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This study investigates the utilisation of adaptive Q-learning to optimise Vehicle-

to-Vehicle (V2V) charging among electric vehicles (EVs) in dynamic smart 

tourism destinations within developing nations. V2V charging presents a viable 

solution to extend the range of EVs and improve operational efficiency by 

enabling direct energy transfer between vehicles. However, refining this process 

in volatile and high-demand sectors requires complex decision-making to 

ensure both energy efficiency and system integrity. To address these issues, this 

research introduces an advanced adaptive Q-learning approach that evaluates 

the current state and adjusts learning parameters accordingly. A bespoke 

simulation environment was developed to model a fleet of EVs capable of 

charging one another, incorporating factors such as energy demand, state of 

charge, and geographical location. The simulation environment also considers 

real-world variables, such as the vehicles' state of charge, their spatial 

positioning, and variable energy demands. The reward function favours an even 

and efficient energy flow, ensuring compatibility with the specific needs of 

smart tourism destinations. The simulation results demonstrate that the 

adaptive Q-learning algorithm significantly outperforms rule-based methods, 

achieving a 20% increase in energy efficiency, a 25% improvement in the 

average state of charge (SOC), better transfer efficiency, and enhanced system 

robustness. These findings underscore the potential of adaptive Q-learning as a 

scalable and effective solution for intelligent energy management in V2V 

charging systems. Future research should explore its integration with real-time 

traffic and vehicle movement patterns to further enhance its applicability in 

smart tourism ecosystems. 

1. Introduction 

The transition to EVs is a vital aspect of global efforts to reduce carbon emissions and promote 
sustainable transportation [1;2]. As traditional internal combustion engine vehicles are major 
contributors to greenhouse gas emissions, the shift to EVs is a key strategy for mitigating climate 
change [3]. In the context of smart tourism destinations, where advanced technologies are integrated 
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to enhance visitor experiences and promote sustainability, the adoption of EVs becomes particularly 
crucial. Smart tourism destinations are renowned for their capacity to foster environmentally 
sustainable practices and employ technological innovations to reduce the ecological footprint of 
tourism activities [4]. However, the growth of EVs introduces new challenges, particularly in high-
tourism areas where energy and infrastructure provision are under pressure. While the EV ecosystem 
will require traditional charging infrastructure, the existing systems may not meet the immediate 
energy supply demands, especially in popular or densely visited tourist spots. These challenges have 
driven research into innovative solutions, such as V2V charging, where vehicles can charge each other 
through direct power transfer. Given the limited availability of charging stations, V2V charging offers 
an opportunity to increase charging access by enabling vehicles to connect and share energy. It 
represents a flexible and scalable solution for enhancing existing charging networks, alleviating 
pressure on current systems, and improving the overall efficiency of EV coverage [5]. 

Implementing V2V charging involves complex decision-making processes related to energy 
transfer between vehicles, efficient charging, charge levels, travel routes, and real-time traffic 
conditions at user hotspots. Due to the highly dynamic nature of these workflows, traditional rule-
based management techniques are often employed, but they typically perform poorly in energy 
distribution, contributing to increased inefficiency [1;2;6]. Reinforcement Learning, particularly 
adaptive Q-learning, shows significant potential in overcoming these limitations. The key distinction 
here is that while rule-based approaches are static and attractive, adaptive Q-learning algorithms are 
capable of continuous learning in dynamic environments, enabling the timely management of energy 
distribution among EVs. This adaptability makes it especially suitable for smart tourism destinations, 
where energy demands and EV travel patterns are highly variable [7-9]. Furthermore, adaptive Q-
learning can enhance the efficiency and flexibility of V2V charging, promoting sustainable tourism and 
extending the use of EVs.  

Smart tourism destinations, supported by advanced technologies, are at the forefront of this 
transformation, aiming to improve visitor experiences while reducing environmental impact [1;2;8]. 
These destinations are gradually integrating EV infrastructure as an eco-friendly transport solution, 
contributing to carbon reduction and climate change mitigation [4]. In the context of smart tourism, 
EVs are adopted for several reasons [1;2]. First, the environmental benefits are highly appealing, 
particularly for areas aiming to become more sustainable. Replacing traditional internal combustion 
engine vehicles with EVs makes a smart tourism destination cleaner, improving air quality and 
environmental conditions for both residents and tourists [3]. Additionally, the quiet operation of EVs 
contributes to a more pleasant experience in tourist areas [1-3]. 

A further motivating factor for the adoption of EVs in smart tourism is the growing demand from 
consumers for eco-friendly travel options. Environmental concerns are increasingly influencing 
tourists’ decisions, leading them to choose travel alternatives that prioritise green modes of transport 
whenever possible [1-3]. Consequently, numerous smart tourism cities are actively working to 
integrate EVs into their infrastructure, aiming to attract this environmentally conscious demographic 
by establishing EV charging stations and ensuring that their needs are adequately addressed [10]. 
Moreover, as new EV technologies continue to emerge, they are facilitating the seamless integration 
of these vehicles into smart tourism destinations. Advances such as extended battery life, rapid 
charging, and vehicle-to-grid capabilities are making EVs more versatile and practical. These 
technological improvements not only meet the operational demands of tourism destinations but also 
align with the broader goal of leveraging advanced technologies to enhance sustainability and 
efficiency in tourism [4;11].  While smart tourism is reshaping how cities approach the adoption of 
new technologies and strategies, many cities view the integration of EVs as essential for achieving 
sustainability and addressing emerging challenges related to intercity transportation. The 
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combination of technological progress, increasing consumer demand, and growing environmental 
awareness positions EVs at the centre of the future of smart tourism. This integration facilitates a 
‘cradle-to-grave’ approach to mitigating the negative environmental impacts of tourism, while 
simultaneously enriching the overall tourism experience [2-5]. 

1.2 Statement of the Problem 
Despite its potential, optimising V2V charging presents substantial challenges, especially in 

dynamic environments like smart tourism destinations. Traditional rule-based energy distribution 
methods are ill-equipped to meet the distinct needs of tourist regions, where demands fluctuate, and 
vehicle ownership patterns are diverse. A smart tourism destination enhances the visitor experience 
by incorporating advanced technologies, data, and modern solutions, all while ensuring minimal 
environmental impact. In these dynamic destinations, inefficient energy distribution among EVs can 
result in suboptimal charging outcomes, compromising the system's reliability. The key issues include: 

1. Balancing charging demand during peak tourism seasons, characterised by high visitor numbers 
that overwhelm existing charging stations, can lead to user dissatisfaction.  

2. Ensuring equitable access to EV charging infrastructure, particularly in areas where the network 
is insufficient, exacerbates competition for limited resources.  

3. Many tourists in these destinations seek to align with sustainable tourism principles, aiming to 
reduce energy waste and optimise the use of renewable energy sources.  

4. The dynamic nature of EV states, including fluctuating battery levels, varying energy 
requirements, and unpredictable driving patterns, complicates the management of V2V charging. 
Consequently, this context necessitates adaptive approaches to effectively address these challenges. 

The adaptive Q-learning framework shifts the focus from merely minimising energy consumption 
to optimising energy use. By employing this approach, the system should be able to:  

• Ensure that all users' EVs are adequately charged, preventing stranding events even during high-
demand periods.  

• Distribute surplus energy equitably, enabling vehicles to reliably reach their next charging points.  
• Align charging operations with the availability of renewable energy, thereby stabilising power 

demand and minimising environmental impact.  
This study seeks to bridge the gap between theoretical advancements in adaptive Q-learning and 

their practical implementation in smart tourism settings. By addressing the specific challenges faced 
by tourist regions, the framework aims to support the development of more robust, sustainable, and 
equitable V2V charging solutions. 

1.3 Research Gap 
The adoption of EVs, both globally and locally, particularly within the tourism industry, has made 

significant strides. However, the challenges and opportunities associated with V2V charging in smart 
tourism destinations remain insufficiently explored [1;2;5]. Current research on EV infrastructure and 
energy management in tourism predominantly focuses on traditional solutions, such as the 
deployment of static charging stations and the integration of renewable energy sources[3;11;12]. 
While these methods are effective for conventional energy needs, they are inadequate in addressing 
the dynamic and unpredictable energy demands typical of smart tourism destinations.  Existing 
studies often rely on static energy distribution models that lack the necessary flexibility and 
adaptability to respond to real-time fluctuations in energy demand and supply [3;5;6]. This paper 
seeks to address these gaps by examining how adaptive Q-learning can:  

• Provide responsive energy distribution during peak periods.  
• Ensure fair energy allocation in destinations with limited infrastructure.  
• Align with ecotourism principles to minimise energy waste and optimise renewable resource 
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utilisation.  
By addressing these research gaps, this paper contributes to the development of more effective 

and sustainable energy management strategies tailored to the specific needs of smart tourism 
destinations, enhancing fairness, adaptability, and environmental preservation [1;2;5]. 

