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Conventional teaching methodologies often fail to accommodate the diverse 
needs and learning styles of individual students, presenting a persistent 
challenge in education. This study proposes an innovative interactive deep 
learning framework that transforms intelligent teaching practices by 
integrating recurrent neural networks (RNNs). By leveraging the temporal 
modelling capabilities of RNNs within an interactive instructional 
environment, the framework dynamically analyses sequential patterns in 
student learning and engagement.  A key contribution of this research is the 
development of a dynamic approach that utilises RNNs to model long-term 
dependencies and temporal dynamics within educational processes. This 
enables intelligent teaching systems to adapt in real time to students' 
behavioural patterns and evolving learning trajectories. Additionally, the 
incorporation of real-time feedback mechanisms allows educators to intervene 
and refine instructional strategies based on predictive insights generated by 
RNNs. This iterative and interactive process fosters a highly personalised 
learning experience, enhancing student engagement and knowledge retention. 
Empirical evaluations in real-world educational settings confirm the 
framework’s efficacy, demonstrating substantial improvements in teaching 
effectiveness and student learning outcomes. This study advances the 
development of adaptive and responsive intelligent teaching systems capable 
of delivering personalised instruction on a large scale. It makes a significant 
contribution to educational technology by introducing a transformative 
interactive deep learning framework enhanced by RNNs, ad-dressing the 
critical issue of personalisation in education while providing a scalable solution 
to improve intelligent teaching methodologies and student learning 
experiences. 

 
1. Introduction 

Effective teaching practices play a pivotal role in shaping the educational landscape, directly 
influencing student learning experiences and outcomes across various disciplines and academic 
levels. In an era characterised by rapid technological advancements and an expanding knowledge 
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base, the demand for innovative teaching methodologies has intensified [1]. These approaches must 
accommodate the diverse needs and learning styles of students. While traditional teaching methods 
pro-vide a foundational framework, they often struggle to adapt to the evolving educational 
environment [2].  A primary limitation of conventional teaching approaches is their inability to 
address the varied learning styles of students [3-4]. Learners come from diverse backgrounds, possess 
different levels of prior knowledge, and progress at varying rates. Consequently, a universal teaching 
method often fails to engage students effectively or meet their individual learning needs [5], resulting 
in suboptimal educational outcomes. Furthermore, the process of knowledge acquisition necessitates 
a more dynamic and adaptable instructional approach—one that seamlessly integrates new 
information into the curriculum while simultaneously adjusting teaching strategies in real time. 

The integration of artificial intelligence (AI) into educational settings has garnered significant 
attention due to its potential to personalise learning experiences [6]. AI-driven systems leverage 
databased insights into student behaviour, preferences, and learning trajectories to enhance 
instruction [7-9]. Among AI techniques, recurrent neural networks (RNNs) have emerged as powerful 
tools for analysing sequential data [10-13], demonstrating particular efficacy in recognising and 
modelling learning patterns in educational contexts.  Designed specifically for sequential data 
processing, RNNs differ from conventional feedforward neural networks by incorporating recurrent 
connections that enable them to retain memory of previous inputs [14-15]. This capability allows 
them to identify temporal dependencies and patterns within sequential datasets [16-18], making 
them particularly relevant in educational environments. Learning is an incremental process 
influenced by multiple factors, including prior knowledge, instructional strategies, and individual 
learning preferences [19-20]. By effectively modelling these sequential dynamics, RNNs offer a 
promising solution for enhancing adaptive and personalised teaching methodologies. 

