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The process of selecting the optimal option among multiple conflicting criteria 

is a fundamental task across various disciplines and is known as multi-criteria 

decision-making (MCDM). This study seeks to enhance the Objective Pairwise 

Adjusted Ratio Analysis (OPARA) method, which is limited by its inability to 

rank alternatives when any criterion within the decision matrix assumes a 

zero value. To address this limitation, an additional transformation step is 

introduced, resulting in the development of the M-OPARA method. The 

effectiveness of the M-OPARA method has been rigorously assessed through 

diverse case studies, incorporating different sets of criterion weights derived 

from 20 scenarios, and by comparing its performance against several MCDM 

techniques, including OPARA, PIV, ROV, SAW, WASPAS, MARCOS, and FUCA. 

The findings indicate that the M-OPARA method achieves high accuracy in 

ranking alternatives and successfully mitigates the constraints of the OPARA 

method. The methodological advancements introduced by M-OPARA 

constitute a substantial improvement in the rank ability of alternatives within 

decision-making frameworks. This novel approach facilitates more precise 

and dependable decision-making in practice, equipping decision-makers with 

a more flexible and robust analytical tool.

 
1. Introduction 

Owing to their broad applicability across diverse disciplines, multi-criteria decision-making 
(MCDM) methods have recently attracted considerable scholarly attention [1-3]. New methods are 
frequently introduced, with incomplete statistics suggesting that over two hundred distinct 
approaches currently exist [4]. The application of MCDM methods across diverse fields continues to 
expand steadily [5]. Beyond the development of novel methods, the refinement of existing 
techniques to enhance their applicability has also become a focal point of academic research. Various 
strategies have been employed to modify MCDM methods for specific applications, with five 
commonly adopted approaches summarized as follows.  

One significant research direction involves extending MCDM methods into fuzzy MCDM methods 
to accommodate cases where the elements within the decision matrix are represented as fuzzy sets 
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[6-7] or when data concerning the consistency of decision-makers' opinions is insufficient [8]. Another 
approach focuses on adapting MCDM methods to address uncertain conditions within the decision 
matrix, often referred to as grey situations [9]. Additionally, some recent studies have explored the 
application of a single MCDM method for dual purposes, both ranking alternatives and determining 
criteria weights, representing a distinctive methodological advancement. A further strategy entails 
modifying the algorithms within established MCDM methods [10-11], with various examples 
documented in the literature. 

 Although five key trends in modifying MCDM methods have emerged as primary areas of 
scholarly interest, the literature presents a wide range of approaches for altering the algorithms 
within existing MCDM frameworks. This diversity highlights the challenge of identifying a universal 
modification strategy applicable to all MCDM methods. Instead, any modifications should be tailored 
to the inherent characteristics of each specific method, where feasible. However, the development 
of entirely new MCDM methods does not appear to be the dominant research trajectory. The vast 
number of existing MCDM methods may, in part, contribute to a diminished interest among 
researchers in pursuing this direction [12]. 

OPARA is a recently developed method introduced in 2024, with no published studies currently 
available in the literature. Unlike conventional normalization techniques, OPARA employs pairwise 
adjusted ratios, ensuring that the evaluation of each alternative considers not only its specific data 
but also the entire decision dataset. Within the OPARA framework, pairwise adjusted ratios play a 
critical role in determining the dominance or relative significance of each alternative [13].  However, 
a detailed analysis reveals that the pairwise adjusted ratio steps cannot be executed when the 
decision matrix contains zero elements, as the presence of a zero in the denominator renders the 
ratios undefined. This study aims to address this limitation by modifying the OPARA method, resulting 
in the development of the M-OPARA method. The proposed modification introduces an additional 
step that facilitates the application of OPARA even in cases where the decision matrix includes zero 
values.  

To validate the accuracy and reliability of the enhanced approach, extensive analyses have been 
conducted in multiple case studies with various MCDM techniques and various criterion weight sets. 
Consequently, the proposed methodology enables researchers to apply the OPARA method without 
any restrictions on zero values in the decision matrix. Besides, comparative studies have been 
conducted with various MCDM approaches having different methodological backgrounds, offering an 
overall investigation of the effects of various distributions of criterion weights on MCDM results. 

The significance of this study lies in several key contributions. (i) M-OPARA eliminates the issue of 
zero values obstructing the ranking process, ensuring a more precise and reliable evaluation of 
alternatives. (ii) This advancement introduces a more flexible and comprehensive approach to 
decision-making, making substantial contributions, particularly in complex MCDM scenarios. (iii) The 
performance of the proposed model has been rigorously assessed under varying conditions through 
a two-stage sensitivity analysis, reinforcing the robustness and reliability of decision-making 
processes. (iv) Additionally, this study addresses the inherent limitations of OPARA, extending its 
applicability and enhancing its effectiveness as a decision-support tool. (v) To demonstrate the 
efficacy of the M-OPARA method, various MCDM techniques with distinct methodological 
foundations have been employed, incorporating different weighting scenarios. A comprehensive 
analysis has also been conducted using four case studies, each featuring distinct numbers of criteria 
and alternatives, as well as varying criteria directions. (vi) Ultimately, this study is expected to be 
particularly beneficial for practitioners dealing with complex decision-making challenges in fields such 
as operations research and business decision-making, as well as for researchers and scholars in 
decision science. 
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The remainder of this paper is structured as follows. Section 2 presents examples of previous 
studies related to similar concepts. Section 3 introduces the mathematical formulations of the 
Entropy and OPARA methods and examines scenarios in which the OPARA method is unsuitable for 
ranking alternatives. Additionally, proposed modifications to the OPARA method are outlined. Section 
4 provides numerical examples to assess the effectiveness of the M-OPARA method. Finally, the 
concluding section summarizes the findings and their implications. 