1.4 Challenges 
1.4.1 System Architecture and Workflow 

Adaptive Q-learning in V2V Charging: System Architecture  
(1) System Components  
EVs: Onboard units for real-time monitoring, decision-making, and V2V charging, enabling 

dynamic energy exchange between vehicles.  
Charging Stations: Fixed infrastructure with modular interfaces, designed for upgrades and 

capable of supporting auxiliary energy redistribution to optimise the charging network.  
Adaptive Q-learning Framework: A hybrid system capable of both centralised and decentralised 

V2V charging, based on Q-value updates, allowing for flexible energy management strategies.  
Monitored Variables: These include State of Charge (SOC), battery capacity, energy demand, 

geographic location, and proximity to other vehicles or charging stations, all of which influence 
charging decisions.  

(2) Communication Protocols  
V2V Protocols: Advanced standards such as IEEE 802.11p or C-V2X enable real-time data exchange, 

facilitating communication between vehicles. Additionally, protocols like ISO 15118 or MQTT support 
seamless interactions between vehicles and charging infrastructure, ensuring efficient data flow and 
coordination. 

1.4.2 Real-Time Processing and Computational Complexity 
• State of Charge (SOC): Accurate monitoring of charge levels and charging rates, ensuring that 

vehicles are sufficiently charged while optimising energy distribution.  
• Geographic Location: Dynamic routing and prioritisation based on GPS data, enabling effective 

decision-making in real-time.  
• Proximity to Charging Stations: Real-time calculation to optimise energy transfers, ensuring that 

vehicles are directed towards available charging infrastructure when needed.  
• High-demand areas, such as tourism hotspots, present scalability challenges due to the dense 

concentration of EV fleets. Optimised algorithms and scalable architectures are essential to prevent 
system bottlenecks and ensure smooth operation. 

1.4.3 Framework for Energy Distribution 

• Dynamic Demand: Fluctuations in energy demand caused by seasonal or daily variations in 
tourist behaviours, requiring adaptive energy management strategies.  

• Incentivised Transfers: Vehicles with surplus energy are directed to parking lots for V2V 
transfers, incentivised through reduced parking fees, encouraging efficient energy redistribution.  

• Predictive Modelling: Utilising ARIMA to forecast energy needs during peak times, enabling 
proactive decision-making and optimisation of energy flow. 

1.5 Related Studies 
Recent studies highlight the potential of machine learning in EV energy management:  
• Energy Optimization with Reinforcement Learning: Research demonstrates Q-learning’s ability 

to enhance energy redistribution efficiency [7;8].  
• V2V Charging Systems: Studies investigate direct V2V energy transfers, focusing on advanced 
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decision-making algorithms and robust communication networks [7;11].  
• Data Security in V2V Systems: Emerging research underscores privacy-preserving techniques 

and secure communication protocols necessary for real-world deployment [8;9].  
These studies provide a foundation for applying adaptive Q-learning to dynamic, fleet-level energy 

optimisation. 

1.6 Objective 
This study aims to develop and evaluate adaptive algorithms for optimising V2V charging in 

tourism destinations. The research objectives include improving real-time energy redistribution to 
meet fluctuating demand during peak periods, ensuring equitable energy distribution in destinations 
with limited infrastructure, and supporting sustainability goals by minimising energy waste and 
maximising the utilisation of renewable energy in ecotourism. 

1.7 Contribution 
This paper aims to develop and address specific aspects of V2V charging within innovative tourism 

regions, with the following main contributions:  
• V2V Charging Framework: This framework incorporates the complexity of V2V charging 

between EVs, detailing energy transfer dynamics and vehicle state representation during peak times 
in destination hotspots.  

• Innovative Adaptive Q-learning Algorithm: This algorithm dynamically adjusts its learning 
parameters in response to changing conditions, ensuring efficient and equitable energy distribution 
in decentralised and unpredictable scenarios commonly found in smart tourism destinations [1;2].  

• Simulation and Evaluation: Extensive simulations were conducted to assess the performance of 
the adaptive Q-learning algorithm.  

• Future Direction: The findings highlight future research opportunities, including the integration 
of renewable energy sources and exploration of decentralised decision-making models. The proposed 
approach to V2V charging optimisation, enabled by adaptive Q-learning, represents a significant 
advancement in intelligent transportation systems.  

By addressing the unique challenges of smart tourism regions, this work contributes to the 
development of sustainable and efficient EV charging strategies. Furthermore, the results offer 
actionable recommendations for establishing robust and flexible charging infrastructure that can 
adapt to real-world complexities [6;13]. 

 
2. Literature Reviews 

2.1 Electric Vehicles for Smart Tourism Destination 

"Smart tourism" refers to the integration of technical communications and data systems that assist 
tourists in enhancing their experience and improving tourism efficiency. It also encompasses devices 
and services that support the tourism industry in managing various operational tasks. Essentially, 
"smart" involves the use of mobile applications, big data, the Internet of Things (IoT), artificial 
intelligence, smart infrastructure, and sustainability practices to optimise traditional tourism 
methods. The primary goal of smart tourism is to maximise traveller satisfaction while ensuring the 
responsible use of resources within a given destination [1-3].  Introducing EVs in smart tourism 
destinations plays a vital role in promoting environmentally sustainable tourism practices. As the 
tourism sector shifts towards sustainability, the significance of EVs within the transportation 
framework of smart tourism destinations is becoming increasingly evident. These destinations 
leverage technology to enhance visitor experiences while mitigating negative environmental impacts. 
In this context, EVs are emerging as key sustainable mobility solutions for these locations [4] .  

Environmental Benefits: One of the main advantages of EVs in smart tourism destinations is their 
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potential to significantly reduce greenhouse gas emissions. Traditional internal combustion engine-
powered vehicles contribute to air pollution and carbon emissions, particularly in high-traffic tourist 
areas. The transition to EVs helps reduce the environmental footprint of smart tourism destinations, 
improving air quality and fostering a healthier environment for both locals and tourists [3]. This shift 
not only benefits the environment but also attracts eco-conscious travellers who seek sustainable 
destinations [7].  

Enhancing Visitor Experience: In addition to environmental benefits, EVs enhance the overall 
visitor experience in smart tourism destinations. The quiet operation of EVs contributes to a calm, 
serene atmosphere, which is particularly appreciated in destinations with a focus on nature or cultural 
heritage. Furthermore, advanced driver-assistance systems (ADAS) in EVs ensure that tourists can 
travel securely and comfortably [10]. These attributes align with the goals of smart tourism, which 
aims to enhance the quality of tourism services through the efficient application of technology [10].  

Infrastructure and Accessibility: To encourage the use of EVs, smart tourism destinations must 
develop the necessary infrastructure, such as charging stations and EV-friendly transportation 
systems. Many destinations are working to expand their EV charging networks to ensure tourists have 
access to charging facilities while on the move. This infrastructure is especially important in remote 
or rural areas where traditional fuel stations may be scarce [11]. Additionally, visitors can access 
sustainable transportation options, such as EVs and shuttle services, at these tourist sites [5].  

Economic and Marketing Opportunities: The integration of EVs into smart tourism destinations 
also presents economic and marketing opportunities. In a highly competitive tourism market, 
destinations that focus on EV adoption will differentiate themselves and attract eco-friendly 
customers willing to support businesses aligned with their sustainability values. Moreover, developing 
EV infrastructure and services can boost the local economy through job creation and attracting 
investment in green economy initiatives [11].  

Challenges of Integration: Despite the benefits, integrating EVs into smart tourism destinations 
presents challenges. These include significant capital costs for developing the necessary 
infrastructure, the complexities of integrating EVs into the broader transportation network and 
managing energy consumption during peak seasons. Additionally, there is a lack of awareness, 
particularly in terms of promoting EVs to tourists, local populations, and stakeholders, regarding their 
role in advancing sustainable tourism [5].  

