where, 𝐿(𝑤𝑗, 𝑤𝑖) = 𝑒−𝛾||𝑤𝑗−𝑤𝑖|| is the exponential kernel. 

The transformation from a lower-dimensional feature space to a higher-dimensional space is 

illustrated in Figure 5. Accordingly, when the kernel 𝐿(𝑤𝑗 , 𝑤𝑖) is expressed as a linear combination of 

N basic kernels, it is represented in Equation (17). 

𝐿(𝑤𝑗 , 𝑤𝑖) = ∑ 𝛼𝑙𝐿𝑙(𝑤𝑗 , 𝑤𝑖)
𝑚𝑛
𝑙=1                                                                                                     (17) 

Where, 𝛼𝑙 ≥ 0 𝑎𝑛𝑑 ∑ 𝛼𝑙 = 1
𝑚𝑛
𝑙=1  and, every kernel may be among the types mentioned in the 

preceding section. Therefore, the optimization problem can be stated in Equation (18).  

𝑋2 =
1

2
∑ 𝛼𝑗𝛼𝑖𝑧𝑗𝑧𝑖𝐿𝑡

𝑗,𝑖=1 ∑ 𝛼𝑙𝐿𝑙(𝑤𝑗 , 𝑤𝑖) − ∑ 𝛼𝑗 + 𝑏 ∑ 𝑧𝑗𝛼𝑗
𝑚𝑡
𝑗=1

𝑚𝑡
𝑗=1

𝑚𝑛
𝑙=1                                           (18) 

In multiclass SVM classification, two widely adopted strategies are One-Against-All (OAA) and 
One-Against-One (OAO). The OAA approach involves distinguishing one class from all remaining 
classes, where each classifier separates a specific class from the others simultaneously. This method 
generates 𝑙 SVM models for a classification problem involving 𝑙 distinct classes. In contrast, the OAO 
technique constructs an individual SVM for every possible pair of classes, resulting in multiple binary 

classifiers that each differentiate between two specific classes. It produces 
𝑙(𝑙−1)

2
 SVMs for the k-

classification issue as a result. The OAO is employed due to the large number of characteristics. 

 
Fig.5: MK-SVM Process Between the Classes 

3.4.2 SMO 
The SMO enhances PdM by enabling proactive asset management, improving fault detection 

accuracy, minimising equipment downtime, and optimising model parameters efficiently. Its core 
objective is to reduce maintenance prediction error, which serves as a key indicator of performance 
across layers in unsupervised systems. The mathematical formulation of maintenance prediction 
error is provided in Equation (19). 

𝔔𝜀 =
∑ ∑ (𝑂𝑤,𝑧−𝐶𝑤,𝑧)𝑎

𝑧=1
𝑏
𝑤=1

𝑏×𝑎×𝑂𝑌
× 100%                                                                                              (19) 
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Where, 
𝑎 = Pixel Amount Per Sample, 
𝑂𝑤,𝑧 = Projected Outcome, 
𝑏 = Total Training Samples,  
𝑂𝑌 = Pixel Range, and  
𝐶𝑤,𝑧 = Actual Value.  
The development of the SMO algorithm is structured around several key phases. It draws 

inspiration from one of nature’s most visually remarkable phenomena—starling murmuration. This 
event, observed above roosting areas for approximately 30 minutes, involves large flocks of starlings 
exhibiting highly coordinated movements. These flocks frequently separate, reorient, and regroup in 
a synchronised manner. The transmission of directional shifts, spiralling, recombination, and splitting 
behaviours occurs collectively across the group through optimal decision-making. In the context of 
the SMO method, the separation phase within the search network is described as follows. The 
mathematical model representing the behaviour of the separated population is expressed in 
Equations (20) and (21). 