 
2. Literature review 

The application of MCDM techniques involves the alteration of existing methods to more closely 
fit environments or issues. The alterations are generally employed to improve the accuracy, 
effectiveness, and applicability of the decision-making process, and numerous instances of these 
variations are well-documented within academic literature. One of the most prominent examples of 
such a variation is the conversion of MCDM techniques into fuzzy MCDM models. This approach has 
been used in numerous investigations across various disciplines. For example, the fuzzy COPRAS 
technique has helped customers in choosing hotels while booking online, according to Roy et al. [14], 
and the fuzzy VIKOR method has aided in deciding the abrasive materials for use while producing 
grinding wheels [15]. The other applications include the evaluation of the degree of equipment failure 
by fuzzy AHP and fuzzy MAIRCA methods. Boral et al. [16], the selection of last-mile delivery options 
by the fuzzy WASPAS method [17], the assessment of Indian mobile wallet service providers by the 
fuzzy EDAS method [18], the identification of variables that influence the Romanian economy by fuzzy 
SAW, fuzzy BWM, and fuzzy WASPAS methods [19], among others. 

Adapting MCDM methods to handle uncertain (grey) scenarios has led to the development of grey 
MCDM (MCDM-G) techniques. Examples include PIV-G and PSI-G for warehouse location selection 
Ulutaş et al. [20], EDAS-G for ranking European smart cities [21], SWARA-G and MOORA-G for 
evaluating logistics performance [22], and MCRAT-G and COBRA-G for supplier ranking [23]. Another 
modification involves changing normalization methods in techniques like SAW [24], CRADIS [25], etc. 
Another approach integrates ranking and weighting simultaneously. For instance, PSI was combined 
with TOPSIS and MABAC to rank Indonesian companies' financial health, with PSI-TOPSIS and PSI-
MABAC outperforming PSI alone [26]. Additionally, PSI-CoCoSo was used to rank Turkish 
transportation companies, proving more effective than standalone PSI [27].  

The fifth approach to enhancing MCDM methods entails modifying specific algorithms within 
these techniques. For instance, the EDAS method has been refined based on cumulative prospect 
theory (CPT) to incorporate psychological factors influencing decision-makers, leading to its 
application in interval-valued intuitionistic fuzzy sets (IVIFS) [28]. The WASPAS method has been 
enhanced through the integration of weights derived from objective weight calculation techniques 
[29]. Adjustments to the AHP method have involved modifying the structure of the relative criterion 
scoring matrix [30]. The CoCoSo method has been improved through the application of the Hamming 
distance measure Wang et al. [31], while the CODAS method has been refined by constructing a 
weighted fuzzy aggregation operator [32]. The VIKOR method has undergone modifications to 
facilitate the ranking of alternatives with differing numbers of criteria Anvari et al. [33] and has been 
further adapted to simultaneously consider benefit-type quantitative attributes, cost-type 
quantitative attributes, significant qualitative attributes, and less significant qualitative attributes 
[34]. Another study introduced modifications to the VIKOR method by incorporating the analysis of 
intuitionistic fuzzy sets [35]. Similarly, intuitionistic fuzzy sets have been applied to refine the MAIRCA 
method [36]. Additionally, transforming the original decision matrix into a new matrix has been 
employed to enhance the EDAS method’s capacity to manage scenarios where the initial decision 
matrix contains negative elements [37], among other refinements. 
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3. Methodology Approach 

3.1  Entropy Method 
The Entropy method provides the advantage of reducing subjective bias among decision-makers, 

thereby improving the objectivity of the evaluation process [38]. This method comprises the following 
steps [38].  

 Step 1. Normalize the decision matrix.  

vij =
xij

∑ xij
m
i=1

                                                                                                                             (1) 

vij indicates the normalized value of an alternative, whereas xij denotes the criteria. 
Step 2. Determine the entropy value for the jth criterion. 

ej = −k ∑ vij

m

i=1

In(vij) = −
1

In(m)
∑ vijIn(vij)

m

i=1

                                                                 (2) 

m indicates the number of alternatives 
Step 3.  Determine the degree of diversification dj.  

dj = 1 − ej, j ∈ [1, . . . , n]                                                                                                          (3) 

Step 4. Calculation of criteria weights.  

wj =
dj

∑ dj
n
j=1

                                                                                                                                 (4) 

3.2 OPARA Method 

To determine the ranking of alternatives using the OPARA method, the following steps should be 
followed [13].  

 Step 1. Construct a decision matrix as shown in Equation (5).  
𝑋

= [

𝑥11 𝑥12 ⋯ 𝑥𝑚1

𝑥21 𝑥22 ⋯ 𝑥𝑚2

⋯ ⋯ ⋱ ⋯
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

]                                                                                                                       (5) 
           

xij  represents the value of criterion j for alternative i. Let wj denote the weight of the j-th criterion. 
Step 2. Determine the range-based pairwise adjusted ratio (RPAR) between alternatives k and l 

using equation (6). The symbols BC and NC represent benefit criteria and cost criteria, respectively. 
 

In Equation (6), pj is the adjustment coefficient in RPAR, which is calculated according to equation (7).  
𝜌𝑗

= {

(𝛼 − 1) max(𝑥𝑖𝑗) + min(𝑥𝑖𝑗)

𝛼 ∙ max(𝑥𝑖𝑗)
𝑖𝑓

max(𝑥𝑖𝑗) − min(𝑥𝑖𝑗)

max(𝑥𝑖𝑗) + min(𝑥𝑖𝑗)
> 𝛽

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                (7)  
 

In equation (7), the values of the parameters α and β are chosen to be 5 and 0.8, respectively [13]. 
Step 3. Determine the linearly adjusted pairwise ratio (LPAR) between alternatives k and l using 

Equation (8).  