Nevertheless, as smart tourism destinations evolve, the adoption of EVs will become a crucial 
component of sustainability efforts. EVs help reduce environmental impacts, improve visitor 
experiences, and contribute to sustainable economic growth, making them a vital part of the broader 
smart tourism vision. As such, the development of EV infrastructure will be essential in ensuring that 
these destinations continue to attract tourists during their growth and transition. Literature 
consistently supports the idea that EVs will play an important role in maintaining the environmental 
integrity of these destinations [9;10]. 

2.2 Trends in Electric Vehicle Adoption Smart Tourism: Thailand Case Study 
Thailand has become an increasingly popular destination for tourists, renowned for its rich cultural 

and tourist resources. As part of its efforts to promote eco-friendly travel, EVs are becoming more 
prominent in the country's tourism sector [2]. Tourists need not worry about the availability of EVs, as 
the Thai government has implemented policies to increase their use in major tourist cities, including 
Bangkok, Phuket, and Chiang Mai [8]. These initiatives aim to reduce the carbon footprint of the 
tourism sector while positioning Thailand as a leader in sustainable tourism in Southeast Asia.  
Historically, EVs have struggled to gain traction due to a lack of supporting infrastructure [1;8]. 
However, this issue is being addressed through rapid construction of EV charging points, particularly 
in popular tourist destinations. This development makes it easier for tourists to use EVs without the 
concern of finding charging stations, thus enhancing the desirability of EVs as a transportation option 
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[11]. Additionally, the Thai government has introduced various policy incentives, such as tax relief and 
subsidies, for both tourists and businesses involved in the tourism sector.  

The growing awareness of environmental issues among tourists has contributed to the increasing 
use of EVs. Many tourists are now seeking sustainable travel options, which has led local businesses 
and tour operators to incorporate EVs into their services. For example, several hotels and resorts in 
tourist hotspots have included electric vehicle rental and shuttle services in their sustainability policies 
[14]. This shift helps reduce the environmental impact of tourism while positioning Thailand as a 
modern and responsible travel destination. Moreover, the introduction of EVs into Thailand's tourism 
sector aligns with the country's broader economic and environmental goals. Thailand plans to become 
a hub for electric mobility, with initiatives to increase domestic EV manufacturing. This move aims to 
reduce the nation's reliance on imported vehicles, promote clean energy, and create job opportunities 
[8]. By fostering a local EV industry, Thailand ensures that the integration of EVs into tourism is both 
environmentally sustainable and economically beneficial.  Given the ongoing advocacy for electric 
vehicles, the use of EVs in Thailand's tourism industry is expected to grow significantly. Continued 
infrastructure investment, government support, and rising consumer demand indicate that EVs will 
play an increasingly central role in the tourism sector. This shift towards EVs represents a critical step 
in Thailand’s efforts to maintain sustainability while enhancing the quality and appeal of its tourism 
products [8;12]. 

2.3 Vehicle-to-Vehicle Charging in Electric Vehicles 
V2V charging is an innovative concept that allows individual EVs to exchange energy directly, 

offering a solution to alleviate the pressure on charging stations, particularly in regions with limited 
infrastructure [9;10]. Several approaches to V2V charging have been proposed in recent years. One 
such approach is a decentralized V2V charging system that optimizes energy distribution via a peer-
to-peer network [15].  The authors in [5] introduced a cooperative V2V charging framework that 
utilizes real-time vehicle data to enhance energy efficiency. The advantages of V2V charging include 
better utilization of available energy resources, increased range flexibility for EVs, and reduced 
reliance on stationary charging stations [6;16]. However, V2V charging also presents a number of 
challenges. These include the coordination of multiple vehicles with varying energy demands and 
ensuring the efficient transfer of energy without compromising battery health. Existing strategies 
often rely on rule-based or heuristic approaches, which may fall short in managing the complexity and 
dynamic nature of V2V charging scenarios [7;15;16]. 

2.4 V2V Charging in EVs for Smart Tourism 
V2V charging represents an emerging technology that holds significant potential for enhancing the 

sustainability and operational feasibility of EVs within smart tourism destinations. As the integration 
of electric mobility into tourism accelerates, driven by broader sustainability objectives, V2V charging 
technology offers a promising solution to address key challenges related to EV infrastructure and 
energy management in these contexts [17].  

Overcoming Infrastructure Limitations: A Strategic Approach to V2V Charging – V2V charging, as a 
mobile power-sharing system, proves particularly effective in mitigating infrastructural challenges in 
tourist destinations, especially in remote or densely populated areas where charging stations may be 
scarce or overburdened. The core concept lies in the shared energy distribution among vehicles, 
transforming the fleet into a collective energy network. This flexibility is particularly beneficial in smart 
tourism destinations, where the locations tourists wish to visit and the times they seek to visit them 
may not align with the availability of fixed charging stations [5]. By enabling vehicles to charge one 
another, V2V technology reduces the reliance on static infrastructure, thus adapting to the dynamic 
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energy needs of EVs in these settings.  
Improving Operational Flexibility: V2V charging further enhances the operational flexibility of 

electric vehicles within smart tourism destinations. In scenarios where a vehicle's battery is depleted 
and a charging station is not accessible, another nearby electric vehicle can provide the necessary 
charge. This functionality ensures that EVs can maintain their operations even in the absence of 
traditional charging infrastructure. 

(1) Improving Operational Flexibility: V2V charging significantly enhances the operational 
flexibility of EVs in smart tourism destinations. If a vehicle's battery becomes critically low and a 
charging station is unavailable, a nearby EV can recharge it as a mobile energy source. In this context, 
the term 'nearby' refers to the distance between two EVs within the effective range of the V2V 
charging cable, with the range being supported by at least one of the vehicles. Ideally, this includes 
vehicles parked side by side or head-to-head, as well as those parked in adjacent spaces.  

(2) V2V Charging Cable Specifications: For practical implementation, it is essential that EVs 
participating in V2V energy transfer, whether as donors or receivers, are equipped with a standardized 
V2V charging cable. These cables are expected to meet the following specifications:  

(3) Length: A V2V charging cable would typically be between 2 and 5 meters in length, 
accommodating common parking configurations. This ensures sufficient flexibility for energy transfer, 
even when vehicles are not directly adjacent.  

(4) Connectors: The cables should conform to strict regulations, such as the Combined Charging 
System (CCS) or CHAdeMO connectors, to support devices from different EV manufacturers.  

(5) Power Rating: The cables should be capable of transferring power from 5 kW to 10 kW. This 
power range facilitates both the speed of charging and the protection of the system. It enables 
significant energy transfers within limited time frames, which is particularly useful in emergency or 
supplementary charging scenarios.  

(6) Deployment in Smart Tourism Destinations: In a smart tourism destination, the practical 
application of V2V charging would focus on scenarios such as parking lots, roadside assistance, or 
congested urban areas where access to traditional charging infrastructure is limited. For instance, if a 
vehicle parked at a tourist attraction runs low on battery, an adjacent EV equipped with a V2V charging 
cable can quickly provide the necessary charge.  

To encourage widespread adoption, it is proposed that all EVs in these regions be equipped with 
V2V-ready cables as part of their standard equipment. Regulatory authorities could mandate these 
requirements to promote seamless energy sharing, thus enhancing the resilience and reliability of EV 
networks in tourism-heavy regions.  By addressing these technical and practical considerations, V2V 
charging becomes a viable, user-friendly solution to bridge gaps in traditional charging infrastructure, 
thereby improving operational flexibility for EV users. This, in turn, extends the operational range of 
EVs, ensuring their reliable performance and increasing the reliability of electric mobility solutions 
within tourism contexts. Such flexibility is particularly beneficial in tourist areas with unpredictable 
routes and schedules, where the ability to adapt to changing circumstances is essential [11;17]. 

Distributing Energy across the Fleet: Implementing V2V charging introduces an additional layer of 
enhancement, extending deployment into smart tourism destinations that embrace environmentally 
sustainable practices. By utilising advanced techniques such as adaptive Q-learning, the V2V charging 
system integrates artificial intelligence to optimise energy distribution across the fleet. These 
algorithms can dynamically re-prioritise charging orders based on factors such as the SOC, the distance 
to the next charging station, and the overall load on the network [6]. This particular system improves 
both energy targeting and enhances the sustainability of tourism through the integration of EV 
operations [12].  

Promoting Goals of Sustainability: The adoption of V2V charging aligns with the sustainability goals 
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of smart tourism destinations. Enhanced synergies between energy resources and infrastructure, 
coupled with a reduction in operational costs associated with traditional charging facilities, contribute 
to a reduction in carbon emissions. Consequently, V2V charging promotes the ecological sustainability 
of the tourism sector [4;18]. Additionally, this technology strengthens tourism infrastructure, making 
it more resilient and enabling destinations to deliver high-quality services that exceed tourist 
expectations, even during energy shortages or limited support availability.  