𝑅𝑡 =
log (𝑣+𝐹)

log (𝑀𝐴𝑋𝐼𝑀𝑈𝑀 𝐽𝑢×2)
                                                                                                              (20) 

𝑍𝑖(𝑣 + 1) = 𝑍𝐺(𝑣) + 𝑄1(𝑦) × (𝑍𝑡′(𝑣) − 𝑍𝑡(𝑣))                                                                      (21) 

In this context, ZG(v) denotes the global position, Zt(y) refers to the randomly generated 
population, and Zts(v) represents the segregated population along with the proportion of individual 
starlings. The separated search mechanism is incorporated through the newly introduced operator 
Q1(y). The process flow of the SMO technique is illustrated in Figure 6. 

 
Fig.6: Flow Chart of SMO Algorithm 

3.4.3 Separation Stage 
The separation phases governed by the quantum harmonic oscillator play a crucial role in 

maintaining population diversity. The mathematical formulation corresponding to this separation 



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 672-689 

681 

 
 

 

stage is provided in Equation (22). 

𝑄1(𝑦) = (
𝛽

2𝑝×𝑝!×𝜋
1
2 

)

1

2

𝐽𝑝(𝛽 × 𝑦) × 𝑓−0.5×𝛽2×𝑦2
,     𝛽 = (

𝑚×𝑘

2
)

1

2
                                                (22) 

Where, 
𝑦 = Arbitrary Number  
𝐽𝑝 = Hermite Polynomial, 

𝑘 = Strength,   
𝑚 = Particle Mass, 

𝛽 = (
𝑚×𝑘

𝑗
) = Quantum Harmonic Oscillator, and 

𝑗 = Plank’s Constant. 

3.4.4 Dynamic Multi-Flock Stage 
The dynamic multi-flock stage is established to replicate starling behavior as positional changes 

occur across iterations. Within the search space, the starlings are categorized into distinct actions—
whirling, separating, and diving—to facilitate both exploration and exploitation of potential solutions. 
Initially, starlings are randomly selected and repositioned within the search domain. The effectiveness 
of the search strategies, along with a maintained equilibrium between exploration and exploitation 
phases, determines the overall robustness of the flock. This process is defined through a specific 
partitioning approach, where the set Sh is divided into k non-empty flocks, denoted as h₁, ..., h_k. The 
corresponding mathematical representation of this separation is provided in Equations (23) to (25). 

𝑆ℎ(𝑣) = {𝑠ℎ𝑖(𝑣) ∈ 𝑆|𝑠ℎ𝑖(𝑣) ≤ 𝑠ℎ𝑖+1(𝑣)     𝑓𝑜𝑟 𝑖 = 1, … . . 𝑃′}                                                (23) 
𝑇(𝑣) = {𝑠ℎ𝑖(𝑣) ∈ 𝑆ℎ(𝑣)  𝑓𝑜𝑟 𝑖 = 1, … … . , 𝑘}                                                                           (24) 

𝑅 = 𝑆 − 𝑇 𝑎𝑛𝑑 𝑅 = ⋃ 𝑅𝑖. |𝑅𝑖| = |𝑅𝑙|
𝑘
𝑖 𝑓𝑜𝑟 𝑍𝑡(𝑦)𝑖 ≠ 𝑙 ∈ (1, … . . , 𝑘)                                       (25) 

Each flock ℎ𝑞 includes starlings (𝑝 =
𝑝′

𝑘
), the representative set 𝑇 is chosen as the representative 

(𝑇𝑞), and the 𝑆ℎ(𝑣 + 1) set is structured differently for each flock member. 

The Ri iterations facilitated information exchange among flocks, involving each individual member 
and the overall multi-flock structure represented by h₁, ..., h_k. Within this context, hi denotes the 
quality or fitness level of the i-th flock in the multi-flock system. 

3.4.5 Flock Quality Stage  
The quality of the flock is defined in Equation (26), incorporating multiple starlings participating 

in iteration v, as represented by 𝑄𝑞. 

