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Original scientific paper 
Abstract: This study provides a model for result consistency evaluation of 
multi-criteria decision-making (MDM) methods and selection of the optimal 
one. The study presents the results of an analysis of the sensitivity of decision-
making based on the rank methods: SAW, MOORA, VIKOR, COPRAS, CODAS, 
TOPSIS, D’IDEAL, MABAC, PROMETHEE-I,II, ORESTE-II with variations in the 
elements in the decision matrix within a given error (imprecision). It is 
suggested to use multiple simulation of the elements estimations of the 
decision matrix within a given error for calculating the ranks of alternatives, 
which allows obtaining statistical estimates of ranks. Based on the statistics of 
simulations, decision-making can be carried out not only on the alternatives 
statistics having rank I but also on the statistics of alternatives having the 
largest total I and II rank or I, II and III ranks. This is especially true when the 
difference in rank values is not large and is distributed evenly among the first 
three ranks. The calculations results for the task of selecting the adequate 
location of 8 objects by 11 criteria are presented here. The main result shows 
that the alternatives having I, II and III ranks for some ranking methods are 
not distinguishable within the selected error value of the elements in the 
decision matrix. A quantitative analysis can only narrow the number of 
effective alternatives for a final decision. A statistical analysis makes the 
number of options estimation possible in which an alternative has a priority. 
Additional criteria that take into account both aggregate priorities and the 
availability of possible priorities for other alternatives with small variations in 
the decision matrix provide additional important information for the decision-
maker. 

Key Words: Multi-criteria Decision-making, SAW, MOORA, VIKOR, COPRAS, 
CODAS, TOPSIS, D’IDEAL, MABAC, PROMETHEE-I,II, ORESTE-II, Sensitivity 
Analysis 
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1 Introduction  

Decision-making processes are present in all activities of daily life. The decision 
attempts aim at solving problems in a particular case in the best way but it is worth 
remembering that this process is complex and takes place in an environment of 
uncertainty. 

The multi-criteria decision-making methods (MCDMM) are the tool for reducing 
subjectivity in decision-making by creating a series of filters selection and helping to 
make choice among the complex alternatives. They are characterized by a particular 
mathematical apparatus which makes the application of different methods to the same 
problem often result in different solutions. Consequentially, the alternative choice 
does not depend solely on the criteria that one uses to evaluate those alternatives but 
on the MCDMM that one uses as well (Pamučar et al., 2017). 

There is no consensus on how to determine the sensitivity analysis, i.e. the "quality" 
of a decision method and the reliability of the results. The sensitivity analysis can be 
defined as stability or behavior of the solution to small changes in preferences which 
occur during the resolution process or to small changes in the values taken for 
parameters; it is what some authors consider as efficiency multicriteria decision 
method (Pamuc ar & Ć irovic , 2015).  

Barron and Schmidt (1988) recommended two procedures to accomplish a 
sensitivity analysis in multi-attribute value models (entropy based procedure and a 
least squares procedure). These procedures calculate, for a given pair of alternatives, 
the best alternative, the closest set of weights that equates their ranking. Watson and 
Buede (1987) illustrate a sensitivity analysis in a decision modeling strategy. Von 
Winterfeldt and Edwards (1986) cover the sensitivity analysis in the traditional way 
for those problems which can be approached by using a multi-attribute utility theory 
(MAUT) or a Bayesian model. They define the Flat Maxima Principle for MAUT 
problems, which states that the existence of dominance makes the sensitivity analysis 
almost unnecessary.  

Evans (1984) investigates a linear programming-like sensitivity analysis in the 
decision theory. His approach is based on the geometric characteristics of optimal 
decision regions in the probability space. Also, in Triantaphyllou (1992) the sensitivity 
analysis approach is described for a class of inventory models. The methodology for 
the sensitivity analysis in multi-objective decision-making is described in Insua 
(1989). That treatment introduced a general framework for the sensitivity analysis 
which expanded results of the traditional Bayesian approach to decision-making. 
Likewise, that work contains an analysis of why the flat maxima principle is not valid. 
Samson (1988) presents a whole new approach to the sensitivity analysis. He 
proposed that it should be part of the decision analysis process thinking in real time.  

Triantaphyllou and Mann (1989) emphasize two criteria for MDM methods 
analysis. The first criterion refers to fulfillment of result consistency conditions in the 
case when the method is applied to a multi-dimensional problem while the second 
criterion refers to the stability conditions of the best ranked alternative. In their study, 
Triantaphyllou and Mann (1989) compare four methods (WSM-weighted sum model, 
WPM-weighted product model, AHP-analytic hierarchy process and Revised AHP-
revised hierarchy process). Those two authors conclude that none of the considered 
methods is completely effective in terms of both evaluative criteria. Triantaphyllou and 
Lin (1996) examined five fuzzy multi-attribute decision-making methods (fuzzified 
WSM, WPM, AHP, revised AHP and TOPSIS) in terms of the same two evaluative 
criteria, adapted to fuzzy environment. Just like the previous study, when four crisp 
methods were compared, they came to same conclusions: that none of the examined 
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fuzzy methods is perfectly effective in terms of both evaluative criteria and that 
precision methods decrease with increasing complexity of the decision-making 
problem. 

In the last couple of years, there have been frequent comparative analyses by the 
authors who conduct comparison of the results gained through use of several different 
MDMM (Rodrigues et al., 2014; Anojkumar et al., 2014;  Liu et al., 2013; Wang & Tzeng, 
2012; Peng et al., 2011; Yang et al., 2008). However, the fact that there are multiple 
methods that recommend the same choice is not a satisfactory warranty of rationality 
and quality of the calculated solution (Pavličić, 1997). 

 Examples of analysis of ranking results accordance obtained through different 
methods can be seen in Rodrigues et al. (2014), Liu et al. (2013), Peng et al. (2011), 
Yang et al. (2008). It should be noted that the results of this kind of research depend 
on the observed method choice and characteristics of problems that those methods 
are being applied to. In accordance with that, there are different conclusions made by 
different authors. In the works in which robustness and stability analysis of obtained 
solution is conducted in MDM, besides comparison with the solutions gained thorough 
other methods and techniques, the analysis is often based on an appropriate sensitivity 
analysis of the results to changes of certain parameters in the decision-making model 
(Yu et al., 2012; Stevens-Navarro et al., 2012; Li et al., 2013a, 2013b; Ćorrente et al., 
2014; Kannan et al., 2014). 

As specified in the shown research studies, the selection of an optimal MĆDMM is 
a very complex problem which without any prior sensitivity analysis of the solution 
can have a wrong selection. Therefore, it is necessary to define the model for the 
sensitivity analysis of MĆDMM. This article presents a study of estimating the variation 
of alternatives according to the criteria for the results of ranking alternatives, and in 
connection with this, the approach to improving the reliability of decision-making 
(reduce the risk of making an unsound decision) is discussed in detail. The model was 
tested on the example of logistical center location selection and the results of are 
presented in section 4. It is necessary to emphasize that the results presented in 
section 4 refer only to the observed example of the logistical center location selection 
and cannot be generalized.  

The remainder of this paper is structured as follows: Section 2 gives a brief idea of 
the research methodology. Section 3 proposes preliminary methods for multi-
attribute decision-making and techniques. Sections 4 and 5 present an illustrative 
example and discussion of the sensitivity model results. Finally, Section 6 presents the 
conclusions, highlighting directions for further research. 