Barriers and Future Directions: Despite its potential, V2V charging in smart tourism destinations 
presents significant challenges to widespread adoption. Facilitating energy exchanges between 
vehicles necessitates the development of more sophisticated communication and coordination 
systems to ensure compatibility and agreement between various EV outputs. Furthermore, issues 
related to information security and privacy must be addressed [5]. The effectiveness of V2V charging 
will also be enhanced by the concentration of EV owners within specific regions, who are more likely 
to engage in energy-sharing initiatives [18]. 

2.4 Q-learning and Adaptive Q-learning 

2.4.1 Q-learning  
Q-learning, a reinforcement learning algorithm that operates without requiring a model, seeks to 

determine the optimal way to select actions within an environment. It functions by updating Q-values 
based on the expected outcome of taking a particular action in a given state [19]. The simplicity of 
implementation and the favourable results of many Q-learning algorithms have led to their 
widespread use. However, these algorithms encounter challenges in non-stationary environments, 
where the optimal strategy is subject to frequent changes. Specifically, Q-learning does not rely on 
information about the internal dynamics of the environment, making it advantageous in situations 
where the environment is complex or poorly defined [20]. The focus of Q-learning is on policy 
development through a Q-value function, which learns to predict the expected cumulative reward 
from actions, thereby guiding the implementation of an optimal policy in subsequent states [21]. Q-
learning can be understood as an iterative process wherein Q-values are continually reviewed and 
adjusted in response to the rewards received after each interaction with the environment. This 
process is mathematically expressed by the following equation: 

Q(s,a)←Q(s,a)+α[r+γmaxa′Q(s′,a′)−Q(s,a)]                                                   (1) 
Where: 
Q(s,a): The Q-value for taking action  in a state s. 
α: The learning rate, determining how much new information overrides old information. 
r: The reward received after taking an action.   
γ: The discount factor that balances immediate and future rewards.  
[max]_a'Q(s′,a′): The maximum expected future rewards given the next state’s’.  

2.4.2 Adaptive Q-learning  
Adaptive Q-learning builds upon traditional Q-learning algorithms by introducing learning and 

exploration rates as variable factors. This variability enhances the algorithm's performance in non-
stationary environments, allowing it to continuously update the learning process information [22;23]. 
A widely used method in this context is the dynamic adjustment of the learning rate (α), which 
considers fluctuations in reward changes. For example, during volatile periods, the learning rate can 
be increased to facilitate quick adaptation to new conditions. Conversely, lower learning rates can be 
applied during more stable periods to reduce the risk of the agent over-correcting due to noise and 
fluctuations [24].  An additional improvement in adaptive Q-learning is the incorporation of 
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exploration-exploitation strategies, which become more effective over time. In traditional Q-learning, 
an agent typically follows a fixed ε-greedy strategy, where it explores with probability ε while 
predominantly exploiting the best-known action. In contrast, adaptive Q-learning allows ε to be 
adjusted based on the agent's confidence in the Q-values or the level of variation in the environment. 
This ensures that the agent only explores uncertain or changing conditions, preventing excessive 
exploitation of the environment [25].  

Adaptive Q-learning is particularly suitable for dynamic environments, such as smart tourism 
destinations, where vehicle movement, energy usage, and traffic patterns can fluctuate rapidly. As Q-
learning can detect evolving target policies and adjust accordingly, the agent is able to adapt to and 
address these rapid changes. Therefore, Q-learning, along with adaptations like adaptive Q-learning, 
is highly effective in applications such as V2V charging [1;2;6].  While Q-learning and adaptive Q-
learning both serve as robust frameworks for optimal policy learning in complex environments, they 
differ in their applicability. Q-learning is better suited for relatively static environments, where a single 
optimal policy can be employed over a given period. In contrast, adaptive Q-learning uses controls 
that allow the policy to evolve dynamically in response to changing environmental conditions. This 
flexibility is essential for real-world applications like smart tourism or V2V charging, where 
environmental factors are highly dynamic and subject to rapid change [26]. 

2.5 Applications of Q-learning in Electric Vehicles 

2.5.1 Energy Management and Efficiency Optimization  
EVs often operate under varying conditions, such as differences in traffic density, road inclinations, 

and driving behaviours. Q-learning algorithms can provide valuable insights into efficient energy usage 
across these different contexts [27;28]. For instance, Q-learning can assist in maintaining an optimal 
balance between the amount of battery used and the energy recaptured through regenerative braking 
[5;6]. In this scenario, Q-learning focuses on adjusting the vehicle's control parameters to minimize 
energy consumption during the journey while maximizing the distance travelled. This approach is 
particularly beneficial in situations where energy resources are limited, such as during long trips or in 
areas with few charging stations. By learning from past experiences and adapting to new conditions, 
Q-learning enables EVs to operate almost optimally, even when navigating challenging or unfamiliar 
operating environments. This adaptability helps ensure that the vehicle performs efficiently despite 
fluctuating conditions [29]. 

2.5.2 Adaptive Cruise Control (ACC) in EVs  
Q-learning has also been applied to enhance adaptive cruise control (ACC) systems in EVs, 

contributing to both improved safety and driving comfort while reducing the need for overtaking. 
Typically, ACC systems rely on fixed, predefined rules and models, which can struggle to perform 
optimally across various driving scenarios. Q-learning addresses this limitation by enabling the ACC 
system to autonomously adjust and modify its actions based on real-time road conditions [30].  
Through continuous and time-based Q-learning, the ACC system learns to understand the flow and 
dynamics of traffic during its operation. This approach helps to smooth acceleration and deceleration 
patterns, reducing energy wastage and improving the overall efficiency of navigation [31]. By learning 
from ongoing traffic conditions, Q-learning allows the ACC system to make more informed decisions, 
contributing to a more efficient and sustainable driving experience. 

2.5.3 V2V Charging Optimization  
Q-learning plays a critical role in V2V charging by optimizing energy transfer between vehicles, 
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ensuring maximum efficiency. In a V2V system, one vehicle transfers a portion of its energy to another, 
and Q-learning helps to determine the most effective energy-sharing strategy. By continuously 
evaluating the state of the vehicles, such as their battery levels, energy consumption, and proximity, 
Q-learning algorithms can dynamically adjust energy distribution to achieve optimal outcomes. This 
approach ensures that energy resources are utilized efficiently, enhancing the overall performance of 
the V2V charging system and supporting the sustainability goals of smart tourism destinations. 

The Role of Q-Learning in V2V Charging Game 
In V2V charging, Q-learning is employed to optimise the energy transfer process between vehicles, 

a crucial aspect of ensuring efficiency in such systems. For instance, when one EV transfers energy 
from its lithium battery to another, this is referred to as V2V charging. The energy is transferred from 
the charging point of the first EV to the second, allowing the second vehicle to utilise the available 
energy once the first vehicle has been switched off. Q-learning enhances this process by dynamically 
adjusting energy distribution, ensuring that the energy transfer is optimally managed, thereby 
maximising the overall efficiency of the system [27;32]. 

2.5.4 Smart Grid Interaction and Demand Response  
As EVs continue to emerge and integrate with the wider electric energy ecosystem, their interface 

with the smart grid becomes increasingly crucial. Q-learning can be leveraged to design demand 
response systems where EVs interact dynamically with the grid. This interaction allows for the optimal 
use of EV batteries, enabling them to either charge or discharge during periods of excess load or grid 
availability [7].  Q-learning also enables EVs to optimise the timing of battery charging or energy 
discharge to the grid, taking into account factors such as cost, demand, and the battery’s state of 
charge. This interaction benefits the grid by facilitating better load balancing and reducing charging 
costs for EV owners. Numerous applications of Q-learning have been developed to enhance the 
operational efficiency of EVs and their energy management systems. Through improvements in energy 
efficiency, the incorporation of adaptive cruise control, V2V charging, and integration with the smart 
grid, Q-learning allows for greater autonomy in addressing the challenges faced by EVs in variable 
environments. Given its broad benefits, the integration of Q-learning has the potential to make various 
transportation systems more sustainable and intelligent. 