Numerous studies have highlighted the effectiveness of RNNs in various educational applications 
[21], including natural language processing (NLP), student performance prediction, and adaptive 
learning systems. In intelligent tutoring systems (ITSs), RNNs have been employed to simulate student 
interactions by predicting learning outcomes based on sequential behavioural patterns [22]. 
Furthermore, RNNs have been utilised to analyse and generate personalised feedback, facilitating 
adaptive learning experiences tailored to individual student needs [23].  Despite these advancements, 
a significant gap remains in the literature concerning the application of RNNs to enhance intelligent 
teaching practices [24]. While RNNs have been integrated into educational contexts, their potential 
for dynamically adapting teaching strategies remains largely unexplored [25]. The majority of existing 
research has focused on developing technology-driven solutions without adequately considering how 
RNNs can contribute to improving teaching effectiveness [26]. This narrow focus limits the 
understanding of RNNs as tools for enhancing intelligent teaching methodologies and restricts the 
identification of areas for further development [27].  

This research introduces an innovative interactive deep learning framework that harnesses the 
temporal modelling capabilities of RNNs within an interactive teaching environment. The proposed 
approach aims to transform intelligent teaching practices by integrating RNNs with interactive 
teaching interfaces, creating dynamic and adaptive systems capable of responding in real time to 
student behaviours and evolving learning trajectories.  A key contribution of this study is the 
development of a dynamic system that employs RNNs to capture and analyse sequential patterns in 
student interactions and learning progressions. By effectively modelling long-term dependencies and 
temporal dynamics inherent in educational processes, the proposed framework enables intelligent 
teaching systems to adapt to individual student needs in real time, addressing the critical issue of 
personalisation in education [6].  Additionally, the framework incorporates a real-time feedback 
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system that allows educators to intervene and modify instructional strategies based on RNN-
generated predictions. This interactive and iterative process fosters a highly personalised learning 
experience, enhancing student engagement and knowledge retention [28] (Figure 1). 

 
Fig.1. Attention Weight 

Empirical evaluations conducted in real educational settings confirm the effectiveness of the 
proposed approach, demonstrating notable improvements in teaching efficacy and student learning 
outcomes [29]. By leveraging RNNs within an interactive framework, this research establishes a 
foundation for responsive and adaptive intelligent teaching systems capable of delivering 
personalised instruction on a large scale [30]. The findings of this study hold significant implications 
for educational practices, as RNNs facilitate a deeper understanding of the factors influencing student 
engagement, performance, and overall learning experiences [31]. By analysing sequential data, 
educators can design more effective and personalised teaching methodologies tailored to individual 
student needs and preferences, thereby enhancing educational outcomes across diverse learning 
environments [32]. 

This research seeks to bridge the existing gap in the literature by developing an RNN-based frame-
work to enhance intelligent teaching practices. Specifically, it utilises RNNs to analyse sequential data 
related to student interactions, learning progressions, and instructional interventions, providing 
insights into the impact of intelligent teaching strategies on student learning outcomes. The study 
aims to address the following research questions: 

a) How can RNNs be utilised to analyse sequential data and enhance intelligent teaching practices?  
b) What are the key components and features of an RNN-based framework for adapting intelligent 

teaching practices based on student engagement, performance, and overall learning experience? 
To achieve these objectives, an RNN model is established to process sequential educational data, 

encompassing student interactions, performance metrics, and instructional interventions. Existing 
datasets from online learning platforms are utilised to train and validate the model. The RNN analyses 
sequential patterns in student data and predicts learning outcomes based on intelligent teaching 
strategies.  Empirical studies are conducted in real educational environments to assess the 
effectiveness of the RNN-based framework. These studies evaluate the impact of intelligent teaching 
practices on student learning outcomes. The methodology developed in this research serves as a 
foundation for future investigations exploring the application of RNNs in educational research and 
practice [33]. 