2 Research Methodology 

The MCDM problem is usually solved in a two phase process: (1) The rating, that 
is, the aggregation of the values of criteria for each alternative, and (2) The ranking or 
ordering between the alternatives, with respect to the global consensual degree of 
satisfaction. The step-by-step sequence of the problem of multi-criteria decision-
making is defined as follows (Triantaphyllou, 2011; Tzeng & Huang, 2011; 
Mukhametzyanov &  Pamuc ar, 2017): 

(1) Choice of alternatives ( ; 1,2,...,iA i m ); 

(2) Choice of evaluating criteria ( ; 1,2,...,jC j n ); 

(3) Acceptance of scales of an estimation of alternatives on each criterion; 
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(4) Determination of priorities (weights) of criteria ( ;  1, 2,..,jw j n ); 

(5) Determination evaluation matrix, i.e. decision matrix ij m n
X a


    ; 

(6) Choosing a method for ranking alternatives. 
Careful consideration of each step is the key to the success of the final choice. The 

first three and the last of the steps relate exclusively to a specific subject area and 
imply involvement of qualified specialists in the field under consideration. The 
remaining steps are formalized (partially or completely) and require involvement of 
specialists in applied mathematics. Accordingly, there are 5 main factors affecting the 
outcome for ranked decision-making methods for MCDMM for which variations in the 
form of a formalized procedure or method are possible. These are: (1) the choice of 
scales of criteria; (2) evaluation of the weights of the criteria; (3) evaluation of 
alternatives according to the criteria; (4) the method of normalizing the decision 
matrix and (5) method of ranking. Earlier, in Pamučar et al. (2017), the sensitivity of 
the choice of criteria scales and the evaluation of the weights of the criteria on the 
results of the ranking of alternatives, convincingly confirming the above thesis, was 
investigated. 

It seems obvious that for real decision-making tasks none of the alternatives can 
be accurately measured for each of the criteria. The reason for this is the fundamental 
uncertainty of nature. The correct wording shows how accurately the alternative is 
evaluated by the criterion. Therefore, (1 )ij ij ija a   

 
, where (0,1)ij  is the relative 

error of the estimate. Taking this into account, if we use the linear algebraic 
transformations of the elements of the decision-making matrix (preliminary 
normalization of the elements aij is necessary) to obtain the final ranks of the 
alternatives, or the class of methods based on the quasi-arithmetic transformations of 
the decision matrix elements, it is obvious that the degree of reliability of the result 
depends on the degree of reliability of the elements of matrix D. In the absence of 
errors of other values, the error of the final ranking will not be less than max ( )ij ij ija 

. In the simplest case of the OWA (Ordered Weighted Averaging) criteria aggregation 
method, the reliability of the result is estimated by the order value max( )ij . Thus, the 

final ranks ir  ( 1,2,...,i m ) are calculated with an error and are stochastic values. 

Then the question of the priority of one alternative over another should be solved in a 
statistical way. 

Let alternatives kA  and sA  have kr  and sr  ranks, respectively, and k sr r . The 

question is whether they are significant. The answer can be obtained if we use the t-
Test about the equality of two average normal populations. The lack of reliable 
information about ij  will not allow such a test to be performed. We consider the 

following method of partially solving the problem of estimating the error in calculating 
the ranks of alternatives. 

Step 1 An approximate estimate of the maximum total error in the choice problem, 
for example, 0.1ij   (or 10%), which is similar to specifying the risk. 

Step 2 Multiple simulation of ir  ranks (for example, 1000 simulations) for the 

variation of the elements of the decision matrix X : (1 ())ij ij ija a rnd     using the 

random number generator Rnd [0, 1]. 
Step 3 Calculate the mean and variance for ir  and test the performance of the 

paired t-Test for alternatives having 1, 2, and 3 ranks. 
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Calculations show that for different variants of calculations, the ranks of 
alternatives change. For example, suppose that in the 1000 decision matrix 
simulations the 1 rank of alternative kA  took 780 points, alternative sA  was 200, and 

alternative pA  was 20 points. The ratios are 3.9 and 39 times more in favor of 

alternative kA . But this is only with a superficial (trivial) approach. After all, the first 

20 ranks of alternative pA  are obtained for specific 20 implementations of the 

decision matrix. It is possible that the true values of the estimates of alternatives are 
according to the criteria from the same set. Then there is the possibility of not making 
the best decision although this chance (risk) is about 2%. Therefore, the value of the 
approach assuming statistical variations of estimates of the alternatives by the given 
criteria consists in additional information for the decision-maker regarding the 
magnitude of the risks. 

Having a statistical picture of the assessment of ranks, the decision-making can be 
carried out not only on the statistics of alternatives having rank 1, but it can also use 
statistics of the alternatives having the largest total 1 and 2 rank, or 1, 2 and 3 ranks. 
This is especially true when the difference in rank values is not large and is distributed 
on an average evenly between the first three ranks. For example, suppose that for kA  

the number of first places is 40%, the second 10%, and the third 5%; for sA  the 

number of first places is 36%, the second 25%, and the third 7%; for pA  the number 

of first places is 25%, the second 20%, and the third 20%. Then: 
(1) kA  is better than sA  and pA in the number of 1 ranks (40> 36> 25); 

(2) kA  is worse than sA  and better than pA  by the amount of the sum of 1 and 2 

ranks (50<51, 50>45); 
(3) kA  is worse than sA  and worse than pA  in the amount of the sums of 1, 2 and 

3 ranks (55<62<65). 
The above example shows complexity (and subtlety) of the procedure for selecting 

alternatives for the decision-maker in this scenario. 

3 Preliminary methods for used multi-attribute decision-making 
methods 

Before any further explanation of the recommended model, we are going to explain 
the basic setup of methods used in this work. Five methods were used: SAW, MOORA, 
VIKOR, ĆOPRAS, ĆODAS, TOPSIS, D’IDEAL, MABAĆ, PROMETHEE-I,II, ORESTE-II. 
Before a statistical analysis of the above presented multi-criteria methods we define 
some preliminary benchmarks important for this research: 

(1) In this research alternatives Ai are unformalized linguistic variables and 
criteria (Cj) are non-formalized linguistic variables. For each criterion it is 
necessary to determine the direction of growth, i.e. max (beneficial ) = (+1) or 

min (cost )= (– 1) as 1 ={ 1} ; 1,..., .n
j jsg signC j n    
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(2) The methods for normalizing the decision matrix: 
 

(1) Max (2) Sum (3) Max-Min (4) Vector 
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(3) Selecting a metric to measure the remoteness of two m-dimensional objects C 
and D 

   
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L C D c d p L C D c d
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  
  (1) 

3.1 SAW (Simple Additive Weighting) method 

Simple Additive Weighting (SAW) method is probably the best known and most 
widely used MADM method (Anupama et al., 2015). The SAW method also known as a 
scoring method is one of the best and simplest types of multiple attribute decision-
making method. The basic logic of the SAW method is to obtain a weighted sum of 
performance ratings of each alternative over all attributes. An evaluation score is 
calculated for each alternative by multiplying the scaled value given to the alternative 
of that attribute with the weights of relative importance directly assigned by the 
decision maker followed by summing up of the products for all criteria. The advantage 
of this method is that it is proportional linear transformation of the raw data which 
means that the relative order of magnitude of the standardized scores remains equal. 
The step wise procedure is given below (Kaklauskas et al., 2006): 

Step 1 Construct a decision matrix 
ij m n

X a


     that includes m personnel and n 

criteria. Calculate the normalized decision matrix for benefit/cost criteria: 
: (1 1' 1'' 1''' , 2 2 ', 3 3', 4 4 ')ija norm or or or       (2) 

Step 2 Evaluate each alternative, iA  by the following formula: 

1 1

;   1
n n

i j ij j

j j

A w a w
 

    (3) 
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where ija  is the normalized value of the i-th alternative with respect to the j-th 

criteria, jw  is the weighted criteria (Kaklauskas et al., 2006).  