𝑄𝑞(𝑣) =
∑

1

𝑝
∑ 𝑡𝑔𝑖𝑙(𝑣)

𝑝
𝑙=1

𝑘
𝑖=1

1

𝑝
∑ 𝑡𝑔𝑞𝑖(𝑣)

𝑝
𝑖=1

                                                                                                              (26) 

The subpopulation flock's starling's fitness value in 𝑖𝑡ℎ is denoted by 𝑠ℎ𝑖𝑙(𝑠), the flock with 
murmuration 𝑘 is indicated by 𝑙, while the flock with different starlings is determined by 𝑝. It 
encompasses both the upward and downward quantum dives, along with the utilisation of the QRD 
operator, which determines the selection of the specific quantum dive to be executed. Where, |𝛽|2 
indicates the probability of qubit results, which can be represented in Equations (27&28).  

|𝛾⟩ = cos
𝛽

2
|0⟩ + sin 

𝛽

2
𝑒𝑖𝑙|1⟩                                                                                                      (27)                                       

Where, 
𝛾 𝑎𝑛𝑑 𝜃 =The Rotation of the Angle, 
𝑆 = The Conditional Shift Operator, and 
𝐶 = The Qubit Rotation Matrix. 
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𝐶 = [ 𝑒𝑗𝛾𝑐𝑜𝑠 𝜃 𝑒𝑖𝜇𝑠𝑖𝑛𝜃
−𝑒−𝑖𝛾𝑠𝑖𝑛 𝜃 𝑒−𝑖𝛾𝑐𝑜𝑠 𝜃

]                                                                                                   (28) 

3.4.6 QRD 
The unitary operator 𝑈 determines whether to choose the upward or downward quantum dive, 

and the two different quantum chances are |𝛾𝑈(𝑍𝑖) ⟩ 𝑎𝑛𝑑 |𝛾𝐹(𝑍𝑖) ⟩, as shown in Equation (29).  

𝑄𝑅𝐷 = {
|𝛾𝑈(𝑍𝑖)| > |𝛾𝐹(𝑍𝑖)|   𝑓𝑜𝑟 𝑢𝑝𝑤𝑎𝑟𝑑 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑖𝑣𝑒

|𝛾𝑈(𝑍𝑖)| ≤ |𝛾𝐹(𝑍𝑖)|   𝑓𝑜𝑟 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑖𝑣𝑒 
                                             (29) 

The next phase outlines the procedures of the whirling search stage. During iteration v, higher-
quality flocks hq are identified, and the whirling search is employed to assess the future positions of 
various flocks within each starling si. The corresponding computations are presented in Equations 
(30) and (31). 

𝑍𝑖(𝑣 + 1) = 𝑍𝑖(𝑣) + 𝐶𝑖(𝑣) × (𝑍𝑇𝑊(𝑣) − 𝑍𝑃(𝑣))                                                                     (30) 

𝐶𝑖(𝑣) = cos(𝜎(𝑣))                                                                                                                     (31) 

The flock members choose ZTW, where Zi(v) represents the current position of the starling. ZP(v) 
refers to a non-repeating random neighbour within the flock. 

3.5 AHP 
The AHP facilitates the assessment and prioritisation of maintenance alternatives by analysing 

multiple criteria such as failure probability, time constraints, associated costs, and resource 
availability. This approach supports informed, unbiased, and efficient PdM scheduling within the 
smart manufacturing context. The primary aim of AHP is to generate a preference vector from a finite 
set of decision options. Let’s examine a set of 𝑚 options, denoted by 𝑤1, 𝑤2, … … . , 𝑤𝑚. These choices 

are based on a reciprocal matrix 𝑄, 𝑄 = [𝑞𝑗𝑖], 𝑗, 𝑖 = 1,2, … . . , 𝑚, whose values indicate the outcome 

of a decision maker's pairwise comparisons of the choices. The decision maker measures the 
preference for choice 𝑤𝑗  over decision 𝑤𝑖, employing a certain scale (ranging from 1 𝑡𝑜 9). The 