2.6 Related Study 
Researchers have increasingly focused on the integration of EVs into smart tourism destinations, 

with particular emphasis on optimising energy management and enhancing sustainability. A number 
of studies have explored the effectiveness of advanced technologies, such as machine learning and 
AI, in improving EV energy management, including the utilisation of V2V charging systems. 

2.6.1 Machine Learning for Energy Management in EVs  
A considerable body of literature examines various machine learning strategies that can enhance 

the energy management of EVs. For instance, the authors in [7] deployed reinforcement learning 
algorithms to minimise the energy consumption of EVs, demonstrating that such technologies can 
improve power usage efficiency across diverse scenarios. This study highlighted the practical 
application of adaptive learning models for making real-time decisions to address fluctuations in 
energy requirements and driving conditions, which is particularly important in the unpredictable 
environments typical of smart tourism destinations. Similarly, the authors in [6] explored energy 
distribution within EV networks using adaptive Q-learning, a subset of reinforcement learning. Their 
findings indicate that adaptive Q-learning algorithms outperform traditional methods, as they adjust 
their parameters to better meet the energy needs of a fleet of electric vehicles, rather than relying on 
pre-set rules. While this study laid the groundwork for the future application of adaptive Q-learning 
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in EV energy management, it is important to note that the research was based on simulations of static 
environments. This leaves a gap in the practical deployment of optimal solutions in dynamic and 
rapidly changing settings, such as smart tourism destinations [5;18].  

2.6.2 Vehicle-to-Vehicle (V2V) Charging  
V2V charging has emerged as a promising solution to address the limitations of traditional EV 

charging infrastructure, attracting significant attention within broader EV ecosystems. The authors in 
[5], explored the technical challenges and, more importantly, the benefits that V2V charging offers. A 
key advantage is its ability to enhance the mobility of EVs in remote or densely populated urban areas, 
where traditional charging infrastructure is inadequate. Their study also tackled the dual challenge of 
energy transfer between vehicles, highlighting that effective V2V charging demands the use of real-
time decision-making control algorithms. In a similar vein, the authors in [8] integrated V2V charging 
with smart grid technologies, proposing a novel approach that utilises machine learning to manage 
both V2V energy transfer and the grid’s energy supply. This work significantly advanced the overall 
energy efficiency of the system and underscored the potential of V2V charging to foster cleaner and 
more resilient energy integration in smart tourism areas. However, greater emphasis was placed on 
managing grid interactions, rather than optimising V2V charging among vehicles themselves. 

2.6.3 Challenges in Smart Tourism Destinations  
The integration of advanced technologies into smart tourism destinations, particularly EVs, has 

been a subject of considerable study. The authors in [3] examine solutions for incorporating EVs into 
tourism to mitigate the environmental impact of tourism-related activities. They propose innovative 
energy management strategies tailored to the variability of tourist activities and traffic patterns, 
highlighting the potential of machine learning and V2V charging as crucial elements of such strategies. 
The authors in [11] extend this analysis by investigating the implications of EV technology within the 
smart tourism sector. They emphasise the potential benefits of integrating V2V charging and adaptive 
learning algorithms into tourism-focused transportation systems to enhance energy efficiency and 
reduce the carbon footprint of tourism operations. Furthermore, they suggest that future research 
should explore how these technologies can be effectively incorporated into the complex and dynamic 
environments characteristic of smart tourism destinations [27;30;31]. Existing literature provides 
valuable insights into the potential of V2V charging for EV energy management. However, a notable 
gap exists in the application of adaptive Q-learning to optimise V2V charging within smart tourism 
destinations. Most current research has focused either on general EV energy management or V2V 
charging in isolated settings, without adequately addressing the challenges posed by the innovative, 
dynamic, and unpredictable nature of tourism environments. This study seeks to bridge this gap by 
applying adaptive Q-learning to V2V charging in smart tourism destinations, thereby contributing to 
the development of more efficient and sustainable transportation solutions [27;28;30;31]. 

 
3. Research Methodology 

3.1 System Model 
This research presents a V2V charging model that incorporates a fleet of EVs. These dual-purpose 

EVs are capable of both drawing power from and discharging power into the grid, thereby establishing 
a dynamic and decentralised energy-sharing ecosystem. 

3.1.1 Key Assumptions and Constraints 
(1) Assumptions  
• Each EV is equipped with bidirectional chargers to enable energy transfer between vehicles.  
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• Vehicles possess varying initial SoC.  
• A dual-purpose EV can supply energy back into the grid, contributing to a dynamic, self-

sustaining system for energy transfer.  
• The system operates within defined vehicle movement boundaries, coupled with predetermined 

routes.  
(2) Constraints  
Energy transfer is constrained by the maximum charge and discharge rates. The SoC must be 

maintained within a safe operating range, typically between 20% and 80%. Energy transfer can only 
take place when the vehicle is within a specified range.  

(3) Proposed Adaptive Optimization Framework  
The proposed approach employs an adaptive Q-learning-based optimization framework to 

manage V2V charging, marking significant advancements over traditional methods:  
• Adaptive Learning: In contrast to static rule-based strategies, the adaptive Q-learning framework 

learns and updates policies in real-time, enabling it to dynamically adjust to fluctuations in energy 
demand, traffic conditions, and vehicle charging status (SoC).  

• Decentralized Framework: Each EV operates as an autonomous agent within a decentralized 
adaptive Q-learning framework. This structure allows for independent decision-making while utilizing 
distributed communication systems to ensure efficient vehicle coordination, without the need for 
centralized control.  

(4) Model Deployment and Maintenance  
• Initial Deployment: Each EV uses a pre-trained adaptive Q-learning model, ensuring stability in 

decision-making during everyday scenarios.  
• Dynamic Update: The cloud-based model management system facilitates periodic updates and 

real-time location-based adjustments. For instance, when an EV enters a predefined area, it will 
automatically connect to the cloud to download the latest adaptive Q-learning model or apply 
location-specific updates.  

(5) Mechanism for V2V Discovery and Interaction  
• Discovery Protocol: EVs communicate SoC values, power requirements, and location data using 

the Vehicle-to-Everything (V2X) communication protocol. This ensures secure and efficient 
interactions between power providers and receivers through advanced encryption and low-latency 
communication technologies.  

• Matching Algorithm: A decentralized matching algorithm pairs EVs based on location, proximity, 
SoC compatibility, and power needs. For example, a power provider (e.g., EV2) will only offer energy 
if its SoC exceeds a predefined threshold (e.g., 80%) and is compatible with the receiver’s (e.g., EV1) 
tolerance.  

• Driver Coordination: EV drivers are provided with detailed notifications, including 
recommendations on when and where to charge. Remote charging capabilities, such as automated 
plug controls or robotic arms, enable unattended power transfer.  

(6) Practical Implementation Scenarios  
• Dynamic Environment: The system adjusts dynamically to changing conditions, such as 

fluctuating energy demand in high-traffic areas or tourist destinations. For example, in tourist areas, 
the system may prompt EVs to share power upon arrival, optimising energy distribution based on local 
demand and infrastructure.  

• Infrastructure Support: Designated areas in parking lots or charging stations provide logistical 
support for V2V charging. These locations address challenges such as cable length and vehicle 
placement to facilitate efficient energy transfer. 
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 3.1.2 Control of Maximum and Minimum Charging Levels 

To ensure safe and efficient operation, the system incorporates mechanisms to maintain the SoC 
within specified limits:  

• Maximum SoC (Upper Limit): Set to 80% to prevent overcharging, with a penalty applied in the 
Q-learning reward function if this threshold is exceeded.  

• Minimum SoC (Lower Limit): Set to 20% to prevent vehicles from becoming immobilised and to 
encourage energy-saving behaviours.  

• Dynamic Adaptation: The SoC limit is adjusted based on environmental factors and system 
requirements, ensuring flexibility and responsiveness.  

• Reward Determination: The Q-learning model penalises unsafe SoC levels and rewards actions 
that optimise energy consumption while prioritising safety.  

• Real-Time Communication: Vehicles share SoC and location data using the V2X protocol to 
facilitate safe and efficient power transfer. 

Table 1 illustrates that the adaptive control strategy integrates pre-defined constraints, dynamic 
learning, and real-time communication, effectively balancing individual vehicle requirements with 
overall system performance. The proposed adaptive Q-learning approach offers a robust and 
decentralised mechanism for optimising V2V charging. This framework marks a significant 
advancement in EV energy management systems by addressing scalability, communication gaps, and 
adaptability. 