The key contributions of this study include: 
• The development of a novel framework that leverages RNNs to enhance intelligent teaching 
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practices in educational settings.  
• The utilisation of RNNs to analyse the outcomes of intelligent teaching strategies, offering valuable 

insights into factors influencing student engagement.  
• The establishment of a methodology that can serve as a foundation for future research into the 

application of RNNs in education. 
The subsequent sections of this research article provide an in-depth exploration of the 

methodology and evaluation of the proposed framework. Section 2 presents a comprehensive 
literature review, highlighting the growing role of AI in educational technology and discussing the 
potential of RNNs in analysing sequential data. Section 3 elaborates on the proposed framework, 
describing the model structure, operational mechanisms, and integration of RNNs with real-time 
feedback systems to address the research problem. Section 4 outlines the experimental setup used 
for training and testing the RNNs with a pre-processed educational dataset. Finally, the results are 
presented, followed by a critical discussion assessing the performance of the proposed framework 
and its implications for enhancing intelligent teaching practices. 
 
2. Literature Review 

According to research on AI and education, AI is becoming more important in personalising 
learning and improving outcomes [25-26]. AI is revolutionising education by providing creative 
solutions for varied student demands and learning styles. One key area of AI application in education 
is adaptive learning systems, which dynamically adjust instructional content and pacing based on 
individual student performance and preferences. Research has demonstrated the effectiveness of 
these systems in improving student engagement and knowledge acquisition [6- 27] by providing 
personalised feedback and tailored learning pathways.  ITSs represent another critical AI application 
in education, designed to offer individualised instruction and support [28]. Studies highlight the 
benefits of ITSs in facilitating mastery learning and promoting conceptual understanding through 
personalised tutoring strategies [29]. By integrating AI techniques such as NLP and machine learning, 
ITSs adapt to students' needs, delivering real-time feedback and guidance to enhance learning 
outcomes [24-25- 30].  

Additionally, AI-powered educational platforms have been developed to support collaborative 
learning environments [31], fostering interactive engagement among students [32]. Research has 
explored the role of AI-driven collaborative learning platforms in promoting peer interaction and 
knowledge sharing [33], leading to improved learning outcomes and strengthened social cohesion 
among students [34-36].  Beyond ITSs and adaptive learning systems, AI has been employed in various 
educational applications, including content recommendation, learning analytics, and assessment 
automation. AI-driven learning analytics have proven effective in generating actionable insights into 
student performance and engagement [37], enabling educators to make data-informed instructional 
decisions [38]. Among AI methodologies, RNNs have emerged as powerful tools for analysing 
sequential data, making them particularly well-suited for educational applications. They are highly 
effective at understanding and simulating student learning patterns [39]. Unlike conventional 
feedforward neural networks, RNNs incorporate recurrent connections, allowing them to retain a 
memory of past inputs [40]. This capability enables the modelling of temporal dependencies and 
patterns in sequential data, which is essential for analysing student interactions, learning trajectories, 
and behavioural trends over time. 

Several studies have explored the application of RNNs in education, focusing on areas such as 
student performance prediction, learning behaviour analysis, and educational content 
recommendation [41]. By examining temporal dependencies in student data, RNN models can 
generate accurate pre-dictions of future performance outcomes, facilitating early intervention and 
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support strategies. Similarly, research has explored the application of RNNs in analysing learning 
behaviour patterns by processing sequential data related to student interactions in online learning 
environments. This includes examining navigation patterns and engagement metrics, allowing the 
model to identify fundamental behavioural trends and discern how students engage with learning 
materials [42].  RNNs have also been utilised in educational content recommendation systems, 
enhancing personalised learning experiences and student engagement. By analysing sequential 
patterns in student interactions with learning materials, RNNs generate tailored content 
recommendations based on in-dividual learning preferences and performance metrics [43]. This 
approach not only improves student engagement but also enhances knowledge retention in online 
learning environments.  