3.2 MOORA (MultiObjective Optimization on the basis of Ratio Analysis) 

method 

The method starts with a matrix of responses of different alternatives on different 
objectives ijx ; where ijx  represents the response of alternative i on objective j. 

MOORA goes for a ratio system in which each response of an alternative on an 
objective is compared to a denominator, which is representative for all alternatives 
concerning that objective. The step wise procedure is given below (Brauers & 
Zavadskas, 2006; Kalibatas & Turskis, 2008; Brauers, 2008; Brauers et al., 2008): 

Step 1 Construct a decision matrix ij m n
X a


     that includes m personnel and n 

criteria. Calculate the normalized decision matrix for benefit/cost criteria: 
: (1 2 3 4)ija norm or or or  (4) 

Step 2 Evaluate each alternative, iA  by the following formula: 

1 1

;   1

n n

i j j ij j

j j

Q sg w a w

 

      (5) 

where ija  is the normalized value of the i-th alternative with respect to the j-th 

criteria, jw  is the weighted criteria. These normalized responses of the alternatives 

on the objectives belong to the interval [0,1]. 
Step 3 For optimization these responses are added in case of maximization and 

subtracted in case of minimization (Brauers, 2008): 

 max( ); : (4); max , ; maxi ij ij j j ij ij j j ij i
j i i

Q a norm r sg a r a Q         (6) 

where ija  is the normalized value of the i-th alternative with respect to the j-th 

criteria, jw  is the weighted criteria.  

3.3 VIKOR (VIsekriterijumsko KOmpromisno Rangiranje) method 

VIKOR method represents an often used method for multicriteria ranking and 
suitable for solving different decision-making problems. It is especially suitable for 
those situations where the criteria of quantitative nature are prevalent. The VIKOR 
method was developed based on the elements of compromise programming. The 
method starts from the “border” forms of pL  metrics (Opricovic & Tzeng, 2004). It 

seeks the solution that is the closest to the ideal. In order to find the distance from the 
ideal point it uses the following function: 

   

1/

* *

1

, ,1

p
n

p

p j j

j

L F F f f x p



         
  
  (7) 

This function represents the distance between ideal point *F  and point  F x  in 

space of criteria functions.  
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The essence of the VIKOR method is that for every action it finds the value of  iQ , 

and then it chooses the action which has the lowest listed value (the smallest distance 
from the “ideal” point). The step wise procedure is given below: 

Step 1 Determine "ideal" and "anti-ideal" object 

{max (max); min (min)};

{min (max); max (min)}.

j ij j ij j
ii

j ij j ij j
i i

a a if j C a if j C

a a if j C a if j C





  

  
 (8) 

where ja  and ja , respectively, present ideal and anti-ideal object. 

Step 2 Weighted Normalization:  norm(3)  

   ;  

    .

ij j

j ij

j j

j ij

j ij

j ij

j j

a a
w if x B

a a
w x

a a
w if x C

a a


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

 
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  


  


 



 (9) 

Where B and C, respectively, present beneficial and cost group of criteria. 
Step 3 The strategies of maximal R and group utility S

 *

1

*

; min ; max

max ; min ; max

n

i ij i i
i i

j

i ij i i
ij i

S x S S S S

R x R R R R







  
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
 (10) 

Step 4 Calculate the values of  Qi 

 
* *

* *
1i i

i

S S R R
Q v v

S S R R 

 
   

 
 (11) 

where v plays the role of the balancing factor between the overall benefit (S) and 
the maximum individual deviation (R). Smaller values of v emphasize group gain, while 
larger values increase the weight determined by individual deviations. "Voting by 
majority rule" (v> 0.5); or "by consensus" (for v = 0.5); or "with a veto" (for v <0.5). 

Step 5 The result of the procedure comprises three rating lists: S, R and Q. The 
alternatives are evaluated by sorting values of S, R and Q by the criterion of the 
minimum value. The best alternatives: 
min{ , , }i i i

i
Q S R  (12) 

Step 6 As a compromise solution, an alternative A1 is proposed which is best 
estimated by Q (minimum) if the following two conditions are met: 

Condition C1: "Allowable advantage": Q(A2) – Q( A1 ) >= 1/(m – 1) , where A2 is an 
alternative to the second position in the Q ranking list. 

Condition C2: "Acceptable stability in decision-making": Alternative A1 should also 
be best estimated by S or / and R. 

Step 7 If one of the conditions - 1 or 2 - is not satisfied, then a set of compromise 
solutions is proposed, which consists of: 

- alternatives  A1 and A2,  if condition C2 is not met, or, 
- alternatives  A1, A2, ..., Ak  if condition C1 is not satisfied; Ak is determined by 

relation            1 – 1 1/ –1    &    – 1 1/ –1  Q Ak Q A m Q Ak Q A m  . 
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3.4 COPRAS (COmplex PRoportional ASsessment) method 

Ranking alternatives by the COPRAS method assumes direct and proportional 
dependence of significance and priority of the investigated alternatives on a system of 
criteria (Ustinovichius et al., 2007). The selection of significance and priorities of 
alternatives, by using the COPRAS method, can be expressed concisely using four 
stages (Viteikiene  & Zavadskas, 2007). For normalization in the COPRAS method we 
use : (1 2 3 4)ijx norm or or or .  

In the COPRAS method, each alternative is described with the sum of maximizing 
attributes S+i. In order to simplify calculation of +iS  and iS  in the decision-making 

matrix columns, the maximizing criteria are placed first, followed by the minimizing 
criteria. In such cases, +iS  and iS are calculated as follows (Viteikiene  & Zavadskas, 

2007): 

1

1

(max);

(min).

n

+i ij j

j=

n

i ij j

j=

S = x for j C

S = x for j C








  (13) 

Relative weight  iQ  of the i-th alternative is calculated as follows: 

1

1

1

m

i

i=
i +i m

i
ii=

S

Q = S +

S
S









  (14) 

The priority order of the compared alternatives is determined on the basis of their 
relative weight (higher relative weight higher priority/rank). 

3.5 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) 

method 

The basic principle of the TOPSIS method is that the best alternative should have 
the shortest distance from the ideal solution and the farthest distance from the anti-
ideal solution. A relative distance of each alternative from ideal and anti-ideal 
solutions is obtained as (Chang et al., 2010). 

, 1,...,i
i

i i

S
Q i n

S S



 
 


    (15) 

where iS   and iS   are separation measures of alternative i  from the ideal and 

anti-ideal solution, respectively; iQ  is the relative distance of alternative i  to the 

ideal solution, and  0,1iQ  . 

The largest value of criterion iQ  correlates with the best alternative. The best 

ranked, or the most preferable, alternative *
TPSA  can be determined as 

 * maxTPS i i
i

A A Q . 
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For normalization in the TOPSIS method we use : (1 2 3 4)ijr norm or or or . The 

separation measures of each alternative, from the ideal and anti-ideal solutions, are 
computed using the following formulae (Chang et al., 2010): 

 
1/2

2

1

n

j ij i

j

S w r r 



      
  
    (16) 

 
1/2

2

1

n

j ij i

j

S w r r 



      
  
    (17) 

where element ijr  represents the performance of alternative  iA  in relation to 

criterion jC . For m  criteria ( 1, 2, ..., mC C C ) and n  alternatives ( 1, 2, ..., nA A A ) matrix 

R  has shape ij nxm
R r    . Values ( 1, 2 ,..., mw w w ) represent weight values of the criteria 

that satisfy condition 
1

n

ii
w

 . 