𝐿𝑃𝐴𝑅𝑘𝑙 = ∑ 𝑤𝑗 ∙ (
𝑥𝑘𝑗

𝑥𝑙𝑗
)

𝜏𝑗

𝑗∈𝐵𝐶

+ ∑ 𝑤𝑗 ∙ (
𝑥𝑙𝑗

𝑥𝑘𝑗
)

𝜏𝑗

𝑗∈𝑁𝐶

,                                                                (8)  

The value of τj in Equation (8) is decided by the user. If a criterion is linear, τj equals 1. To increase 

𝑅𝑃𝐴𝑅𝑘𝑙 = ∑ 𝑤𝑗 ∙ (
𝑥𝑘𝑗

𝑥𝑙𝑗
)

𝑝𝑗

𝑗∈𝐵𝐶

+ ∑ 𝑤𝑗 ∙ (
𝑥𝑙𝑗

𝑥𝑘𝑗
)

𝑝𝑗

𝑗∈𝑁𝐶

, 𝑘, 𝑙 ∈ {1, 2, … , 𝑛}                             (6) 
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LPAR, choose τj greater than 1; to decrease LPAR, choose τj less than 1. 
Step 4: Calculate the aggregated pairwise adjusted ratios (APARkl) using Equation (9).  

𝐴𝑃𝐴𝑅𝑘𝑙 = 𝜔 ∙ 𝑅𝑃𝐴𝑅𝑘𝑙 + (1 − 𝜔)𝐿𝑃𝐴𝑅𝑘𝑙  (9) 
In Equation (9), ω ∈ [0,1] and is typically chosen to be 0.5. 
Step 5. Compute the alternative scores using Equation (10). 

𝑆𝑖 =
1

𝑛
(∑ (

𝐴𝑃𝐴𝑅𝑖𝑙

∑ 𝐴𝑃𝐴𝑅𝑘𝑙
𝑛
𝑘=1

)

𝑛

𝑙=1

) 
                

(10) 

Step 6. The alternative with the highest score is ranked first. 
An analysis of Equations (6) and (8) shows that if a zero value is present in the decision matrix, 

these equations cannot be applied. To illustrate this, the data in Table 1 is used to demonstrate cases 
where certain RPARkl and LPAR values cannot be calculated.  Suppose there are five alternatives, A1, 
A2, A3, A4, and A5, to be ranked based on four criteria: C1-C4. C1 and C2 are benefit criteria (+), while C3 
and C4 are cost criteria (-). Table 1 provides the relevant data. The weights for criteria are represented 
as w1, w2, w3, and w4, respectively. In this example, the values of C1 for A3 and C4 for A2 are intentionally 
set to zero to highlight that Equations (6) and (8) cannot be applied in such cases. 

 
Table 1 
A Numerical Example 

Alt. Nature 
+ + - - 
C1 C2 C3 C4 

A1 12 43 3 7 
A2 18 37 5 0 
A3 0 28 11 14 
A4 32 19 6 21 
A5 26 55 8 6 

 
To confirm this observation, the following proof is presented: 
Applying Equation (6) to calculate the RPARkl  values: 
 

𝑅𝑃𝐴𝑅13 = 𝑤1 ∙ (
12

0
)

𝑝1

+ 𝑤2 ∙ (
43

28
)

𝑝2

+ 𝑤3 ∙ (
11

3
)

𝑝3

+ 𝑤4 ∙ (
14

7
)

𝑝4

 

𝑅𝑃𝐴𝑅21 = 𝑤1 ∙ (
18

12
)

𝑝1

+ 𝑤2 ∙ (
37

43
)

𝑝2

+ 𝑤3 ∙ (
3

5
)

𝑝3

+ 𝑤4 ∙ (
7

0
)

𝑝4

 

𝑅𝑃𝐴𝑅23 = 𝑤1 ∙ (
18

0
)

𝑝1

+ 𝑤2 ∙ (
37

28
)

𝑝2

+ 𝑤3 ∙ (
11

5
)

𝑝3

+ 𝑤4 ∙ (
14

0
)

𝑝4

 

𝑅𝑃𝐴𝑅24 = 𝑤1 ∙ (
18

32
)

𝑝1

+ 𝑤2 ∙ (
37

19
)

𝑝2

+ 𝑤3 ∙ (
6

5
)

𝑝3

+ 𝑤4 ∙ (
21

0
)

𝑝4

 

𝑅𝑃𝐴𝑅25 = 𝑤1 ∙ (
18

26
)

𝑝1

+ 𝑤2 ∙ (
37

35
)

𝑝2

+ 𝑤3 ∙ (
8

5
)

𝑝3

+ 𝑤4 ∙ (
6

0
)

𝑝4

 

𝑅𝑃𝐴𝑅43 = 𝑤1 ∙ (
32

0
)

𝑝1

+ 𝑤2 ∙ (
19

28
)

𝑝2

+ 𝑤3 ∙ (
11

6
)

𝑝3

+ 𝑤4 ∙ (
14

21
)

𝑝4

 

𝑅𝑃𝐴𝑅53 = 𝑤1 ∙ (
26

0
)

𝑝1

+ 𝑤2 ∙ (
55

28
)

𝑝2

+ 𝑤3 ∙ (
11

8
)

𝑝3

+ 𝑤4 ∙ (
14

6
)

𝑝4

 

 
Clearly, in this case, the values for RPAR13, RPAR21, RPAR23, RPAR24, RPAR25, RPAR43, and 

RPAR53 cannot be computed. This issue also arises when applying Equation (8) to compute the LPAR 
values. To address this limitation, an extension of the OPARA method is proposed below. 
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3.3 A Simple Modification to the OPARA Method 
A straightforward approach is proposed to modify the OPARA method as follows.  
After transforming the decision matrix according to Equation (11), a new decision matrix is 

generated as follows: 

𝑋′ = [

𝑥11
′ 𝑥12

′ ⋯ 𝑥𝑛1
′

𝑥21
′ 𝑥22

′ ⋯ 𝑥𝑛2
′

⋯ ⋯ ⋱ ⋯
𝑥𝑛1

′ 𝑥𝑛2
′ ⋯ 𝑥𝑛𝑚

′

] (12) 

In Equation (12): 

xij
′ = xij + 

max(xij)

max(xij) − min(xij)
 (11) 

In (11), max(xij) and min(xij) are the maximum and minimum values of criterion j among all 
alternatives. The modified OPARA method is named the M-OPARA method. Adding the maximum 
value, max(xij) to the numerator ensures that, in almost all cases, x'ij will be greater than zero. In 
practical MCDM problems, it is highly unlikely for the maximum value of a criterion to be zero. For 
instance, when ranking chemicals based on factors such as chemical composition, chemical 
properties, and reactivity, no chemical can exhibit a maximum value of zero for any of these criteria. 
However, certain criteria, such as toxicity or pollution potential, may have a minimum value of zero, 
indicating a completely harmless substance.  