Intelligent teaching practices encompass various instructional interventions and pedagogical 
strategies aimed at enhancing learning outcomes through data-driven instruction, personalised 
feedback, and adaptive learning approaches [44]. Data-driven instruction leverages student 
performance data and learning analytics to inform instructional decisions, identify areas of student 
need, and tailor teaching strategies to individual learning styles. Personalised feedback [45] provides 
students with timely, targeted insights into their progress, enabling them to reflect on their learning 
and adjust their study habits. Adaptive learning strategies [46] dynamically adjust instructional 
content and pacing based on student mastery levels, fostering a more customised and responsive 
learning experience.  Empirical studies have demonstrated the effectiveness of these intelligent 
teaching practices in improving learning outcomes across diverse educational contexts. Data-driven 
instruction has been shown to significantly enhance student achievement and engagement, 
particularly among learners with varied educational needs and backgrounds [47]. Similarly, 
personalised feedback has been highlighted as a key factor in promoting student motivation, self-
regulation, and academic success [48]. 

Given these limitations, there is a pressing need for more nuanced and comprehensive 
approaches to evaluating teaching effectiveness. Advanced technologies, including AI and deep 
learning, can provide educators with deeper insights into the impact of intelligent teaching strategies, 
enabling them to make data-informed instructional decisions. Through rigorous empirical studies, 
researchers can contribute to the development of evidence-based practices that enhance teaching 
effective-ness and improve educational outcomes.  While extensive research has examined the use 
of RNNs in educational settings [49-50], a gap remains in their application to evaluating intelligent 
teaching practices. Existing studies on RNNs in education have primarily focused on student 
performance prediction, learning behaviour analysis, and content recommendation, often 
overlooking their broader implications for teaching effectiveness. One study, for instance, 
demonstrated the effectiveness of RNNs in predicting student dropout rates based on sequential 
engagement metrics [51] but did not directly assess the impact of teaching strategies on student 
outcomes. 

This gap presents an opportunity for our research to contribute to the field by developing an RNN-
based framework specifically designed to evaluate intelligent teaching practices. By leveraging RNNs 
to analyse sequential data—encompassing student interactions, learning progressions, and 
instructional interventions—this study aims to provide a more comprehensive understanding of how 
teaching strategies influence learning outcomes. This approach bridges the gap between data-driven 
analysis and instructional effectiveness, informing the design and implementation of more effective 
teaching methodologies.  Existing studies applying RNNs in education have often focused on tasks 
unrelated to teaching effectiveness, such as analysing text-based student responses in online learning 
contexts [34-35].  A synthesis of the reviewed literature establishes a strong foundation for our 
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research, which aims to assess intelligent teaching practices using RNNs within educational settings. 
Previous research has demonstrated the effectiveness of RNNs in analysing sequential data related 
to student interactions, learning patterns, and behaviour. RNNs have been shown to be highly 
proficient in predicting student performance, analysing learning behaviours, and recommending 
educational content [52-53]. 

However, the specific application of RNNs in evaluating the efficacy of intelligent teaching 
practices remains underexplored. Existing studies have primarily focused on related but distinct tasks, 
failing to directly assess the impact of teaching strategies on student outcomes. This research seeks 
to address this gap by developing an RNN-based framework specifically designed to evaluate 
intelligent teaching practices.  By analysing sequential data, our study aims to provide a deeper under-
standing of how instructional interventions, learning progressions, and student interactions are 
influenced by teaching strategies. This contribution advances the field by informing the development 
of more effective teaching methodologies, thereby enhancing educational outcomes. 

 
3. Parametric Optimisation of the Food Packaging Process 

3.1 A Set of Acceptable Solutions for the Structure of Food Packaging 
For this study, a dataset was acquired from [54], originating from a digital education platform. It 