Ideal A  and anti-ideal A  solution in the TOPSIS method can be determined 
using formulas (8) and (9), respectively. 

   '
1 2(max | ), (min , ), 1,.., , ,...,ij ij mA v j G v j G i n v v v           (18) 

   '
1 2(min | ), (max , ), 1,.., , ,...,ij ij mA v j G v j G i n v v v           (19) 

It can be seen from equations (16) and (17) that the ordinary TOPSIS method is 
based on the Euclidean distance (Chang et al., 2010; Shanian & Savadogo, 2006). 

3.6 D’IDEAL (Displaced Ideal Method) 

An "ideal" object is formed from the most preferable values of the criteria and so 
are "anti-ideals" from the least preferred values. The distances of the objects from the 
original set to the "anti-ideal" are determined, on the basis of which the "worst" objects 
are allocated. After excluding the "worst" objects, we return to the stage of formation 
of the "ideal", and it changes, approaching the real objects. The procedure ends when 
there remain a small number of objects, which are considered to be the most 
preferable. The step wise procedure is given below: 

Step 1 Determine an "ideal" object and an "anti-ideal" one 

{max (max); min (min)}; 1,...,j ij j ij j
ii

a a if j C a if j C j n        (20) 

{min (max); max (min)}; 1,...,j ij j ij j
i i

a a if j C a if j C j n        (21) 

   ;  

    .

ij j

j ij

j j

j ij

j ij

j ij

j j

a a
w if x B

a a
w x

a a
w if x C

a a



 



 

 
  


  


 



 (22) 

Step 2 Calculate the distance of the objects to the "anti-ideal" using metrics for 
different values of p, for example, }1,{ 2,p     

1/

1

, max

p
n

p p
i ij i ij

j
j

L x L x



  
  
  
  (23) 
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Step 3 Exclude "hopeless" options. For this, for each p, all objects are ordered in 

proximity to the "ideal" in magnitude p
iL . The more p

iL , the further Ai is from the anti-

ideal, and the higher the rank of the alternative Ai (rank 1 is higher). 

max max

1 2

( / ); max ;

; ( |{ , ,..., })

p p p p
i i i

i
p

p pp p p p
i i i i m

p

Q L L L L

R r r rank L L L L

 

 




 (24) 

Exclude one (two or three, depending on the number of alternatives) of 
"unpromising" variants that have the greatest total rank Ri. These are objects that, at 
different metrics (different p), are at the end of the ordered series. The procedure ends 
when there remain a small number of objects, which are considered to be the most 
preferable. The best alternative is max i

i
Q . 

3.7 MABAC (Multi-Attributive Border Approximation area Comparison) 

The MABAC method is developed by Pamučar and Ćirović (2015). The basic setting 
of the MABAC method consists in defining the distance of the criteria function of every 
observed alternative from the border approximate area. The step wise procedure is 
given below: 

Step 1 Normalization of the initial matrix elements. 

   ;  

    .

ij j

ij

j j

ij

j ij

ij

j j

a a
if x B

a a
x

a a
if x C

a a



 



 

 
 


 






 (25) 

where, ja and ja  represent the elements of the initial decision matrix. 

Step 2  Calculation of the weighted matrix elements. The elements of the weighted 
matrix are calculated on the basis of the expression (26) 

( 1)ij ij jv x w    (26) 

where ijv  represents the elements of the normalized matrix, jw  represents the 

weighted coefficients of the criterion. 
Step 3 Determination of the approximate border area matrix. The border 

approximate area for every criterion is determined by expression (27): 
1/

1

, 1, ; 1,

m
m

j ij

i

g v i m j n



 
   
 
 
  (27) 

where ijv represents the elements of the weighted matrix, m represents total 

number of alternatives. 
After calculating the value of jg  by criteria, a matrix of border approximate areas 

G is developed in the form n x 1.  
Step 4 Ranking of alternatives. The calculation of the values of the criteria functions 

by alternatives is obtained as the sum of the distance of alternatives from the border 
approximate areas. The final values of the criteria function of alternatives are obtained 
as follows 
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1

( )

n

i ij j

j

Q v g



   (28) 

where n represents the number of criteria. 
Step 5 The best alternative is max i

i
Q . 

3.8 ORESTE (Organisazion, RangEment ot SynTEze de donnecs relationnelles) 

method 

The ORESTE method was developed by Roubens (1978). The aim of this method is 
to find a global preference structure of a set of alternatives by evaluating them by each 
criterion and the preference among the criteria. This method generally defines criteria 
and alternatives, constructs a global complete and partial preorder of the alternatives 
by performing indifference and conflict analyses. In this research normalization 
matrix is performed by using : (3)ijr norm . The step wise procedure is given below 

(Roubens,1978; Brans et al., 1986): 
Step 1 Transition from matrix DM to matrix of ranks (the columns of the matrix are 

replaced by their ranks) 

1 2( |{ , ,..., }), , ( 1,..., ; 1,..., )ij ij j j mjr rank a a a a i j i m j n     (29) 

Step 2 Determine ranks of criteria  

1 2

1 2

( |{ , ,..., }), 1,..., ;

( |{ , ,..., })

j j n

j j n

rc rank C C C C j n or

rc rank w w w w

  


 (30) 

Step 3 Compute the projections of ranks 
1/

(1 ) , (0;1)

1,    ( );  

1,    ;  

2,    

 inf,   max( ,  );

inf,   min( , )

p
p p

ij ij jd r rc

p Average Mean

p Medium Harmonic

p Mean Square

p R w

p R w

        
 



 





 

 (31) 

Step 4 Calculating ranks dij  

1: ; 1:

1

( |{ } ),

n

ij ij ij i m j n i ij

j

Rd rank d d R Rd 



   (32) 

Step 5 Calculate ranks Ri  

1 2( |{ , ,..., })i i mOutR rank R R R R  (33) 

Step 6 Calculate preference factors Cik 

2
1

1
( | |)

2 ( 1)

( ); ( , 1, 'descend', 1, 'ascend',);  

n

ik ij kj ij kj

j

ij ij ij ij j j
j j

C Rd Rd Rd Rd
n m

r rank a R sort a if sg if sg



    
  

     


 (34) 

Step 7 The best alternative is min i
i

Q . 
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3.9 PROMETHEE (Preference Ranking Organisation METHod for Enrichment 

Evaluations)  

The PROMETHEE method was developed at the beginning of the 1980s and has 
been extensively studied and refined since then (Figueira et al., 2005). It has particular 
application in decision-making, and is used around the world in a wide variety of 
decision scenarios, in the fields such as business, governmental institutions, 
transportation, healthcare and education. 