Similarly, when evaluating construction materials based on attributes such as strength, hardness, 
and heat resistance, no material can possess a maximum value of zero for these properties. 
Nevertheless, some criteria, such as thermal conductivity or sound insulation, may have a minimum 
value of zero. This demonstrates that, in practice, it is rare for a criterion to have a maximum value 
of zero, whereas it is more common for a criterion to have a minimum value of zero.  In the example 
presented in Table 1, the application of Equations (11) and (12) produces the transformed matrix X′, 
as shown in Table 2. 

 
Table 2 
Matrix X′ 

Alt. C1 C2 C3 C4 
A1 13 44.528 4.375 8 
A2 19 38.528 6.375 1 
A3 1 29.528 12.375 15 
A4 33 20.528 7.375 22 
A5 27 56.528 9.375 7 

Once matrix X′ is constructed, the subsequent steps of the M-OPARA method follow those of the 
original OPARA method. This implies that, in comparison to the OPARA method, the M-OPARA 
method introduces only one additional step immediately after Step 1 of the original approach. 
Consequently, implementing the M-OPARA method requires the sequential application of Equations 
(5), (11), (12), (7), (6), (8), (9), and (10).  However, it is crucial to validate whether the proposed M-
OPARA method maintains accuracy. To ensure its reliability, the four case studies presented in the 
following section aim to assess and confirm the method’s accuracy. 

 
4. Performance Evaluation of the M-OPARA Method 

This study assessed the effectiveness and applicability of the M-OPARA method through empirical 
tests conducted on four distinct case studies. These case studies provide practical insights into how 
M-OPARA can be utilized in addressing real-world, complex MCDM problems. The research approach 
integrates theoretical foundations with the development of a novel model, which is subsequently 
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tested and validated through applied experiments and detailed case study analyses. The robustness 
of the proposed model was verified through a two-stage comprehensive sensitivity analysis for each 
case study. In the first stage, the results obtained from the M-OPARA method were compared with 
those derived from the OPARA, PIV, ROV, SAW, WASPAS, MARCOS, and FUCA methods. These 
methods were selected due to their frequent application, computational simplicity, and reliable 
outcomes. Notably, the OPARA method could not be applied in the first two case studies due to the 
presence of zero values in the decision matrix.  

In the second stage, the impact of variations in the weight of the most critical criterion on the 
ranking outcomes was analyzed using Equation (13) [36], leading to the development of multiple 
scenarios. 

 

𝑤𝑚𝛾 = (1 − 𝑤𝑚𝜋).
𝑤𝛾

(1 − 𝑤𝑚)
                                                                                                              (13) 

Where m represents any criterion, 𝑤𝑚𝛾 denotes the modified value of 𝑤𝑚𝜋 indicates the reduced 

value of the best criterion, 𝑤𝛾 refers to the original value of m, and 𝑤𝑚 represents the original value 

of the best criterion [36].  

 
Fig. 1. The Framework of the Proposed M-OPARA Method 

Source: Created by Researchers 

4.1 Case 1 
In this section, the data from Table 1 is utilized to apply the M-OPARA method. The criterion 

weights were determined using the Entropy technique, yielding the following values: w₁ = 0.3865, w₂ 
= 0.0896, w₃ = 0.0960, and w₄ = 0.4278.  The ranking of alternatives using the M-OPARA method was 
carried out through the following sequential steps. First, Equation (11) was applied to eliminate zero 
values in the decision matrix, producing a transformed matrix (see Table 2). Next, Equation (7) was 
used to compute the values of ρ₁, ρ₂, ρ₃, and ρ₄, which were found to be 0.806, 1, 1, and 0.809, 
respectively. Among these, only C₁ and C₄ exceeded the threshold value.  Finally, the RPAR and LPAR 
values were computed using Equations (6) and (8), with the results presented in Tables 3 and 4. In 
calculating the LPAR values, τj was chosen as τj=1 [13].  

 
Table 3 
RPAR Values 

Alt. A1 A2 A3 A4 A5 

A1 1 0.6077 4.1738 1.5086 0.8748 
A2 2.9695 1 8.2791 5.7439 2.5590 
A3 0.3995 0.2020 1 0.7925 0.3776 
A4 1.1060 0.7690 7.0117 1 0.7784 
A5 1.3319 0.7985 6.5985 1.7317 1 
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Table 4 
LPAR Values 

Alt. A1 A2 A3 A4 A5 
A1 1 0.5614 6.2339 1.6851 0.8368 
A2 4.1310 1 14.0649 9.9141 3.4691 
A3 0.3513 0.1670 1 0.8253 0.3335 
A4 1.2351 0.8215 13.2708 1 0.7631 
A5 1.4503 0.8072 11.6516 1.9832 1 

 
To compute the APAR values, Equation (9) was applied with ω = 0.5 Mehdi et al. [13] (see Table 

5). Subsequently, Equation (10) was used to determine the Si values, and the final ranking outcomes 
for the alternatives are presented in Table 6. 
 
Table 5 
APAR Values 

Alt. A1 A2 A3 A4 A5 

A1 1 0.5846 5.2038 1.5968 0.8558 
A2 3.5503 1 11.1720 7.8290 3.0140 
A3 0.3754 0.1845 1 0.8089 0.3556 
A4 1.1705 0.7953 10.1412 1 0.7708 
A5 1.3911 0.8028 9.1250 1.8575 1 

 
Table 6 
Si Values and Rankings of the Alternatives 

Alt. Si Rank 
A1 0.1428 4 
A2 0.4353 1 
A3 0.0507 5 
A4 0.1748 3 
A5 0.1964 2 

 
Due of their popularity, the PIV, ROV, SAW, WASPAS, MARCOS, and FUCA methods were used for 

comparison after evaluating the alternatives using M-OPARA. Note that the PIV, ROV, and FUCA 
methods can be used with zero decision matrix members [39-40]. PIV, ROV, and FUCA were used to 
rank matrix X alternatives, whereas M-OPARA, SAW, WASPAS, and MARCOS were used to rank matrix 
X′ alternatives. The results are summarized in Table 7. 