comprises student interaction logs, performance metrics, and instructional interventions, structured 
as sequential data representing student engagement with educational resources. These resources 
include video lectures, quizzes, and discussion forums. Additionally, the dataset incorporates 
performance metrics such as quiz scores, assignment submissions, and time spent on tasks. It also 
includes instructional interventions, encompassing individualised feedback from instructors and the 
adaptive learning techniques employed by the platform.  During the data collection process, the 
online learning platform’s database was accessed, and SQL queries were executed to extract relevant 
data points. A series of pre-processing procedures were applied to clean and prepare the data for 
input into the RNN model. Duplicate entries were removed, missing values were addressed, and 
numerical features were normalised to ensure data accuracy and consistency.  Text-based data, 
including student responses to open-ended questions and discussion forum posts, underwent 
additional pre-processing. NLP techniques such as tokenisation, stemming, and lemmatisation were 
implemented to extract meaningful features and reduce dimensionality. Furthermore, categorical 
variables, including course categories and student demographics, were transformed into numerical 
representations suitable for the RNN model using either one-hot encoding or label encoding (Table 
1). Subsequently, the dataset was divided into training, validation, and test sets, with 70% allocated 
to training, 15% to validation, and 15% to testing. This ensured that the model was trained on a 
representative sample while allowing for an assessment of its generalisation performance on unseen 
data. Ultimately, the pre-processed dataset was prepared for input into the RNN model for training 
and evaluation. 

Table 1 
Dataset Characteristics and Features 
Characteristic Feature Description 

Numerical 
Timestamp 
Content ID 
User ID 

The time when the interaction occurred 
Unique identifier for the content 
Unique identifier for the user 

Categorical 
Content Type 
User Type 

Type of content (e.g., question, lecture) 
Type of user (e.g., student, teacher) 

Target Answered 
Correctly 

Binary variable indicating whether the user answered the question correctly (1) or 
incorrectly (0) 
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3.2 Gated Recurrent Units (GRUs) in RNN Model 
 In this study, GRUs are employed as the core architecture of the RNN model, as illustrated in 

Figure 2. GRUs address the limitations of traditional RNNs, particularly the vanishing gradient problem 
and the challenge of capturing long-term dependencies in sequential data.  The architecture of a GRU 
incorporates specialised gating mechanisms that regulate information flow, allowing the model to 
retain and selectively update relevant information over time. As depicted in Figure 2, a GRU consists 
of two primary gates: the update gate, which determines the proportion of the previous state to be 
preserved, and the reset gate, which controls the extent to which new input is integrated into the 
current state. These mechanisms enable GRUs to capture temporal dependencies more effectively 
than conventional RNNs, facilitating the simulation of long-term dependencies by selectively updating 
and retaining information based on the context of the input sequence. 

 
Fig.2. Recurrent Gate Cell 

 

 
Fig.3. Time Attention 

GRUs are particularly suited to this study’s RNN model, efficiently processing student interaction 
data, performance metrics, and instructional interventions. Their ability to handle sequential data 
allows for the effective modelling of the temporal progression of instructional interventions and 
student interactions with learning materials. This enables the identification of sequential patterns and 
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learning dynamics over time.   
By incorporating GRUs within the RNN model, this study aims to extract valuable insights into the 

effectiveness of intelligent teaching practices through a de-tailed analysis of sequential data. The 
gated nature of GRUs allows the model to adaptively update and retain relevant information, 
enhancing its ability to capture complex relationships between student interactions, instructional 
interventions, and learning outcomes.  Empirical studies [54-55] have demonstrated the efficacy of 
GRUs in various sequential modelling tasks, providing evidence of their capacity to process sequential 
data efficiently and capture long-term dependencies. Building on these findings, GRUs are integrated 
into the RNN framework, as shown in Figure 3, to ad-dress the specific challenges of this research. 
This enhances the model’s ability to assess and evaluate intelligent teaching practices in educational 
environments. 

3.3 Proposed Model Structure 
In the proposed framework, illustrated in Figure 4, RNNs with GRUs are employed to assess 

intelligent teaching practices. The model structure is designed to align closely with the sequential 
nature of the educational dataset, which includes student interactions, performance metrics, and 
instructional interventions. The framework leverages GRUs’ ability to retain and selectively update 
information over time, enabling a more comprehensive analysis of how instructional interventions 
influence student learning outcomes. 

 
Fig.4. Time Attention 

3.4 Model Architecture 
Figure 3 shows the input, hidden, and output layers of the RNN model with GRUs. In Figure 2, at 

each time step t, the input Xt is fed into the model, along with the previous hidden state Ht-1. The 
GRUs within the hidden layers process the input and hidden states to compute the updated hidden 
state Ht, which encapsulates the learned representations of the sequential data. 