The PROMETHEE method helps the decision makers find the alternative that best 
suits their goal and their understanding of the problem. It provides a comprehensive 
and rational framework for structuring a decision problem, identifying and 
quantifying its conflicts and synergies, clusters of actions, and highlights the main 
alternatives and the structured reasoning behind them. The step wise procedure is 
given below: 

Step 1. Set the preference function for two objects for each criterion
( , , )j isH H d p q . As a rule, they have two parameters: p - indifference threshold, it 

reflects the fact that if difference of dis values of two alternatives  i  and  s  is 
unimportant, then objects by criterion j  are equivalent. If the difference in threshold 
value p is exceeded, a preference relation is established between the objects. If the 
difference in threshold  q is exceeded, the preference function corresponds to the 
"strong preference" of variant i with respect to variant s with respect to criterion j. 
With the difference of dis in the interval from p to q, the preference function is less than 
1, which corresponds to a "weak preference". 

The choice of the preference function is determined by the decision-makers. Some 
types of functions are preferred H(d) are presented below (Table 1): 1) regular-  0 if 
d< =0, 1 if d>0; 2) U-Shape ([p 0]  p>0);   3) V-Shape ([p 0]  p>0); (p is indifference 
threshold); 4) Level criterion([p g]);  p, q>0 (q is the preference threshold); 5) Linear 
criterion( [p g]);  p, q>0; 6) Gaus criterion([p p]) p=sigma (Table 1). 

Table 1. Preference functions of PROMETHEE 

Function Shape Threshold Formula 

Usual 

 

No 
threshold 

1, 0
( ) ;

0, 0

x
f x

x


 


 

U-shape 

 

q threshold 
1,

( ) ;
0,

x q
f x

x q


 


 

V-shape 

 

p threshold 
/ ,

( ) ;
1,

x p x p
f x

x p


 


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Function Shape Threshold Formula 

Level 

 

p and q 
threshold 

0,

( ) 0.5, ;

1,

x p

f x p x q

x q




  
 

 

Linear 

 

p and q 
threshold 

0,

( ) ( ) / ( ), ;

1,

x p

f x x p q p p x q

x q




    
 

 

Gaussian 

 

s threshold 
2

2
( ) 1 exp ;

2

x
f x

s

 
    

 
 

Step 2. Calculate the difference in the values of the criteria for the two objects and 
calculate preference indexes V 

1

; ( , , , ); [ ]

n

is ij sj j j is is j j

j

d a a H H d p q V w H m m Matrix



         (35) 

Step 3. Determine the preference factors 

1, 1,

; ; .

m m

i is i si i i i

s s i s s i

V V Q   

   

         (36) 

Step 4. The best alternative is max i
i

Q . 

3.10 CODAS (COmbinative Distance-based ASsessment) method 

The CODAS method is an efficient and updated decision-making methodology 
introduced by Keshavarz Ghorabaee et al. (2016). The desirability of alternatives in 
the CODAS is determined based on l1-norm and l2-norm indifference spaces for 
criteria. According to these spaces, in the procedure of this method, a combinative 
form of the Euclidean and Taxicab distances is utilized for calculation of the 
assessment score of alternatives. The step wise procedure is given below: 

Step 1. Construct the Weighted Normalized Decision Matrix   

max

min

   ;  

    .

ij

j ij

j

ij

j

j ij
ij

a
w if x B

a
x

a
w if x C

a


 


 


 


 (37) 

Step 2. Determine the negative-ideal solution as given in equation. Construct min 
vector for criteria  

min ; 1,..., ; 1,...,j ij
i

r x j n i m    (38) 

Step 3. Calculate the Euclidean and Taxicab distances of alternatives from the 
negative-ideal solution 
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1/2

2

1

( )

n

i ij j

j

E x r



 
  
  
  (39) 

1

| |

n

i ij j

j

T x r



   (40) 

Step 5.Construct the relative assessment matrix  
( ) ( ) ( ), , 1,...,ik i k i k i kH E E E E T T i k m        (41) 

where ψ denotes a threshold function 

1, | |
( )

0, | |

if x
x

if x







 


 (42) 

  is the threshold parameter that can be set by the decision maker. It is suggested 

to set this parameter as a value between 0.01 and 0.05. If the difference between the 
Euclidean distances of  two  alternatives is less that  , the two alternatives are also 

compared by the Taxicab distance. 
Step 6. Calculate the assessment score of each alternative 

1

m

i ik

k

H H



  (43) 

Step 7. Rank the alternatives according to the decreasing values assessment score 
H.  The alternative with the highest H is the best choice among the alternatives. 

4 An illustrative example: the location selection of tri-modal LC and 
logistical flows 

The sensitivity analysis model is tested on an example of the logistical center (LC) 
location selection (Pamučar et al., 2017). The goal is to find a location which generates 
lowest expenses, offers highest efficiency and at the same time fulfills operational and 
strategic needs. 

3.1 Alternatives and criteria weighting 

In our example the authors used 11 criteria which were identified in Pamučar et al. 
(2017) based on which the location selection of tri-modal LC is going to be conducted 
(Table 2). 

Table 2. Criteria for LC selection (Pamučar et al., 2017) 

Criterion Criterion name wi Unit of Measurement 

C1 Connectivity to Multimodal Transport 0.109 Linguistic Variable 

C2 Infrastructure Development Evaluation 0.105 
Infrastructure 
Development (%) 

C3 Environment effect 0.101 Linguistic Variable 

C4 
Conformity with Spatial Plans and Strategy Of 
Economic Development 

0.097 Linguistic Variable 

C5 Gravitating Intermodal Transport Unit - ITU 0.094 
Number of 
Gravitating ITUs 
(ITU/year) 
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Criterion Criterion name wi Unit of Measurement 

C6 Reload capacity of an LC 0.094 
Number of Reloaded 
ITUs (ITU/h) 

C7 
Available Area For Future Development and 
Capacity Expansion Of Lcs 

0.093 
LC Development 
Area (m2) 

C8 User’s Distance from an LC 0.088 Linguistic Variable 

C9 Traffic Safety 0.084 Linguistic Variable 

C10 Length of Railroad Reload Front 0.071 
Reload Front Length 
(m) 

C11 
Evaluation of Quality of Traffic Approaches 
for Interpellant Means of Transportation  

0.063 Linguistic Variable 

A total of eight locations were considered. Table 3 shows characteristics of eight 
locations (alternatives) for the tri-modal LC development on the Danube River. 

Table 3. A mixed data matrix corresponding to example (Pamučar et al., 

2017) 

Alternative 
Criteria 

C1  C2  C3  C4  C5 C6  C7  C8  C9  C10 C11 

LC 1 4 71 4 3 45000 150 1056 2 4 478 4 

LC 2 4 85 4 4 58000 145 2680 2 5 564 4 

LC 3 4 76 4 4 56000 135 1230 2 4 620 3 

LC 4 3 74 3 4 42000 160 1480 4 3 448 5 

LC 5 5 82 3 5 62000 183 1350 2 4 615 4 

LC 6 4 81 3 5 60000 178 2065 2 3 580 4 

LC 7 4 80 3 5 59000 160 1650 3 5 610 4 

LC 8 3 82 4 4 54000 120 2135 3 4 462 5 

The weight coefficients of the criteria are obtained based on the Sun (2012), 
Mehrjerdi at al. (2013) and Rahmaniani et al. (2013): 

  0.109; 0.105;0.101;0.097;0.094;0.094;0.093;0.088;0.084;0.071;0.063jw    

with criteria sign (1;1  ; –1;1  ;1  ;1  ;1  ; –1;1  ;1;1)sC  , where "1" marks criteria of the 

“benefit” type (bigger criterion value is preferable), whereas "-1" marks criteria of the 
“cost” type (lower criterion value is preferable). 