associated value of the reciprocal matrix 𝑞𝑗𝑖  has been adjusted to 9 𝑜𝑟 8 if 𝑤𝑗 is significantly selected 

over 𝑤𝑖. The matrix entry for preference has been set to 6 𝑜𝑟 7 if it is apparent but not very strong. 
The component of the reciprocal vector that equals 𝑤𝑗  𝑎𝑛𝑑 𝑤𝑖 is considered as a reciprocal of 𝑞𝑖𝑗, 

i.e., 𝑞𝑗𝑖 =
1

𝑞𝑖𝑗
, if 𝑤𝑗 is not chosen over 𝑤𝑖.  

Following the completion of the reciprocal matrix by performing an array of pairwise comparisons 
(major diagonals are equal to 1), the related eigenvector of 𝑄, let's assume that 𝑓, and the highest 
eigenvalue 𝜆𝑚𝑎𝑥 are found. The decision alternatives are represented through an eigenvector, which 
reflects the relative weights of the options. One of the key advantages of the AHP method lies in its 
ability to structure and simplify complex evaluations. When inconsistencies arise in the comparisons, 
the corresponding eigenvalue increases. The extent of such inconsistency is quantified using an 
inconsistency index, which is expressed in Equation (32). 

𝑢 =
𝜆𝑚𝑎𝑥−𝑚

𝑚−1
                                                                                                                                 (32) 

A higher value of the inconsistency index indicates a significant level of divergence in the 
preferences recorded within the reciprocal matrix. Typically, values ranging between 0.1 and 0.2 are 
regarded as acceptable thresholds. If the inconsistency index u exceeds these limits, the results of the 
pairwise comparisons are considered unreliable, necessitating either a complete reassessment or 
refinement of specific comparison judgments. A decision profile offers a straightforward approach 
for documenting and presenting the outcomes of the AHP. It delivers a clear visual interpretation of 
the alternatives evaluated and the corresponding quality of the decision process. The results can be 
plotted such that the option number and the associated inconsistency level (u) indicate the most 
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suitable choice.  
 

4. Results and Discussion 
The proposed SMO-MK-SVM approach was implemented and tested using the Python platform. 

Its performance was compared against established methods, including Residual Neural Network-50 
(RNET-50) and Optimised Random Forest (ORF), as reported in prior studies [4; 21]. 

4.1 Maintenance Priorities Identification through Temperature and Vibration Analysis 
Figure 7 illustrates the Temperature vs. Vibration graph, colour-coded by maintenance priority, 

which presents insights relevant to PdM in smart manufacturing. The plotted data reveals patterns 
that move in harmony—akin to a choreographed dance—where shifts in temperature and vibration 
signal the need for precisely timed maintenance interventions. 

 
Fig.7: Classification of Operational Anomalies using SMO-MK-SVM: Visualization of Temperature and Vibration 

Dynamics 

The x-axis represents temperature in degrees Celsius (Temp_C), while the y-axis indicates 
vibration in millimetres per second (Vibration_mm_s). The data points are classified using a priority-
based colour scheme: blue for low (1), green for medium (2), and orange for high (3) maintenance 
priority. Most high-priority cases (priority 3) exhibit vibration levels between 2 and 4 mm/s and are 
concentrated within the 60°C to 90°C range, indicating potential zones of mechanical stress or 
impending failure. In contrast, lower priority levels (1 and 2) are generally associated with reduced 
vibration and temperature values.  