3.4.1 Model Components and Feature Extraction 
The model components are structured to extract key features from the educational dataset and 

represent them as vectors, which are then fed into the model at each time step t. Each feature 
encapsulates distinct aspects of student interactions, performance metrics, and instructional 



246 

Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 238-255 

 
 

 

interventions. This structured representation enables the model to learn meaningful patterns, 
capturing the temporal dependencies within the data. By leveraging these feature representations, 
the RNN with GRUs effectively analyses the sequential nature of learning processes, facilitating a 
deeper understanding of the impact of intelligent teaching strategies on student outcomes. 

3.4.2 Input Layer 
The input layer functions as the gateway for the dataset, receiving extracted features represented 

as vectors (Figure 5). Each feature vector encapsulates distinct aspects of the educational data, 
including student interactions (e.g., time spent on tasks, engagement levels), performance metrics 
(e.g., quiz scores, assignment grades), and instructional interventions (e.g., personalised feedback, 
adaptive learning strategies). By structuring the input in this manner, the model effectively captures 
the temporal dependencies and sequential patterns essential for evaluating the impact of intelligent 
teaching practices on student learning outcomes. 

 
Fig.5. Encoder-Decoder Architecture 

The input layer processes these feature vectors and transmits them to the hidden layers, where 
further computations take place. These hidden layers, incorporating GRUs, capture temporal 
dependencies and sequential relationships within the data. 

Input Layer: 

,  Input and Hidden State at time step X t H t− − =        (1) 

3.4.3 Hidden Layers 
The hidden layers incorporate GRUs, which perform computations to update the hidden state 

based on the input and the previous hidden state. At each time step t, the GRUs integrate the input 
feature vectors with the prior hidden state to generate the updated hidden state. These GRUs employ 
specialised gating mechanisms, namely update and reset gates, to regulate the retention and 
modification of relevant information over time. Such mechanisms enable the model to capture 
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temporal dependencies and recognise sequential patterns within the data, thereby enhancing its 
ability to learn from the structured progression of student interactions and instructional 
interventions. 

Hidden Layers (GRUs): 
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3.4.4 Output Layer 
The output layer generates predictions by leveraging the learned representations from the hidden 

layers. It consists of a single unit for regression tasks, such as predicting student performance, and 
multiple units for classification tasks, such as categorising student engagement levels, depending on 
the specific objective. This layer consolidates the information extracted from the hidden layers and 
produces the final output based on the model’s learned representation of the input data. 

Output Layer: 
    tY Output at time step t=  

3.4 Feature Representation 
This study encodes each feature from the educational dataset as a vector, with its elements 

representing the relevant information embedded within the feature. Numerical features, such as quiz 
scores or time spent on tasks, are directly incorporated as numerical values within the vector. 
Categorical variables, including student demographics or course classifications, are typically 
represented using one-hot encoding or label encoding, where each category is assigned a unique 
numerical value or binary indicator. Additionally, textual features, such as student responses to open-
ended questions or instructional content, are processed using NLP techniques, such as word 
embeddings or bag-of-words models, to capture semantic information while reducing dimensionality. 

3.5 Feature Representation 
The research methodology involves processing input data through the RNN model with GRUs at 

each time step t, systematically analysing the educational data and updating the hidden state based 
on both the current input and the preceding hidden state. 

3.6.1 Initialisation 
At the initial time step t=0, the hidden state H0 is either initialised to zero or assigned a random 

weight, contingent upon the model architecture, and the input features Xt are introduced to the 
model to initiate the sequential processing. 

3.6.2 Sequential Processing 
The model accepts input features Xt representing the current educational data at each time step 

t and combines them with the prior hidden state Ht-1 to update Ht using the GRUs in the hidden 
layers. The update and reset gates, zt and rt, regulate information flow inside the GRUs to determine 
how much of the prior hidden state and fresh input is incorporated into the updated hidden state. 