Variations in the values of the alternatives of the presented example are carried 
out for the criteria C3, C5-C7, C10. For software implementation, it is sufficient to 
specify a vector-switch, according to the number of criteria. For the realized example, 
this is the vector [0 0 1 0 1 1 1 0 0 1 0], where 1- on, 0-off. 

3.2 Statistical experiment 

Statistics of effectiveness indicators of the alternatives for each criterion is made 
by the following calculation formula: 

0 0( 1 2 ())kD D rnd D         (44) 

where 0D  is the initial evaluation of the decision matrix; the function ()rnd returns 

a uniformly distributed random number from [0,1];  is relative error of estimating 

alternatives for each criterion; k = 1, ..., N  is the number of variations in decision matrix 

kD . 
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For each variation of matrix kD , a general evaluation of the alternatives’ 

effectiveness for all the criteria was made by using one of the above described 
aggregation methods: SAW, MOORA, VIKOR, ĆOPRAS, ĆODAS, TOPSIS, D’IDEAL, 
MABAC, PROMETHEE-I,II, ORESTE-II. The calculations are performed in the MATLAB 
system. The software protocols (m-files) and the user's manual are publicly available 
in the file exchange of website of the company MathWorks (Mukhametzyanov, 2018a, 
2018b, 2018c, 2018d). The volume of the statistical experiment is N=1024. Relative 
error values   varied from 5, to 25% {0.05, 0.10, 0.15, 0.20, 0.25}. 

Thus, in statistical experiments, N values of the overall evaluation of the 

effectiveness of alternatives  *

i k
C  for all the criteria and the ranks (priorities)  *

i k
r

of alternatives Ai (i = 1, m) corresponding to these values for each of the considered 

MCDM methods are obtained. For each sample of N values *

i
C , mean 

*

i
C  

and standard 

deviation *( )
i

std C  are calculated. 

5 Results of sensitivity analysis of MDM methods 

5.1 Distribution of the overall evaluation of the effectiveness of alternatives 

In accordance with the central limit theorem (Lyapunov CLT) and considering that 
*

i
C  aggregation is carried out additively for all alternatives, the distribution of random 

variable *C  obeys the normal distribution law. Figures 1 and 2 show typical 

histograms of values *

i
C  obtained for different values of the relative error of the 

computational experiment.  

 

Figure 1. Histogram of the relative closeness to the ideal solution 

depending on the relative error in the data (δ,%). (1000 Simulation of DM 

Matrix; m, σ- parameters of normal distribution) 
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Figure 1 shows point estimates of unknown mean-variance parameters and also 

the logical values of three tests of normal distribution. This is Jarque-Bera test, 
Lilliefors test and Kolmogorov-Smirnov test. The null hypothesis that the sample is in 
vector Q comes from normal distribution with unknown mean and variance, with the 
alternative that it does not come from normal distribution. Three (JB-LF-KS): the 
figure is represented by a set of 0 and 1 for each of the tests. The test returns the logical 
value h = 1 if it rejects the null hypothesis at the 5% significance level, and h = 0 if it 
cannot. 

 

Figure 2. Fit distributions to *

5
C  ( LĆ5, ĆOPRAS,  δ=20%, 1000 Simulation 

of DM Matrix) 

For all the methods, a slight decrease 
*

i
C  and increase *( )

i
std C  is observed with 

increasing values  . The dynamics 
*

i
C  and  *( )

i
std C is shown in Figure 3. 

 

Figure 3. Dynamics mean ( *

5C )  depending on δ. ( A5, COPRAS, 1000 

Simulation of DM Matrix). 
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To determine the distribution law, use the statistical function Statistics Toolbox 
MATLAB - dfittool - Interactive distribution fitting - opens a graphical user interface 
for displaying fit distributions to data. 

Distribution parameters referring to Figure 2 is: Distribution: Normal; Log 
likelihood: 2309.1; Domain: -Inf <y <Inf; Mean: 0.563; Variance: 0.0006; Parameter 
Estimate: mu 0.563, Std. Err. Mu 0.00076, Sigma 0.024, Std. Err. Sigma: 0.0005; 95% 

confidence intervals for mu: (0.5614; 0.5644). Similar statistical results hold for all iA

, all Methods, and all  . 

The distributions of statistics for the SAW, MOORA, ORESTE-2, TOPSIS, MABAC, 
PROMETHEE methods are described by the normal distribution law. The CODAS and 
VIKOR methods are not very stable to the variation of the initial data - multimodality, 
distribution asymmetry, or incomprehensible distribution laws are observed. For the 
COPRAS method, "leaders" alternatives A2, A5, A6 have deviations from normality due 
to strong asymmetry. For the D'Ideal method, distributions for alternatives A5 and A8 
are not stable. 

4.2 Ranking of alternatives 

Changing the initial decision matrix at random in the calculations for a given value 

of the relative error (not more than ) in a number of experiments, the priorities of 

the alternatives change. For example, Tables 4 and 5 show the results of the COPRAS 
calculations for various initial data. At δ = 10%, the first priority has alternatives LP5 
in 91.8% simulations, LP2 in 5.2% simulations and LP6 in 3.0% simulations. 

Table 4. COPRAS ranking C* for various initial data of the decision matrix 

for δ = 0.1; 1024 simulations (Fragment) 

K LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 

1 0,112 0,135 0,119 0,110 0,138 0,135 0,131 0,118 
2 0,112 0,135 0,119 0,109 0,138 0,137 0,130 0,118 
3 0,112 0,135 0,118 0,111 0,138 0,135 0,132 0,118 
4 0,115 0,133 0,118 0,110 0,140 0,135 0,130 0,118 
5 0,113 0,134 0,117 0,110 0,138 0,131 0,134 0,121 
6 0,112 0,135 0,119 0,110 0,136 0,136 0,131 0,121 
7 0,112 0,137 0,118 0,109 0,138 0,134 0,131 0,120 
8 0,113 0,135 0,118 0,110 0,139 0,133 0,132 0,119 
9 0,112 0,135 0,119 0,108 0,139 0,139 0,129 0,119 

10 0,113 0,137 0,119 0,110 0,136 0,134 0,132 0,118 
… 

51 0,112 0,134 0,120 0,110 0,138 0,136 0,130 0,119 
… 

74 0,112 0,134 0,119 0,110 0,139 0,135 0,131 0,118 
… 

102 0,112 0,136 0,120 0,109 0,137 0,134 0,131 0,119 
… 

1023 0,113 0,137 0,120 0,110 0,138 0,134 0,131 0,118 
1024 0,114 0,134 0,120 0,110 0,137 0,136 0,130 0,118 

First rank (%) 8.6 - - 79.3 12.1 - - 
Second rank (%) -  - - - 44.2 - - 
Third rank (%) 48.4 - - - -  - - 
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Table 5. Summarized results of the COPRAS calculations for various initial 

data (δ = 0.1; N=1024) 

Rank 
Alternatives 

LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8 

I 0 88 0 0 812 124 0 0 
II 0 391 0 0 172 453 8 0 
III 0 496 0 0 40 410 78 0 
IV 0 49 0 0 0 37 938 0 
V 0 0 615 0 0 0 0 409 
VI 1 0 409 0 0 0 0 614 
VII 954 0 0 69 0 0 0 1 
VIII 69 0 0 955 0 0 0 0 

Total 1024 1024 1024 1024 1024 1024 1024 1024 

In some cases, it may turn out that average efficiencies 
*

i
C  for various alternatives 

are not statistically indistinguishable; hence, for the ranking it is necessary to consider 
alternatives having the largest number of the second and third ranks. We denote them 

as II(1) and III(1). Priorities of alternatives *

iC  are stochastic values. Therefore, when 

using the ranking procedure, the criterion for meaningful distinguishability of values 
*

iC  should be used. For example, the question is how much the value *

iC  is for the 

seventh experiment (refer to: Table 2). To correctly answer this question, it is 

necessary to construct interval estimates for *

iC  and to make a t-Test of the Student 

of significant difference between the two averages. Thus, the problem of measuring 
the error of the result is current, provided that the error (error) in the initial data is 
known (estimated). Otherwise, we cannot guarantee the priority of any alternative, no 
matter what method we use. 