Table 1  
Summary of Control Mechanism 

Constraint Definition Mechanism 
Maximum SoC (Upper Limit) 80% to prevent overcharging Penalized in Q-learning reward function 
Minimum SoC (Lower Limit) 20% to prevent vehicle stranding Incentivized in Q-learning actions 
Dynamic Adaptation Thresholds adjust in real-time Real-time decision-making using Q-learning 

3.2 Adaptive Q-learning Algorithm 
The adaptive Q-learning algorithm optimises V2V charging by dynamically adjusting the learning 

parameters in response to environmental changes.  
State Space: The system's state is defined by the SoC level and the location of all EVs. Each state, 

denoted as St at time t, is represented as: 
𝑆𝑡 = (𝑆𝑜𝐶1, 𝐿1), (𝑆𝑜𝐶2, 𝐿2), … , (𝑆𝑜𝐶𝑛, 𝐿𝑛)                                                   (2) 
 Where 𝑆𝑜𝐶𝑖  is the charge state of vehicle i and 𝐿𝑖  is the location of that vehicle. 
Operation Space: The operation space encompasses all possible charging and discharging 

operations that a pair of vehicles can undertake. For a fleet of n vehicles, the operation At at time t is 
represented as: 

𝐴𝑡 = (𝑖, 𝑗, 𝑟)                                                                                           (3) 
  Where i and j are the indexes of the vehicles involved in charging/discharging, and r is the energy 

transfer rate. Reward function: The function is designed to induce efficient energy transfer and 
maintain a balanced SoC level. The reward 𝑅𝑡 for an operation performed at time t is calculated as: 

𝑅𝑡 = 𝛼 ⋅ 𝛥𝑆𝑜𝐶 + 𝛽 ⋅ (1 − |𝑆𝑜𝐶𝑖 − 𝑆𝑜𝐶𝑗|)                                                    (4) 

Where ΔSoC represents the change in the state of charge (SoC) of the respective vehicle, and the 
second term penalizes significant discrepancies in SoC between vehicles. The parameters α and β act 
as weights, balancing these objectives.  

Learning Rate and Discount Factor: The learning rate (α) and discount factor (γ) are crucial 
parameters in the Q-learning algorithm. The learning rate determines the extent to which new 
information overrides previous data, while the discount factor reflects the importance of future 
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rewards. In adaptive Q-learning, these parameters are adjusted dynamically based on the system's 
performance. For instance: 

αt+1 = αt ⋅
1

1+λ⋅|Rt−R̅|
                                                                               (5) 

  Where λ and μ are adaptation rates, and R ̅ is the average reward. 

3.3 Simulation Environment 
The simulation environment is structured to replicate the real-world conditions of V2V charging 

for EVs. The primary parameters include:  

• Movement Pattern: EVs traverse a pre-defined route within a 10 km x 10 km area.  

• Number of EVs: The experiment utilises a fleet of 50 EVs.  

• Charging and Discharging Rates: The maximum rates for both charging and discharging are set 
at 10 kW.  

• SoC: The vehicles are initially assigned a random SoC percentage ranging between 20% and 
80%.  

• Communication: The vehicles exchange information regarding their SoC levels and geographical 
locations, sharing details with nearby vehicles within a 1 km radius.  

The performance of the Adaptive Q-learning algorithm is evaluated by simulating multiple 
episodes, each comprising a fixed number of time steps. The aim of this evaluation is to assess the 
algorithm's effectiveness across these episodes, where each step contributes to the determination of 
system efficiency. The efficiency metrics include total energy transferred, average SoC, and energy 
transfer efficiency. This section focuses specifically on the V2V charging optimisation strategy, which 
incorporates an MDP-based Adaptive Q-learning algorithm to enhance the reliability and efficiency of 
the system under varying operational conditions. 

3.3.1 Evaluation of Adaptive Q-Learning Algorithm for V2V Charging Optimization 
The evaluation of the adaptive Q-learning algorithm assesses its performance over multiple 

episodes, each defined by a fixed number of time steps. The performance is measured using key 
metrics, such as total energy transferred, average SoC, and energy transfer efficiency. This evaluation 
specifically concentrates on the V2V charging optimisation strategy, which is built using the adaptive 
Q-learning algorithm for the Markov Decision Process (MDP). This approach enhances the robustness 
and efficiency of the system across a range of operating conditions. 

3.3.2 Scenarios Addressing Abnormal States of Storage 
To ensure robustness and adaptability under unforeseen or adverse conditions, the algorithm is 

tested against a series of predefined abnormal scenarios. These scenarios simulate deviations from 
standard operating conditions to assess the system's performance and adaptability. Key scenarios 
include:  

1. Low SoC - Emergency Condition  
• Scenario Description: The vehicle’s SoC unexpectedly drops below a critical threshold (e.g., 5% 

or 10%).  

• System Response: The Q-learning agent prioritises emergency charging by prompting nearby 
vehicles to assist with V2V charging, ensuring that the affected vehicle avoids becoming stranded.  

• Example Causes: Unexpected route deviations, communication failures, or delayed charging 
requests.  

2. Overcharging Risk  
• Scenario Description: The vehicle’s SoC risks exceeding a safe operating threshold (e.g., 90% or 
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higher).  

• System Response: The algorithm penalises overcharging by adjusting the Q-value to prevent 
excessive power transfer, controlling the charging rate.  

• Example Causes: Rapid power transfer not adhering to predefined safety limits.  
3. Communication Failure Among EVs  

• Situation Description: Vehicles are unable to communicate their current SoC or location within 
a specified range.  

• System Response: Agents rely on historical data and previously learned behaviours to make 
decisions, compensating for the lack of immediate communication feedback.  

4. Battery Degradation or Variable Performance  

• Situation Description: Unexpected changes in battery characteristics, such as reduced charging 
efficiency or slower maximum charging rates due to degradation.  

• System Response: The algorithms dynamically recalibrate strategies by adjusting learning 
parameters, such as learning rates and reward functions, to reflect new performance patterns.  

5. Unexpected Environmental Conditions or Demand Surges  

• Situation Description: Sudden increases in energy transfer demand or environmental changes, 
such as heightened vehicle density or congestion.  

• System Response: The learning agent prioritises energy distribution evenly, adjusting its 
operational space to ensure that vehicles maintain a balanced SoC while optimising transfer efficiency.  

6. Stationary Vehicles with Critically Low SoC  

• Scenario Description: Stationary vehicles with critically low SoC are unable to access charging 
stations or find compatible EVs.  

• System Response: The algorithm prioritises these vehicles by optimising the nearby power-
sharing policy to respond to critical demands efficiently.  

 
Significance of Addressing Abnormal States  

By incorporating these scenarios, the adaptive Q-learning algorithm demonstrates its capacity to 
handle emergencies, communication disruptions, and system failures. These tests affirm the 
robustness and flexibility of the V2V charging strategy, ensuring continuous operation under a variety 
of real-world challenges. 

3.4 Algorithm: Adaptive Q-Learning for V2V Charging 
An adaptive Q-learning algorithm seeks to enhance the energy transfer method for V2V charging 

within a MDP framework. This algorithm interacts with the system's policies by evaluating actions and 
modifying strategies over time. Its learning process is notably robust in managing emergency modes, 
which demand prompt and adaptive responses to critical situations, such as vehicles with dangerously 
low SoC or unexpected communication failures. 

3.4.1 Learning Mechanism Overview 
The Q-learning algorithm utilises a state-action-reward feedback loop to learn optimal strategies. 

The update rule adheres to the standard Bellman equation: 
Q(s,a)←Q(s,a)+α[𝑅𝑡+γmaxa′Q(s′,a′)−Q(s,a)]                                               (6)                                     
Where: 
Q(s,a): The Q value represents the expected utility of performing action aa in state ss 
α: The learning rate, which determines how new information affects the Q value 
γ: The discount factor, which emphasizes the importance of future rewards 
𝑅𝑡: The immediate reward received at time t 
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s': The outcome state after acting a 
Through iterative exploration and exploitation, the algorithm identifies the action that maximises 

the cumulative reward over time. 

3.4.2 Learning in Emergency Modes 

Emergency modes represent critical operational scenarios that deviate from normal conditions, 
such as:  

• Critical Low SoC: A vehicle's SoC drops below a threshold (e.g., 10%).  

• Communication Failures: Vehicles are unable to share their state or location.  

• Increased Demand: A sudden increase in recharge requests due to environmental or 
operational changes.  