4.2 Technician Availability for Different PdM Priorities 
Figure 8 illustrates the proportion of technicians available for maintenance across the three 

defined priority levels within the PdM framework for smart manufacturing. For Priority 1, represented 
by green dots, the availability distribution is broad and relatively balanced, typically ranging from 50% 
to 100%, with moderate variation. In the case of Priority 2 (orange), the distribution of technical 
resources is highly dense and uniform across all availability levels, suggesting sustained and consistent 
deployment. Conversely, Priority 3 (blue) displays a more compact and concentrated distribution, 
primarily between 70% and 100%, with fewer observations at the lower and upper extremes.  
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Fig.8: Technician Availability Distribution Across Three Maintenance Priority Levels using SMO-MK-SVM in a PdM 

System 

4.3 Performance Evaluation of the Suggested SMO-MK-SVM using Different Metrics 
Accuracy measures the model’s ability to correctly predict equipment failures, thereby enhancing 

operational efficiency, reducing downtime, and supporting timely maintenance decisions. The F1-
score evaluates the model’s effectiveness in detecting true equipment faults while minimising false 
alarms, ensuring reliable and prompt maintenance interventions that reduce delays and costs. 
Precision calculates the proportion of correctly predicted failures among all predicted failures, 
reflecting the model’s capability to minimise false positives and provide dependable alerts. Recall 
assesses the model’s success in identifying actual failures, reducing missed detections, and 
guaranteeing timely maintenance to prevent unexpected equipment downtime. To assess the 
proposed SMO-MK-SVM method for PdM in smart manufacturing, multiple performance metrics 
were utilised. The method demonstrated superior results, achieving high accuracy (98.2%), F1-score 
(97.1%), recall (98.3%), and precision (96.2%). Digital Twin technologies play a pivotal role in smart 
manufacturing by improving production efficiency, enabling real-time asset monitoring, and 
facilitating PdM.  

Although the deep architecture of RNET-50 is effective as a feature extractor for complex 
datasets, it is prone to overfitting when applied to sparse or noisy sensor data typical of smart 
manufacturing. Moreover, RNET-50 lacks the recurrent layers necessary for capturing temporal 
dependencies in time-series maintenance data, reducing its suitability for such applications. Similarly, 
while ORF can enhance forecasting accuracy through hyperparameter tuning, it is susceptible to 
overfitting in noisy or complex manufacturing datasets and performs poorly in modelling temporal 
relationships critical for maintenance predictions. Although optimisation can increase computational 
overhead and improve parameter settings, it may compromise the generalisability across different 
equipment types or operating conditions.  

To address these limitations, the novel SMO-MK-SVM approach was developed for PdM in smart 
manufacturing. The proposed SMO-MK-SVM method attained an accuracy of 98.2%, outperforming 
traditional RNET-50 and ORF approaches, which achieved accuracies of 96.4% and 96.8%, 
respectively, as illustrated in Figure 9(a). The precision of the SMO-MK-SVM was 96.2%, compared to 
93% and 94.5% for RNET-50 and ORF, respectively (Figure 9(a)). With an F1-score of 97.1%, the SMO-
MK-SVM surpassed the RNET-50’s F1-score of 96.4% (Figure 9(b)). Regarding recall, SMO-MK-SVM 
reached 98.3%, higher than ORF’s 97.2%, as shown in Figure 9(c). Table 1 summarises the precision, 
F1-score, accuracy, and recall metrics for all evaluated methods.  
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Table 1 
Comparative Evaluation of Existing RNET-50, ORF, and the Proposed Method 

Methods Accuracy (%) Recall (%) Precision (%) F1-Score (%) 

RNET-50 Bharot et al. [4] 96.4 - 93 96.4 

ORF Preethi et al. [21] 96.8 97.2 94.5 - 
SMO-MK-SVM [Proposed] 98.2 98.3 96.2 97.1 

 
Fig.9: Comparative Evaluation of (a) Accuracy and Precision, (b) F1-Score, and (c) Recall of Conventional 

Methods, and SMO-MK-SVM Approach 

In recent years, there has been increasing emphasis on integrating digital technologies within 
manufacturing, particularly through the concepts of digital twins and smart manufacturing. These 
innovations are anticipated not only to enhance operational efficiency but also to address 
sustainability challenges in the sector. The primary function of digital twins is to establish a seamless 
connection between design, manufacturing, and maintenance processes that can be optimised and 
monitored in real time. As noted by Fu et al. [7], digital twins facilitate the convergence of various 
manufacturing lifecycle stages, enabling more streamlined operations. This technology assists 
manufacturers in modelling processes and making accurate forecasts, thereby substantially 
improving performance and decision-making.  