3.6.3 Hidden State Update 
The updated hidden state Ht encapsulates the learned representations of the sequential data up 

to time step t, incorporating information from previous interactions and interventions, with the 
hidden state serving as a memory of past interactions and interventions, enabling the model to 
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capture temporal dependencies and sequential patterns in the educational data. 

3.6.4 Output Generation 
Based on the hidden layers' representations, the model outputs Yt at each time step t, which may 

indicate student success metrics in the tasks listed above. 

3.6.5 Iterative Process 
These steps are repeated for each time step t until the entire sequence of input data is processed, 

allowing the RNN with GRUs to dynamically analyse sequential educational data and generate insights 
into the effectiveness of intelligent teaching methodologies. 

 
4. Experiments 

The experimental setup for training and assessing GRUs using the pre-processed educational 
dataset is described here. The goal is to evaluate the proposed framework for evaluating intelligent 
teaching techniques in real-world education. 

4.1 Data Splitting 
Three sets were created using the pre-processed educational dataset: a training set for model 

training, a validation set for hyperparameter optimisation and model selection, and a testing set for 
GRU model performance evaluation. 

4.2 Model Training 
The GRU model was trained using the training dataset, where each input sequence represented a 

series of educational interactions and instructional interventions over time. SGD was employed to 
minimise the loss function, which was selected based on the specific task, with mean squared error 
(MSE) used for regression tasks. Hyperparameter optimisation was conducted using the validation 
set, adjusting parameters such as learning rate, batch size, and the number of hidden units to enhance 
performance and mitigate overfitting (Figure 6). 

 
Fig.6. Learning Curves of Models 

4.3 Model Testing 
After training on the training set, the model was tested on the unseen testing set for 

generalisation. The trained model processed test-set input sequences and compared its predictions 
to target values. The model's accuracy, precision, recall, F1-score, and MSE were calculated to assess 
its ability to capture student interactions and instructional interventions. Extensive hyperparameter 
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tuning experiments identified optimal values, including a learning rate of 0.001, a batch size of 32, 
and 128 hidden units. Additionally, implementing a dropout rate of 0.2 mitigated overfitting and 
improved generalisation performance. These hyperparameters were selected for their effectiveness 
in minimising the loss function and optimising predictive accuracy on the validation set. The optimised 
configuration significantly enhanced the model’s ability to analyse student interactions and 
instructional interventions, leading to improved performance on the test set. 

 
5. Results and Discussion 

The proposed framework was utilised to evaluate intelligent teaching methodologies, with the 
experimental results offering valuable insights. This section presents a critical analysis of the findings, 
focusing on both the baseline and proposed models, while assessing accuracy and overall 
performance to demonstrate the model’s ability to capture the dynamics of student interactions and 
instructional interventions.  Table 2 provides a detailed summary of the dataset’s performance. The 
mean absolute error (MAE) measures the average deviation between predicted and actual values, 
with a recorded value of 0.25 indicating a relatively low error rate. The MSE of 0.12 and root mean 
squared error (RMSE) of 0.35 provide additional insights into the error distribution. The mean ab-
solute percentage error (MAPE) evaluates forecast accuracy relative to actual values, with an 8% error 
rate indicating strong predictive performance. Additionally, the R-squared (R²) value of 0.85 suggests 
that the regression model explains 85% of the variance in the dataset, demonstrating a strong 
correlation between predicted and actual values. 

Table 2 
Regression Error Summary 
Dataset MSE RMSE MAE) R2 
Training 0.025 0.158 0.118 0.874 
Testing 0.032 0.179 0.124 0.852 

5.1 Sequential State and Hidden State 
The model's learned sequential state and hidden state representations play a crucial role in 

capturing temporal dependencies and sequential patterns within the educational dataset. By 
employing GRUs in the hidden layers, the model integrates information from previous interactions 
and up-dates its hidden state at each time step. This process allows it to maintain contextual 
awareness of the learning environment over time, facilitating adaptive predictions based on evolving 
student learning dynamics (Table 3). 