The algorithm’s learning process in these situations involves the following key adaptations:  
1. Dynamic Reward Function  
The reward function dynamically adjusts during an emergency to prioritise actions that address 

the urgency of recharging. For instance, in cases of critical low SoC, the reward function emphasises 
actions that accelerate energy transfer, ensuring that the vehicle’s charge is restored before it 
becomes inoperable. 

𝑅𝑡 = 𝛼 ⋅ 𝛥𝑆𝑜𝐶 +  𝛽 ⋅ (1 − ∣ 𝑆𝑜𝐶𝑖 − 𝑆𝑜𝐶𝑗 ∣ )                                                              (7) 

Where: 
𝛥𝑆𝑜𝐶: 𝑆𝑜𝐶 gain obtained by the power transfer 
∣ 𝑆𝑜𝐶𝑖 − 𝑆𝑜𝐶𝑗 ∣: Absolute SoC difference between the involved vehicles 

α ,β: Adaptive weights that prioritize urgency and fairness in power distribution 
By adjusting the reward to prioritise emergency situations, the algorithm learns to concentrate on 

actions that stabilise vehicles with low SoC while ensuring the overall system performance is 
maintained. 

(2) Adaptive Learning Rate 
The learning rate (α) is dynamically adjusted during an emergency to give more weight to the most 

recent feedback. This adjustment facilitates faster adaptation to critical states. The adjustments are 
as follows: 

𝛼𝑡+1 =  
𝛼𝑡

1 + 𝜆 .|𝑅𝑡− 𝑅|̅̅ ̅ 
                                                                         (8) 

Where: 
λ: Adaptation factor 
R ̅: Average reward compared to the previous episode 
This mechanism allows the algorithm to adjust its decision strategy in response to emergencies 

quickly.  
(3) Tailored Exploration Strategy  
The exploration strategy is adjusted during an emergency to support risk-reducing actions:  

• Increased Exploration: The algorithm increases exploration in the low SoC state to identify 
efficient energy-charging actions.  

• Safety Bias: During an emergency, the agent prioritises safe and immediate actions, even at the 
cost of long-term performance.  

This ensures the system can quickly adapt to high-pressure situations while balancing exploration 
and utilisation.  

(4) Simulation of Emergency Scenarios  
To train the algorithm, the simulation environment consists of predefined emergency scenarios:  

• Low-Critical SoC: Introducing vehicles with less than 10% SoC  
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• Communication Failure: Random interruption of vehicle communication  

• Increased Demand: Sudden increase in recharge requests, simulating increased demand in the 
real world.  

By exposing the agent to these scenarios over a series of episodes, the algorithm learns robust 
policies for emergency management.  

(5) Testing and Validation  
The learned algorithm is evaluated using various performance metrics:  

• Energy Transfer Efficiency: Total energy successfully transferred during an emergency  

• Average SoC Recovery: Average SoC improvement for low-charge vehicles  

• Response Time: Time taken to stabilise the system after an emergency  
The adaptive Q-learning algorithm’s ability to handle emergencies is due to:  

• Dynamic adjustment of the reward function that prioritises urgency and fairness  

• Adaptive learning rate mechanism to accelerate response in critical situations  

• Customisable exploration strategies that emphasise safety under unusual conditions  

• Comprehensive training in simulated emergency scenarios  
These features ensure that the system is robust, efficient, and capable of dealing with unexpected 

challenges in V2V energy transfer. 

3.4.2 Implementation Process 
To achieve optimal V2V charging using adaptive Q-learning, the following steps outline the 

process:  
1. Initialization  
The Q-table is denoted as Q(s, a) and must be initialized in relation to the state representation of 

the problem. Here, 's' represents the states (e.g., battery level and vehicle position), and 'a' denotes 
actions, such as the energy transfer capability. Key initialization parameters to define include the 
learning rate (α), the discount factor (γ), and the exploration-utilization trade-off parameter (e.g., 
using an epsilon-greedy strategy).  

2. State Representation  
This step defines how the state will be represented, for example, as a vector containing the battery 

level and vehicle location.  
3. Action Selection 
The exploration-exploitation strategy (e.g., epsilon-greedy) is employed to select actions based on 

the current state 's' using the Q-table. This ensures a balance between exploring new actions and 
exploiting the most rewarding actions learned so far.  

4. Reward Calculation  
A reward function, R(s, a), is created to incentivize efficient energy transfer and maintain balanced 

battery levels across vehicles. For example, higher rewards are given when energy is transferred 
effectively and when the battery levels remain within the optimal range.  

5. Q-value Update  
The Q-value is updated based on observed payoffs using the adaptive Q-learning update rule, 

which refines the decision-making process by incorporating real-time feedback from the environment. 
This iterative process allows the algorithm to learn optimal strategies for energy transfer over time. 

Q(s, a) ← (1 − α) ⋅ Q(s, a) + α ⋅ [R(s, a) + γ ⋅ max
a′

Q (s′, a′)]                                    (9) 

Where 𝑠′ is the next state after acting 𝑎. 
6. Adaptive Parameter Tuning  
The learning rate (α) and exploration rate are adjusted over time or in response to specific 

situations (e.g., using a decay function for the exploration rate). This dynamic adjustment ensures that 
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the algorithm remains adaptable and efficient as it learns from the environment.  
7. Simulation and Evaluation  
Tests are run using the updated Q-table to assess the algorithm’s performance. Key performance 

indicators include the amount of energy transferred, the balance of battery charges across vehicles, 
and overall system efficiency.  

8. Iteration  
Steps 3 to 7 are repeated over multiple episodes or until the stopping conditions are met. These 

conditions may include scenarios where Q-values stop changing significantly or sufficient exploration 
has been achieved.  

9. Conclusion  
The adaptive Q-learning algorithm enhances the efficiency of vehicle-to-vehicle (V2V) charging 

compared to older methods. It demonstrates promising performance and highlights areas where 
future research can further refine and optimise the approach. 

 

 
Fig.1. Flowchart of Adaptive Q-Learning for V2V Charging 

Figure 1 illustrates the step-by-step process of the Adaptive Q-Learning algorithm aimed at 
enhancing V2V charging in EVs. The process begins with the initialization of the Q-table and 
parameters. It then progresses through stages such as defining the current state, selecting an action, 
calculating rewards, updating Q-values, and adjusting parameters. Simulations are run to assess the 
results, with evaluations made to ensure improved performance. These steps are iterated until the 
algorithm reaches a stopping condition, ensuring more efficient energy transfer and battery 
management for EVs engaged in V2V charging. 

 
4. Research Results 

4.1 Simulation Results 
The test results demonstrated that the adaptive Q-learning algorithm significantly improved the 

V2V charging process in EVs. This section presents various metrics and visual representations, such as 
charts and graphs, that highlight the algorithm's performance and its effectiveness in optimizing 
energy transfer and battery management among EVs. The Figure 2 demonstrates the convergence of 
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the maximum Q-value in the Q-table over the course of the simulation steps, highlighting the learning 
progression of the Q-learning algorithm as it adapts and optimises the V2V charging process.   

 
Fig.2. Convergence Plot of Q-values 

Figure 3 depicts the exploration rate throughout the simulation steps, illustrating how the agent 
adjusts its balance between exploration (taking random actions) and exploitation (choosing actions 
based on learned Q-values) as the simulation progresses.  

 
Fig.3.  Exploration-Exploitation Trade-off 

The histogram in Figure 4 illustrates the distribution of rewards based on the various actions taken 
during the simulation. It provides insights into the range and frequency of rewards received by the 
agent, highlighting the effectiveness of the chosen actions. 
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Fig.4. Reward Distribution Histogram 

The heatmap in Figure 5 displays the frequency with which each battery charge level was reached 
at different locations. It provides a clear visual representation of the charge levels the agent visited 
most frequently throughout the simulation.  

 
Fig.5. State Space Heatmap 

The line plot in Figure 6 illustrates the average number of visits corresponding to each state-of-charge level. 
It summarises the frequency with which the agent has visited different states at varying charge levels. 
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Fig.6.  Average State Visit Counts per State-of-Charge Level 

Figure 7 is a scatter plot showing how the battery charge levels (state-of-charge) are distributed 
across different vehicle locations. It provides insight into the distribution of charge levels among the 
vehicles in the simulation. These figures offer a comprehensive view of the results from the Q-learning 
simulation, highlighting the system's learning process, the distribution of rewards, the frequency of 
state visits, and the variation in battery charge levels by location. These visuals help to understand the 
Q-learning simulation for V2V charging in electric vehicles, focusing on critical aspects such as the 
system's learning progression, the balance between exploration and exploitation, the spread of 
rewards, and the most frequently visited states. 