 
Table 7 
Ranking of Alternatives in Case 1 

 M-OPARA PIV ROV SAW WASPAS MARCOS FUCA 
Alt. S R S R S R S R S R S R S R 
A1 0.143 4 0.290 3 0.293 3 0.372 4 0.326 4 0.369 4 3.105 3 
A2 0.435 1 0.147 1 0.381 1 0.777 1 0.765 1 0.771 1 2.048 1 
A3 0.051 5 0.565 5 0.083 5 0.121 5 0.095 5 0.120 5 4.483 5 
A4 0.175 3 0.390 4 0.223 4 0.495 3 0.363 3 0.491 3 3.262 4 
A5 0.196 2 0.175 2 0.373 2 0.512 2 0.443 2 0.507 2 2.102 2 

 
To evaluate ranking algorithms' consistency, rs was determined. The coefficient is calculated using 

Equation (14), where Dᵢ is the difference in ranking of option i across different approaches [41-43]. 
Table 8 shows the analysis results. 

 

𝑆 = 1 −
6𝐷𝑖

2

m(𝑚2 − 1)
 (14) 

The S value between the M-OPARA and SAW-WASPAS-MARCOS methods is 1, indicating that 
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these methods produce identical rankings for the alternatives. This perfect correlation is also 
reflected in Table 8. Additionally, the S value between the M-OPARA and PIV-ROV-FUCA methods is 
0.9, demonstrating minimal differences in the rankings produced by these two sets of methods.  
During the initial phase of the sensitivity analysis, the M-OPARA method was compared with various 
other methods, as summarized in Table 7. In the subsequent phase, the impact of different criterion 
weights on the results was examined using the scenarios outlined in Table 9.  In the first scenario (S1), 
equal weights were assigned to all criteria (wⱼ = 0.25). The wⱼ values in the first row of Table 9 
represent the actual criterion weights. To analyze the effect of changes in the weight of the most 
significant criterion (w₄ = 0.4278) on the ranking results, Equation (13) [36] was applied, generating 
17 different scenarios (S2–S18). Finally, to prioritize specific criteria, the positions of C₂–C₄ and C₃–C₄ 
were swapped, creating two additional scenarios (S19–S20). As a result, a total of 20 scenarios were 
developed for analysis. 

 
Table 9 
Different Scenarios of Criteria Weights for Case 1 

 C1 C2 C3 C4 

wj 0.3865 0.0896 0.0960 0.4278 
S1 0.25 0.25 0.25 0.25 
S2 0.3894 0.0903 0.0967 0.4235 
S3 0.3923 0.0909 0.0974 0.4193 
S4 0.3951 0.0916 0.0981 0.4151 
S5 0.3979 0.0922 0.0988 0.4109 
S6 0.4007 0.0929 0.0995 0.4068 
S7 0.4034 0.0935 0.1002 0.4028 
S8 0.4061 0.0942 0.1009 0.3987 
S9 0.4088 0.0948 0.1015 0.3948 
S10 0.4115 0.0954 0.1022 0.3908 
S11 0.4141 0.0960 0.1029 0.3869 
S12 0.4167 0.0966 0.1035 0.3830 
S13 0.4193 0.0972 0.1042 0.3792 
S14 0.4219 0.0978 0.1048 0.3754 
S15 0.4244 0.0984 0.1054 0.3716 
S16 0.4269 0.0990 0.1060 0.3679 
S17 0.4294 0.0996 0.1067 0.3643 
S18 0.4319 0.1001 0.1073 0.3606 
S19 0.3865 0.4278 0.0960 0.0896 
S20 0.3865 0.0896 0.4278 0.0960 

 
Figure 2 presents a summary of the alternative rankings obtained using the M-OPARA method 

across different scenarios. Despite significant variations in the criterion weights, the rankings of the 
alternatives remained largely consistent across the 20 scenarios. Notably, in all scenarios, A1 
consistently ranked first, while A5 consistently ranked fifth. The rankings of the remaining alternatives 
exhibited minimal fluctuations, with only scenarios S19 and S20 displaying differences in the rankings 
of A1, A4, and A5. This consistency suggests that the M-OPARA method is capable of producing highly 
stable rankings even when criterion weights vary. Consequently, the M-OPARA method not only 
performs comparably to other MCDM methods but also demonstrates its robustness in ranking 
alternatives under varying weight distributions. In other words, the modification of the OPARA 
method has proven to be effective in this context. 
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Fig. 2. Ranking of Options in Different Scenarios for Case 1 

4.2 Case 2  
In this case, a distinct scenario was intentionally created in which the application of the original 

OPARA method is not feasible. Specifically, the values for C₁ in A₃ and C₃ in A₂ were deliberately set 
to zero, as shown in Table 10.  

Table 10 
Numerical Example for Case 2 

Alt. 

Nature 

+ + - 

C1 C2 C3 
A1 7 10 21 
A2 8 6 0 
A3 0 8 7 
A4 9 6 8 
wj 0.3550 0.270 0.6179 

 

The bottom row of Table 10 presents the criterion weights determined using the Entropy method.  
By applying Equation (7), the values of ρ₁, ρ₂, and ρ₃ were computed as 0.82, 1, and 0.81, respectively. 
The threshold value τⱼ was set to τⱼ = 1 [13]. Following the approach used in Case 1, the alternatives 
were ranked using seven different methods: M-OPARA, PIV, ROV, SAW, WASPAS, MARCOS, and FUCA. 
The ranking results are summarized in Table 11.  
 