Table 3  
Sequential States vs. RMSE 
Sequential States Base Model RMSE Proposed Model RMSE 
1 0.032 0.028 
2 0.028 0.025 
3 0.025 0.022 
4 0.022 0.020 
5 0.020 0.018 
6 0.018 0.016 
7 0.017 0.015 
8 0.016 0.014 
9 0.015 0.013 
10 0.014 0.012 

 

5.2 Attention Mechanism 
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The attention mechanism incorporated into our framework enhances the model’s ability to focus 
on relevant features within the educational dataset. By dynamically assigning weights to input 
features at each time step, the mechanism enables the model to prioritise significant interactions 
while filtering out irrelevant noise. As a result, the model achieves greater accuracy in both predictive 
and classification tasks (Figure 7). 

 
Fig.7. Sequential States Prediction Accuracy 

5.3 Output and Dataset Behaviour 
The regression error summary indicates that the model achieves low MSE, RMSE, and MAE values, 

while maintaining high R² values across training, testing, and evaluation datasets. These findings 
confirm the model’s ability to capture essential patterns in student interactions and instructional 
interventions, demonstrating its robustness and generalisability. The foundational model serves as 
the baseline for the proposed model, typically represented by a basic deep learning architecture, such 
as an RNN. The selection of the baseline model is guided by its ability to capture temporal 
dependencies and sequential patterns, aligning with best practices in sequential data analysis and 
existing literature.  To evaluate the effectiveness of the proposed model, its performance is compared 
to the baseline using key metrics, including predictive accuracy of sequential states and attention 
mechanism scores. The baseline model provides a reference point for assessing the impact of 
enhancements, such as attention mechanisms and additional feature integration. 

Empirical results indicate that the proposed model outperforms the baseline in predictive 
accuracy and attention mechanism efficacy. It demonstrates superior precision in forecasting 
sequential states and effectively identifies underlying patterns through the integration of attention 
mechanisms and refined feature representations. These improvements lead to enhanced predictive 
performance, as evidenced by optimised RMSE values and learning curves. The attention mechanism 
plays a pivotal role in improving the proposed model’s performance (Figure 8). By assigning varying 
levels of importance to different input features, the mechanism enables the model to focus on critical 
interactions while adapting to the complexities of the educational data, ultimately enhancing overall 
accuracy and interpretability. 
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Fig.8. Attention Score Mechanism 

 
6. Conclusion 

This research explored the application of deep learning methodologies, specifically RNNs and 
attention mechanisms, to assess intelligent pedagogical practices within educational settings. The 
empirical analysis and experimentation confirmed the efficacy of the proposed framework in 
enhancing predictive accuracy and providing deeper insights into student interactions and 
instruction-al interventions.  After highlighting the importance of effective pedagogical strategies in 
modern education, the study examined challenges associated with traditional methods, such as their 
limited capacity to accommodate diverse learning styles and the continuous evolution of knowledge. 
To address these issues, an innovative RNN-based framework was introduced, integrating deep 
learning techniques with intelligent instructional systems in smart classrooms. This approach 
facilitated the evaluation of intelligent pedagogical practices and the assessment of their 
effectiveness. The study further examined the broader implications of these findings in improving 
educational methodologies, demonstrating the framework’s efficacy through a series of experiments 
and analyses.  In conclusion, this study contributes to the expanding body of research on deep 
learning applications in education, offering methodologies and insights for assessing intelligent 
teaching practices using RNNs and attention mechanisms. The findings have implications for 
educators, policymakers, and researchers, supporting the development of more personalised and 
effective learning experiences in the digital era. Future research could explore additional applications 
and refine method-ologies to further enhance educational practices through deep learning 
advancements.  
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