Smart manufacturing represents an effective approach to tackling sustainability issues. According 
to Kannan et al. [11], implementing smart manufacturing techniques offers benefits in preventing 
inefficiencies and resource wastage. The deployment of intelligent systems and data analytics aids 
manufacturers in efficiently sourcing materials, managing product lifecycles, and prioritising 
environmental considerations within the manufacturing ecosystem. Mittal et al. [17] also highlighted 
the essential features and requirements for smart manufacturing. They identified key technologies 
such as the IoT and advanced robotics that are critical for the development of smart factories. The 
integration of these technologies enhances production flexibility, responsiveness, and overall 
manufacturing effectiveness. Furthermore, improving reliability and reducing downtime hinges on 
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the ability to predict potential system failures. Peng et al. [20] proposed a fault diagnosis method that 
utilises smart technologies combined with deep learning capabilities. This approach ensures effective 
fault detection in rotating machinery, which is common in manufacturing, thereby facilitating smooth 
production continuity and timely maintenance interventions.  

Additionally, Fuhrländer-Völker et al. [8] examined the application of predictive maintenance 
within this context. Their study explores how digital twins can be effectively implemented in 
manufacturing environments to enhance maintenance scheduling. Through continuous monitoring 
of physical systems, digital twins can anticipate required maintenance, promoting prolonged 
machinery lifespan and minimising performance degradation. The integration of digital twins with 
smart manufacturing technologies provides a reliable framework to address contemporary 
manufacturing challenges. This integration not only improves operational efficiency but also 
promotes sustainable practices, fostering a more resilient and environmentally conscious 
manufacturing sector in the future.  

 
5. Conclusion 

Smart manufacturing represents a significant transformation in today’s rapidly evolving industrial 
landscape by integrating advanced technologies to optimise production processes, enhance 
productivity, and reduce operational costs. The smart manufacturing maintenance dataset was 
sourced from the Kaggle platform. A novel SMO-MK-SVM approach was developed to accurately 
assess equipment condition and predict failures. The performance of the proposed method was 
evaluated using recall (98.3%), precision (96.2%), F1-score (97.1%), and accuracy (98.2%). Challenges 
associated with implementation include high costs, issues with data quality and integration, 
dependence on sensor accuracy, cybersecurity vulnerabilities, complexities in analysing large 
datasets, and potential false positives or negatives that may hinder timely decision-making and 
operational efficiency. Future developments are expected to focus on enhanced AI-driven analytics, 
edge computing, IoT integration, real-time anomaly detection, advanced sensor technologies, self-
diagnostic systems, and broader adoption across industries to facilitate more intelligent and cost-
effective manufacturing processes.  
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Appendix 
DT Digital twins ML Machine learning 

SVM Support vector machine IoT Internet of Things 
RNN Recurrent neural network IoT-SPM Internet of Things-based smart predictive maintenance 
DL Deep learning CNN Convolutional neural network 
QRD Quantum random dive ATM Automated teller machine 
AI Artificial intelligence RF Random forest 
KNN k-nearest neighbors RUL Remaining usable life 
SMS Smart Manufacturing System PdM Predictive maintenance 
DNN Deep neural network RL Reinforcement learning 
SIMPLE Smart Manufacturing Machine with Predictive 

Lifetime Electronic Maintenance 
SMO Starling Murmuration Optimizer 

LSTM Long short-term memory network SA Simulated annealing 
RFR Random Forest Regressor AI Artificial intelligence 

 