Table 11 
Ranking of Alternatives in Case 2 

 M-OPARA PIV ROV SAW WASPAS MARCOS FUCA 

Alt. S R S R S R S R S R S R S R 
A1 0.132 3 0.602 4 0.152 4 0.339 3 0.238 3 0.337 3 3.564 4 
A2 0.589 1 0.033 1 0.467 1 0.956 1 0.955 1 0.950 1 1.423 1 
A3 0.092 4 0.417 3 0.213 3 0.135 4 0.129 4 0.135 4 2.710 3 
A4 0.187 2 0.217 2 0.369 2 0.442 2 0.348 2 0.439 2 2.303 2 

 

Additionally, rs were calculated for this case, with the results presented in Table 12. 
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Table 12 
Spearman's Rank Correlation Coefficient in Case 2 
 

PIV ROV SAW WASPAS MARCOS FUCA 

M-OPARA 0.8 0.8 1 1 1 0.8 

 
The Spearman coefficient between the M-OPARA and SAW-WASPAS-MARCOS methods was 

found to be 1, indicating complete consistency in the alternative rankings produced by these 
methods. Additionally, the rankings obtained using the M-OPARA method exhibited a strong 
agreement with those generated by the PIV and ROV methods, with an S value of 0.8. These results 
confirm that, in this case, ranking alternatives with the M-OPARA method is effectively equivalent to 
employing the aforementioned MCDM methods.  Furthermore, the stability of alternative rankings 
under varying criterion weights was examined. Table 13 presents the criterion weights across 20 
different scenarios, where wj represents the actual criterion weights, while S1 denotes equal 
weighting. Equation (13) was applied to generate 17 weight scenarios (S2–S18), in which the 
importance of the highest-priority criterion (w3 = 0.6179) was reduced by 1% in each scenario, while 
the weights of the other criteria were incrementally increased. In the final stage, two additional 
scenarios (S19–S20) were created by swapping the positions of the actual weights in the first row (C1–
C3 and C2–C3). This adjustment aimed to assess the impact of altering the position of the key criterion 
on the ranking results.  Figure 3 summarizes the rankings of the alternatives obtained using the M-
OPARA method under different weight scenarios, as presented in Table 13. 

 
Table 13 
Different Scenarios of Criteria Weights for Case 2 

 C1 C2 C3  C1 C2 C3 
wj 0.3550 0.0270 0.6179 S11 0.4099 0.0312 0.5588 
S1 0.3333 0.3333 0.3333 S12 0.4151 0.0316 0.5533 
S2 0.3608 0.0275 0.6117 S13 0.4203 0.0320 0.5477 
S3 0.3665 0.0279 0.6056 S14 0.4254 0.0324 0.5422 
S4 0.3721 0.0283 0.5996 S15 0.4304 0.0328 0.5368 
S5 0.3777 0.0288 0.5936 S16 0.4353 0.0332 0.5315 
S6 0.3832 0.0292 0.5876 S17 0.4402 0.0335 0.5261 
S7 0.3886 0.0296 0.5818 S18 0.4451 0.0339 0.5209 
S8 0.3940 0.0300 0.5759 S19 0.6179 0.0270 0.3550 
S9 0.3994 0.0304 0.5702 S20 0.3550 0.6179 0.0270 
S10 0.4047 0.0308 0.5645     

 

 
Fig. 3. Ranking of Options in Different Scenarios for Case 2 
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In 19 of the 20 established scenarios, the rankings of the alternatives remained unchanged, with 
the overall order being A2 > A4 > A1 > A3. Only in the 20th scenario did the positions of alternatives A1 
and A4 switch. This consistency highlights the stability of the rankings across different scenarios, 
reinforcing the M-OPARA method’s ability to generate reliable rankings even when the criteria 
weights are adjusted. These findings confirm that the M-OPARA method not only performs 
comparably to various MCDM methods but also maintains its stability when ranking alternatives 
under fluctuating criteria weights. This further validates the effectiveness of modifying the OPARA 
method in this context.  Through the two cases examined above, it is evident that modifying the 
OPARA method to develop the M-OPARA method has successfully addressed scenarios where the 
original OPARA method could not be applied. However, to further determine whether the 
modification is truly effective, it is necessary to compare the performance of M-OPARA with other 
MCDM methods, including the OPARA method itself. To explore this further, the following two case 
analyses will be conducted. 

4.3 Case 3 
This section presents an MCDM case study adapted from the study by Mehdi et al. [13] to apply 

the M-OPARA method and compare its results with those obtained using various MCDM methods, 
including the OPARA method (Table 14).  

  
Table 14 
Numerical Example for Case 3 [13]  

Alt. 
Nature 
+ + + - - - - 
C1 C2 C3 C4 C5 C6 C7 

A1 23 264 2.37 0.05 167 8900 8.71 
A2 20 220 2.2 0.04 171 9100 8.23 
A3 17 231 1.98 0.15 192 10800 9.91 
A4 12 210 1.73 0.2 195 12300 10.21 
A5 15 243 2 0.14 187 12600 9.34 
A6 14 222 1.89 0.13 180 13200 9.22 
A7 21 262 2.43 0.06 160 10300 8.93 
A8 20 256 2.6 0.07 163 11400 8.44 
A9 19 266 2.1 0.06 157 11200 9.04 
A10 8 218 1.94 0.11 190 13400 10.11 
wj 0.25 0.214 0.179 0.143 0.107 0.071 0.036 

The criteria weights are provided in the final row of this table. The values of ρ1-7 were calculated 
as 1, and τj was set to τj=1, as per [13].  Table 15 summarizes the alternative rankings determined 
using the M-OPARA method in this study, alongside the rankings produced by the OPARA, PIV, ROV, 
SAW, WASPAS, MARCOS, and FUCA methods.  
 