Having a statistical picture of the ranks assessment, the decision-making can be 
carried out not only on the statistics of alternatives having rank I, but it can also use 
the statistics of alternatives having, for example, the largest total rank. The sums of the 
first three alternatives are relevant. The total rank of such alternatives is denoted by 
I+II(1) and I+II+III(1). 

For various variants of calculations for a fixed  , the ranks of alternatives change. 

Suppose that in the N simulation experiments DM, I the rank of alternative Ak took nk 
points (times), alternative As took ns, and alternative Ap took np (nk> ns> np). It seems 
that the choice is in favor of alternative Ak. But this holds for only when the approach 
is superficial (trivial). After all, np of the first ranks of alternative Ap are obtained for 
concrete np implementations of the decision matrix. It is possible that the true values 
of the estimates of alternatives are according to the criteria from the same set. 
Therefore, it is necessary to take into account such options. The following variations 
of the ranks I(2), I(3) - alternatives having rank I and, respectively, 2 and 3, the number 
(points) of realizations in N experiments are relevant. Alternatives I+II(2), I+II(3) and 
I+II+III(2) - alternatives having I, II and III rank are also relevant, and having 
respectively 2 and 3 the number of total realizations in N experiments. 

Figures 4 and 5 show the distribution of the points (number) of realizations of 
effective alternatives (%) to the total number of N experiments having ranks I, II, III, 
and the sums I+II, I+II+III ranks. 
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Figure 4. Distribution of the point of realizations of effective alternatives 

in% to the total number of N experiments having ranks I, II, III, and the 

sums I+II, I+II+III ranks (LĆ5, ĆOPRAS, 1024 Simulation of DM Matrix, δ = 

5-25%) 

The results show that in more options, the alternative is LC5. However, for a 
significant fraction of the total number of experiments = N, the alternatives are LC3 
and LC6 (Figures 5 and 6). 

 

Figure 5. Distribution of the point of realizations of effective alternatives 

in% to the total number of N experiments having ranks I(1) and the sums I 

+ II(1), I + II + III(1) ranks. (ĆOPRAS, 1024 Simulation of DM Matrix, δ = 5-

25%) 
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Figure 6. Point and interval estimates of the integral index of alternatives 

for various rank methods and for different values of the random deviation 

of the elements of the decision matrix (δ = 5, 10, 15, 20 and 25%) 
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In blue, statistically indistinguishable values of the integral index of the 1st and 2nd 
rank are distinguished; in red, there are statistically indistinguishable values of the 
integral index of the 2nd and 3rd ranks (Figures 1, 2 and 3). 

4.3 Distribution of the overall effectiveness evaluation of alternatives for various 

MCDM methods 

Table 6 shows the distribution of the overall effectiveness evaluation of 

alternatives for various MCDM methods for   = 10% (similarly for the other  ). The 

results show a strong sensitivity of the selection procedure from the selected MCDM 
method and from the selection criterion. 

Table 6. Distribution of the overall efficiency evaluation of alternatives for 

various MĆDM methods for δ = 10% (N=1024) 

  Rank(point) 

 δ,%   I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

S
A

W
 

5 A: 5 6 2 5 5 6 1 6 2 6 
  % 99.8 78.4 60.5 50.0 33.3 0.2 0.0 39.3 8.9 32.2 

10 A: 5 6 2 5 5 6 2 6 2 6 

 % 95.0 53.5 39.3 49.8 33.3 3.2 1.7 28.4 15.8 29.1 
15 A: 5 6 2 5 5 6 2 6 2 6 

 % 79.3 39.9 35.6 47.3 32.9 11.3 5.9 25.6 17.9 26.7 

20 A: 5 6 7 5 5 6 2 6 2 6 
 % 66.7 31.3 32.4 45.0 32.6 17.0 11.4 24.1 20.6 25.7 

25 A: 5 6 7 5 5 6 2 6 2 6 

 % 59.5 28.9 33.0 42.7 31.6 19.0 14.5 24.0 21.1 25.3 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

M
O

O
R

A
 

5 A: 5 6 2 5 5 1 1 6 2 6 

   % 100.0 75.6 58.0 50.0 33.3 0.0 0.0 37.8 10.5 32.5 

10 A: 5 6 2 5 5 6 2 6 2 6 
 % 93.9 51.7 42.8 49.7 33.3 3.9 1.6 27.8 16.5 28.3 

15 A: 5 6 2 5 5 6 2 6 2 6 

 % 77.4 35.4 33.8 47.4 33.1 13.4 6.6 24.4 19.4 26.9 
20 A: 5 6 7 5 5 6 2 6 2 6 

 % 68.0 30.4 34.0 44.8 32.6 15.7 11.3 23.0 20.8 24.7 

25 A: 5 2 2 5 5 6 2 6 2 6 
 % 60.7 28.6 31.2 42.3 31.9 19.3 12.5 23.7 20.6 25.1 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

C
O

P
R

A
S

 

5 A: 5 6 2 5 2 6 2 6 2 5 

 % 98.4 56.1 57.3 50.0 33.3 1.3 0.3 28.7 21.3 33.3 
10 A: 5 6 2 5 5 6 2 6 2 6 

 % 79.3 44.2 48.4 48.0 33.3 12.1 8.6 28.2 23.4 32.1 

15 A: 5 6 2 5 5 6 2 6 2 6 
 % 69.2 35.5 38.8 46.5 33.2 16.8 13.5 26.2 24.4 29.6 

20 A: 5 2 6 5 5 6 2 2 6 6 

 % 61.2 34.7 32.8 43.3 32.9 19.0 18.0 26.3 26.0 28.3 
25 A: 5 6 2 5 5 6 2 6 2 6 

 % 49.9 30.7 31.4 38.8 32.1 25.8 20.7 28.2 25.3 27.9 

   I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

5 A: 7 5 6 5 5 5 6 7 6 7 

 % 100.0 1.5 1.4 50.0 33.3 98.5 84.6 50.0 42.3 33.3 

10 A: 7 5 6 7 7 5 6 5 6 5 

 % 99.5 9.9 8.3 50.0 33.3 89.0 72.4 49.4 36.4 33.3 
15 A: 7 5 6 7 5 5 6 5 6 7 

 % 90.4 11.4 13.1 48.6 33.0 84.3 59.7 47.9 30.9 33.0 

20 A: 5 7 6 5 5 7 6 7 6 7 
 % 79.9 13.9 21.1 46.0 32.3 74.9 49.6 44.4 27.7 31.5 

25 A: 5 7 6 5 5 7 2 7 6 7 

 % 76.3 12.5 18.4 43.8 31.7 67.7 45.1 40.1 26.9 29.8 



 Mukhametzyanov & Pamučar/Decis. Mak. Appl. Manag. Eng. 1 (2) (2018) 51-80 

74 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

V
IK

O
R

 

5 A: 2 6 5 2 2 6 1 6 5 5 

 % 98.9 98.5 99.6 50.0 33.3 1.1 0.0 49.8 0.2 33.3 

10 A: 2 6 5 2 2 6 5 6 5 6 
 % 80.8 71.7 80.7 47.6 33.3 16.1 3.1 43.9 8.5 33.3 

15 A: 2 6 5 2 6 6 5 6 5 2 

 % 61.0 53.9 54.4 40.8 32.6 25.0 13.8 39.5 18.5 32.1 
20 A: 2 6 5 6 6 6 5 2 5 2 

 % 50.8 44.6 41.8 36.5 31.2 28.4 19.1 36.0 23.5 30.6 

25 A: 2 6 5 6 6 6 5 2 5 2 
 % 44.5 39.3 35.8 34.4 30.0 29.5 22.5 33.4 25.0 29.2 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

T
O

P
S

IS
 

5 A: 5 2 6 5 2 1 1 2 6 5 

 % 100.0 99.9 97.0 50.0 33.3 0.0 0.0 50.0 0.0 33.3 
10 A: 5 2 6 5 5 1 1 2 6 2 

 % 100.0 92.6 75.9 50.0 33.3 0.0 0.0 46.3 3.5 33.2 

15 A: 5 2 6 5 5 2 6 2 6 2 
 % 97.9 80.1 60.8 50.0 33.3 2.1 0.1 41.1 8.3 32.9 

20 A: 5 2 6 5 5 2 6 2 6 2 

 % 94.1 70.7 49.8 49.7 33.3 4.7 0.9 37.7 10.1 31.8 
25 A: 5 2 6 5 5 2 6 2 6 2 

 % 89.6 61.1 44.4 49.2 33.3 7.9 2.1 34.5 11.3 31.2 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

D
’I
d
ea
l 

5 A: 5 6 7 5 5 1 1 6 7 6 
 % 100.0 66.9 63.1 50.0 33.3 0.0 0.0 33.4 16.3 33.0 

10 A: 5 6 7 5 5 6 7 6 7 6 
 % 98.2 51.2 41.0 50.0 33.3 1.3 0.4 26.2 18.2 28.5 

15 A: 5 6 7 5 5 6 7 6 7 6 

 % 89.1 38.9 36.4 49.0 33.3 6.6 2.8 22.8 16.2 25.3 
20 A: 5 6 2 5 5 6 7 6 2 6 

 % 82.8 32.5 33.5 47.9 33.2 7.0 5.7 19.8 16.4 23.6 

25 A: 5 2 2 5 5 2 6 2 6 2 
 % 71.1 28.8 31.9 44.9 32.6 11.3 10.3 20.1 18.2 24.0 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

M
A

B
A

C
 

5 A: 5 6 7 5 5 6 7 6 7 6 

 % 99.3 63.1 44.5 50.0 33.3 0.5 0.1 31.8 14.3 29.9 

10 A: 5 6 2 5 5 6 7 6 7 6 

 % 93.2 52.8 36.5 49.7 33.3 4.8 1.2 28.8 11.4 27.9 

15 A: 5 6 2 5 5 6 2 6 2 6 
 % 87.4 43.7 36.6 48.6 33.1 6.8 3.1 25.2 14.2 27.0 

20 A: 5 6 2 5 5 6 2 6 2 6 

 % 79.5 35.3 33.8 47.0 32.9 8.6 6.5 21.9 18.8 24.9 
25 A: 5 6 2 5 5 6 2 6 2 2 

 % 72.4 31.4 34.3 45.8 32.5 11.2 10.1 21.3 19.6 24.5 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

O
R

E
S

T
E

 

5 A: 5 6 2 5 5 6 2 6 2 6 
  % 67.7 47.9 36.0 46.4 32.9 24.2 6.2 36.0 12.2 31.9 

10 A: 5 6 2 5 5 6 2 6 2 6 

 % 47.2 33.3 32.0 36.9 30.5 30.6 14.8 31.9 19.3 29.2 
15 A: 6 5 2 5 5 5 2 6 2 6 

 % 33.6 31.3 27.0 31.1 28.6 30.8 23.0 30.1 23.7 28.0 

20 A: 5 5 7 5 5 6 2 6 2 6 
 % 31.9 28.6 26.7 30.3 27.7 29.8 25.5 26.6 26.0 26.6 

25 A: 6 2 7 2 2 2 5 6 5 6 

 % 28.6 27.0 26.3 27.7 26.9 28.4 27.8 27.3 27.2 26.4 
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    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

P
R

O
M

E
T

E
E

-I
I 

5 A: 5 6 2 5 5 6 1 6 2 2 

 % 99.8 56.2 56.3 50.0 33.3 0.2 0.0 28.2 21.8 33.3 

10 A: 5 2 2 5 5 6 2 6 2 2 
 % 90.9 45.6 47.9 49.4 33.3 6.4 2.6 25.5 24.1 32.1 

15 A: 5 2 2 5 5 6 2 2 6 2 

 % 74.7 39.7 40.2 47.6 33.1 14.0 10.4 25.1 24.1 30.1 
20 A: 5 2 6 5 5 6 2 2 6 6 

 % 64.5 36.1 34.7 43.6 32.7 19.3 13.4 24.8 24.6 27.9 

25 A: 5 5 2 5 5 6 2 6 2 6 
 % 54.7 29.5 34.5 42.1 31.9 22.4 17.8 25.7 23.3 27.2 

    I(1) II(1) III(1) I+II(1) I+II+III(1) I(2) I(3) I+II(2) I+II(3) I+II+III(2) 

T
o

ta
l 

5 A: 5 6 6 5 5 2 6 6 2 6 

  % 86.4 54.3 30.7 44.7 33.3 12.2 11.2 32.7 18.7 32.0 

10 A: 5 6 6 5 5 6 2 6 2 6 

 % 79.0 41.0 32.2 44.1 33.0 15.1 14.7 28.1 22.7 29.4 

15 A: 5 6 6 5 5 6 2 6 2 6 

 % 70.4 32.7 31.3 43.4 32.4 18.7 17.2 25.7 24.2 27.6 

20 A: 5 2 6 5 5 6 2 2 6 6 

 % 64.8 31.3 30.4 42.1 32.0 19.5 18.8 25.0 24.0 26.2 

25 A: 5 2 6 5 5 2 6 2 6 2 

 % 58.4 29.0 28.2 40.2 31.2 21.3 21.2 25.2 24.1 25.7 

5 Conclusion 

Despite a significant number of developed and new methods, the problem of 
multicriteria choice is still not trivial. Following the obtained results, the evaluation of 
alternatives according to the criteria and the choice of the criterion for ranking 
alternatives using different ranks have a profound effect on the final choice. 

Multiple simulation of the estimations of the decision matrix elements within a 
given error for calculating the ranks of alternatives allows one to obtain statistical 
estimates of ranks. Based on the simulations statistics, the decision-making can be 
carried out not only on the statistics of alternatives having rank 1, but also by using 
alternatives statistics having the largest total I and II rank or I, II and III ranks. This is 
especially true when the difference in rank values is not large and is distributed evenly 
among the first three ranks. 

Apparently, a quantitative analysis can be used only to narrow the set of effective 
alternatives for the final decision-making. A statistical analysis makes an estimation of 
the number options possible in which an alternative has a priority. Additional criteria 
that take into account both aggregate priorities and the availability of possible 
priorities for other alternatives with small DM variations provide additional important 
information for the decision-maker. 
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