Table 15 
Rankings of Alternatives in Case 3 

 M-OPARA OPARA PIV ROV SAW WASPAS MARCOS FUCA 
Alt. S R S R S R S R S R S R S R S R 
A1 0.114 1 0.125 1 0.013 1 0.450 1 0.946 1 0.472 1 0.785 1 2.108 1 
A2 0.106 5 0.121 2 0.040 2 0.325 5 0.893 3 0.446 3 0.741 3 4.159 5 
A3 0.098 6 0.089 6 0.110 6 0.191 7 0.721 6 0.350 6 0.599 6 6.859 7 
A4 0.086 9 0.075 10 0.169 10 0.042 10 0.614 9 0.295 10 0.509 9 9.537 10 
A5 0.095 7 0.088 7 0.113 7 0.201 6 0.709 7 0.345 7 0.588 7 6.607 6 
A6 0.092 8 0.084 8 0.122 8 0.152 8 0.678 8 0.331 8 0.563 8 7.607 8 
A7 0.111 2 0.117 3 0.027 2 0.428 2 0.901 2 0.449 2 0.748 2 2.572 2 
A8 0.109 3 0.113 4 0.035 3 0.412 3 0.878 4 0.436 4 0.729 4 3.444 3 
A9 0.107 4 0.111 5 0.045 5 0.381 4 0.857 5 0.426 5 0.711 5 3.502 4 
A10 0.083 10 0.076 9 0.144 9 0.085 9 0.613 10 0.296 9 0.509 10 8.606 9 
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Additionally, the Spearman rank correlation coefficient between the M-OPARA method and the 
other methods has been computed using Eq. (14) and is presented in Table 16. 
 
Table 16 
Spearman's Rank Correlation Coefficient in Case 3 

 OPARA PIV ROV SAW WASPAS MARCOS FUCA 

M-OPARA 0.915 0.935 0.976 0.964 0.952 0.964 0.976 

 
The Spearman’s rho between the M-OPARA method and the other methods is close to 1, 

indicating a strong positive correlation. In particular, the correlation between the M-OPARA method 
and the ROV and FUCA methods is notably high, demonstrating a strong similarity in the rankings of 
alternatives. Furthermore, when compared to the original OPARA method, the Spearman coefficient 
is 0.915, which is very close to 1. This confirms that the rankings produced by the M-OPARA method 
are nearly identical to those obtained using the OPARA method.  As in the previous sections, this 
section also examines the impact of different criterion weights on the M-OPARA results across 20 
scenarios. The first scenario assumes equal weights (wj: 0.143), while the weight of the key criterion 
(w1: 0.25) is gradually reduced to generate 14 scenarios (S2–S15) using Equation 13 [36]. Scenarios S16–
S20 are created by swapping the actual criterion weights (“C1–C3, C1–C4, C1–C5, C1–C6, C1–C7”). The 
rankings of the alternatives obtained using the M-OPARA method across all scenarios are summarized 
in Figure 4. 

 

 
Fig. 4. Ranking of Options in Different Scenarios for Case 3 

 
Across all scenarios with varying criterion weights, A1 consistently holds the first position, while 

A6 remains in the eighth position. The rankings of the remaining alternatives exhibit minimal 
fluctuations across different scenarios. These findings confirm that the M-OPARA method ensures a 
high degree of stability in ranking alternatives despite changes in criterion weights.  In this regard, 
the M-OPARA method not only achieves performance comparable to other MCDM methods—
including the original OPARA method, PIV, ROV, SAW, WASPAS, MARCOS, and FUCA—but also 
demonstrates a strong capability to maintain ranking consistency across 20 different scenarios with 
varying criterion weights. In conclusion, the M-OPARA method has proven to be highly accurate in 
ranking alternatives in this case. 

4.4 Case 4 
This section applies the M-OPARA method to an MCDM case study adapted from [13], comparing 
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its results with other methods like OPARA, PIV, ROV, SAW, WASPAS, MARCOS, and FUCA. The criteria 
weights are listed in the final row of Table 17.  

 
Table 17 
Numerical Example for Case 4 [13] 

 Nature 
+ + + + + + + 

Alt. C1 C2 C3 C4 C5 C6 C7 
A1 70 50 50 40 30 40 56 
A2 70 40 50 60 40 40 54 
A3 50 40 60 50 30 50 58 
A4 80 10 70 50 50 60 67 
A5 80 30 70 40 40 50 73 
A6 100 60 60 70 80 70 79 
A7 50 30 50 60 20 40 61 
A8 40 10 60 50 10 40 55 
A9 50 10 50 40 30 60 57 
A10 40 20 60 40 30 50 68 
A11 70 40 60 60 40 40 51 
A12 70 70 50 60 50 60 78 
wj 0.2933 0.2015 0.1669 0.1499 0.0553 0.0343 0.099 

 

The values of ρ1-7 were set to 1, and τj was chosen as τj=1 [13]. Table 18 presents the alternative 
rankings from M-OPARA and the other methods, while Table 19 summarizes the rs between M-OPARA 
and the other methods, calculated using equation (14). 
 
Table 18 
Rankings of Alternatives in Case 4 

 M-OPARA OPARA PIV ROV SAW WASPAS MARCOS FUCA 

Alt. S R S R S R S R S R S R S R S R 

A1 0.0879 5 0.0881 5 0.1448 6 0.1572 8 0.6646 7 0.6609 6 0.5854 7 6.8859 8 
A2 0.0876 6 0.0877 6 0.1403 5 0.1908 6 0.6831 6 0.6794 5 0.6016 6 6.2441 6 
A3 0.0803 7 0.0803 7 0.1658 8 0.1675 7 0.6298 8 0.6217 8 0.5548 8 6.7532 7 
A4 0.0802 8 0.0799 8 0.1502 7 0.2617 4 0.6853 5 0.6295 7 0.6036 5 4.9856 4 
A5 0.0882 4 0.0883 4 0.1318 3 0.2713 3 0.7172 3 0.7013 3 0.6317 4 4.8481 3 
A6 0.1233 1 0.1248 1 0.0232 1 0.4416 1 0.9476 1 0.9462 1 0.8346 1 1.8693 1 
A7 0.0732 9 0.0729 9 0.1853 9 0.1296 9 0.5906 9 0.5767 9 0.5202 9 7.4645 9 
A8 0.0564 12 0.0554 12 0.2343 12 0.0738 11 0.4917 12 0.4477 12 0.4331 12 9.4699 12 
A9 0.0594 11 0.0584 11 0.2255 11 0.0544 12 0.5019 11 0.4696 11 0.4420 11 9.0387 11 
A10 0.0645 10 0.0638 10 0.2121 10 0.1022 10 0.5341 10 0.5125 10 0.4704 10 8.6668 10 
A11 0.0894 3 0.0896 3 0.1333 4 0.2272 5 0.7032 4 0.6980 4 0.6193 4 5.7873 5 
A12 0.1096 2 0.1108 2 0.0771 2 0.2990 2 0.8162 2 0.8108 2 0.7189 2 4.1687 2 

 
Table 19 
Spearman's Rank Correlation Coefficient in Case 4 

 OPARA PIV ROV SAW WASPAS MARCOS FUCA 

M-OPARA 1 0.9790 0.8881 0.9441 0.9790 0.9469 0.8951 

 
The rankings from the M-OPARA method closely align with those of other MCDM methods, 

showing complete similarity with the original OPARA method (Spearman coefficient of 1). The 
coefficients between M-OPARA and other methods are also high, with the lowest at 0.89.  To assess 
ranking consistency, the M-OPARA method was applied across 20 scenarios for criteria weights. The 
first scenario used equal weights (w=0.143), while 13 additional scenarios (S2-S14) were generated 
using equation 13 [36]. Six more scenarios were created by prioritizing each criterion individually (“C1-
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C2; C1-C3; C1-C4; C1-C5; C1-C6; C1-C7”), rearranging the actual weights. Figure 5 summarizes the 
alternative rankings across these scenarios. 

 
Fig 5. Ranking of Options in Different Scenarios for Case 4 

 
Despite minor changes in criteria weights across 20 scenarios, the M-OPARA method consistently 

ranked A6 1st and A10 10th, with minimal variations in other alternatives' rankings. This demonstrates 
M-OPARA's high consistency and stability in ranking alternatives across diverse scenarios, confirming 
its accuracy and reliability.  The study applied M-OPARA to four case studies. In Cases 1 and 2, where 
zero values in the decision matrix prevented the use of OPARA, M-OPARA was compared with PIV, 
ROV, SAW, WASPAS, MARCOS, and FUCA, showing high accuracy and strong correlation with these 
methods. In Cases 3 and 4, M-OPARA was compared with OPARA and other methods, revealing very 
high correlations (0.915 for Case 3 and 1 for Case 4). These results highlight M-OPARA's robust 
performance and consistency across different scenarios and methods. 

 
Table 20 
Comparison of M-OPARA and Other MCDM Methods 

Case 1 
 OPARA PIV ROV SAW WASPAS MARCOS FUCA 
M-OPARA - 0.9 0.9 1 1 1 0.9 
Case 2 
M-OPARA - 0.8 0.8 1 1 1 0.8 
Case 3 
M-OPARA 0.915 0.935 0.976 0.964 0.952 0.964 0.976 
Case 4 
M-OPARA 1 0.9790 0.8881 0.9441 0.9790 0.9469 0.8951 

 
Despite the variations observed across the four cases, the M-OPARA method exhibits a high 

degree of consistency in alternative rankings compared to other MCDM methods. Notably, in the two 
cases where the original OPARA method was applicable, the M-OPARA method effectively and 
accurately ranked the alternatives. A key strength of the M-OPARA method is its robustness in 
maintaining stable rankings even when criterion weights are altered. This stability, combined with its 
comparable performance to established MCDM methods, underscores the effectiveness of the 
proposed modification. Consequently, the development of the M-OPARA method represents a 
significant scientific contribution, enhancing the precision and applicability of the OPARA method. 
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5. Conclusion 
MCDM methodologies are extensively employed across various sectors to address complex 

decision-making challenges, enabling decision-makers to make well-informed and strategic choices 
by considering multiple criteria. This study introduces a modification to the OPARA method, aimed at 
mitigating information loss associated with normalization processes in conventional decision-making 
techniques, thereby developing an enhanced approach termed M-OPARA. To validate the proposed 
model, its performance has been examined in comparison with the original OPARA method (for Cases 
3 and 4) and seven established MCDM techniques. Furthermore, the impact of variations in criterion 
weights, tested across 20 different scenarios, has been systematically analyzed. In alignment with 
established MCDM research, where modifications are typically introduced through parameter 
adjustments, the effectiveness of the M-OPARA method has been rigorously evaluated through 
sensitivity analyses. The results indicate a high correlation between M-OPARA and other MCDM 
techniques, with the lowest observed correlation being 0.80. Specifically, the correlation coefficient 
between M-OPARA and OPARA was 1 in Case 4 and 0.92 in Case 3. Additionally, when criterion 
weights were altered, M-OPARA exhibited a strong capacity to maintain stable alternative rankings.  
These findings demonstrate that M-OPARA achieves a level of accuracy comparable to other MCDM 
methods. Moreover, in scenarios where the original OPARA method is inapplicable due to the 
presence of zero values in the decision matrix, M-OPARA provides a viable and reliable alternative for 
ranking alternatives. 

The M-OPARA method addresses key limitations of the OPARA method, particularly its inability 
to handle criteria with zero values, which compromises decision-making accuracy. By resolving this 
issue, M-OPARA ensures more reliable and efficient alternative rankings, even when zero values are 
present. This modification is significant for advancing MCDM and analysis, offering both theoretical 
and practical benefits for researchers in decision support systems, optimization, and related fields. 
Its applications are particularly valuable in engineering, logistics, healthcare, and finance, where 
accurate decision-making is critical.  However, the study highlights certain limitations. Equation (8) 
shows that if a criterion's maximum value is zero, both OPARA and M-OPARA become inapplicable. 
Future work could explore alternative mathematical formulations to address this. Additionally, 
neither method currently supports qualitative elements in decision matrices. Converting linguistic 
variables to numerical values could enable their application in such cases. Further research could also 
test M-OPARA on more complex problems and compare its performance with other MCDM methods 
like CURLI, CRADIS, or CoCoSo. 
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