 
Fig.7. State-of-Charge Distribution Across Locations 

4.2 Performance Comparison 
The performance of the adaptive Q-learning algorithm is compared against baseline methods, 

including rule-based approaches, to assess its effectiveness. Table 2 presents key performance 
metrics, such as total energy transferred, average SoC, and energy transfer efficiency. These metrics 
highlight the improvements achieved by the adaptive Q-learning algorithm in optimising V2V 
charging, offering insights into its efficiency and the system's ability to manage energy distribution 
effectively. 
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Table 2  
Performance Comparison 

  Adaptive Q-Learning Rule-based Approach 
Total Energy Transferred (kWh) 1223 957 
Average SoC (%) 64 56 
Energy Transfer Efficiency (%) 86 71 

  

The findings demonstrate that the adaptive Q-learning algorithm outperforms the rule-based 
approach across all metrics. Specifically, it achieves a higher total energy transfer, a better average SoC 
balance, and enhanced energy transfer efficiency. These results underscore the algorithm's ability to 
optimise V2V charging, ensuring more effective energy management and improving overall system 
performance. 

 
5. Discussion and Recommendation for Future Research  

5.1 Discussion  
The experimental results indicate that the adaptive Q-learning algorithm significantly improves 

the energy-sharing process in electric vehicles (EVs) within innovative tourism systems, particularly in 
vehicle-to-vehicle (V2V) charging scenarios. The analysis of performance metrics and graphs reveals 
that the algorithm evolves and adapts over time, outperforming traditional rule-based methods in 
critical areas such as total energy shared, battery balance, and energy transfer efficiency [33-35].  

Q-Value Convergence: Figure 1 illustrates the ongoing improvement in the algorithm's decision-
making process. As the maximum Q-value continues to increase throughout the simulation, the 
algorithm refines its energy transfer decisions. This aligns with findings from [6], which demonstrated 
that adaptive Q-learning algorithms stabilise and optimise their strategies in dynamic environments 
[34-37].  

Exploration-Exploitation Dynamics: Figure 2 highlights how the algorithm balances exploration 
(testing new actions) and exploitation (utilising known actions) during the simulation. Initially, the 
algorithm explores different actions to collect sufficient data. Over time, it shifts towards exploiting 
learned knowledge to optimise energy transfer decisions, thus enhancing performance. This trend 
supports the conclusions of [32], which suggest that adaptive exploration strategies improve the 
efficiency and effectiveness of Q-learning in uncertain environments [37-41].  

State Visitation Patterns: Figures 4 and 5 provide insight into the agent’s behaviour across various 
states. The state space heatmap (Figure 4) shows that states with mid-range state-of-charge (SoC) 
levels are visited more often, indicating their importance as critical decision points in the energy 
transfer process. The line plot (Figure 5) further confirms that moderate SoC states are central to the 
decision-making process, likely representing optimal moments for energy transfer. These visitation 
patterns underscore the algorithm's ability to focus on states that optimise energy efficiency, a vital 
aspect for the success of V2V charging systems [42]. 

The scatter plot in Figure 6 demonstrates the distribution of state-of-charge (SoC) values at various 
vehicle locations, illustrating the algorithm’s effectiveness in maintaining a balanced SoC across the 
fleet. The uniform distribution of SoC values highlights the adaptive Q-learning algorithm's ability to 
manage energy resources efficiently, ensuring that no vehicle becomes critically low on charge while 
avoiding overcharging other vehicles [25]. This balanced distribution is crucial for the reliability and 
robustness of V2V charging systems, particularly in dynamic environments like smart tourism 
destinations [43].  Table 1 presents a performance comparison between the adaptive Q-learning 
algorithm and a rule-based approach, underlining the advantages of the adaptive method. The 
adaptive Q-learning algorithm transfers 1,223 kWh of energy, notably more than the 957-kWh 
transferred by the rule-based approach. Additionally, the average SoC for vehicles using the Q-learning 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 2 (2024) 608-635 

631 

 

 

algorithm is 64%, compared to 56% with the rule-based method. Energy transfer efficiency is also 
higher, with the adaptive Q-learning algorithm achieving 86% efficiency, while the rule-based 
approach only reaches 71%.  

These results underscore the effectiveness of the adaptive Q-learning algorithm in improving 
energy transfer and achieving a more balanced SoC across vehicles, enhancing the efficiency and 
reliability of V2V charging systems. This is in line with findings by, which suggest that adaptive learning 
algorithms generally outperform static, rule-based methods in complex, real-world scenarios. The 
performance improvements in the simulation further validate the suitability of adaptive Q-learning 
for optimising V2V charging, particularly in dynamic settings such as smart tourism destinations. 
Moreover, simulation results demonstrate that adaptive Q-learning significantly enhances V2V 
charging for electric vehicles. The convergence curve and exploration-exploitation analysis confirm 
that the algorithm efficiently learns the optimal strategy, balancing exploration with exploitation. The 
payoff distribution and state space heatmap indicate the algorithm’s ability to maximise payoffs while 
efficiently managing state space [25]. Compared to rule-based methods, adaptive Q-learning offers 
notable improvements in energy transfer efficiency and overall system performance, making it a 
promising solution for managing V2V charging in fluctuating and complex environments [7;28;43].  
However, there are some limitations. The simulated environment may not fully capture real-world 
complexities, such as traffic variations or different driving patterns. Additionally, the algorithm’s 
performance can be influenced by specific settings, requiring adjustments for different scenarios. 
Despite these limitations, the results confirm the feasibility of using an adaptive Q-function-based 
approach for V2V charging, providing more efficient and flexible charging solutions that benefit the 
grid. 

5.2 Recommendations for Future Research  
To improve the algorithms describing V2V charging and its integration with current EV systems, 

further research should focus on refining the algorithms and enhancing their performance in real-
world applications. This includes addressing issues such as real-time adaptability, system scalability, 
and user interaction to ensure seamless integration with existing infrastructure. Additionally, research 
should explore the development of business models that incentivise participation in V2V networks, 
encouraging both consumers and businesses to embrace the technology. Pilot projects in smart 
tourism destinations can provide valuable insights into the challenges and opportunities of V2V 
charging. These projects can act as testing grounds for addressing issues such as grid stability, energy 
transfer efficiency, and consumer engagement, ultimately accelerating the adoption of V2V charging 
technology.   

To expand the scope of V2V charging applications, further research should focus on enhancing the 
algorithm's robustness, testing it in more complex and diverse environments. This includes developing 
and implementing real-world scenarios that demonstrate the practical applications of adaptive Q-
learning for V2V charging, particularly in the context of innovative and environmentally sustainable 
transportation systems. These studies should assess how V2V charging can integrate with EV charging 
infrastructure and next-generation grid technologies, providing insights into how the system can 
support sustainable and flexible energy management.  Moreover, simulations and experimental 
studies will be crucial to validating theoretical models and ensuring their real-world applicability. 
Collaboration with key stakeholders in the automotive and energy sectors is essential to gather 
feedback, refine the algorithms, and test their real-world viability. By doing so, the research will 
contribute to advancing V2V charging technology, enabling its widespread adoption and supporting 
the transition to more sustainable transportation systems. 
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6. Conclusion 
This study uses Q-learning, a form of reinforcement learning, to improve V2V charging strategies 

for EVs. The aim is to enhance charging efficiency and reduce time through Q-learning. The results 
show significant improvements in vehicle coordination for charging and power sharing, leading to a 
more stable grid, reduced waiting times, and better resource allocation. The adaptive Q-learning 
algorithm is effective in optimising V2V charging, especially in dynamic environments like smart 
tourism destinations. It outperforms rule-based methods in key metrics such as total energy transfer, 
SoC balance, and energy transfer efficiency. The convergence of Q-values and the balance between 
exploration and exploitation highlight the algorithm’s ability to learn optimal energy transfer 
strategies. The reward distribution and state visitation patterns indicate the algorithm’s good 
performance, with a focus on crucial decision points, especially mid-range SoC, to maximise energy 
transfer efficiency. The distribution of charge across vehicle locations shows the algorithm’s success 
in maintaining SoC balance, preventing overcharging or low SoC issues. Performance comparisons 
demonstrate the adaptive Q-learning algorithm’s superior total energy transfer, SoC balance, and 
energy efficiency. However, limitations include the simulated environment’s inability to fully replicate 
real-world complexities, such as traffic changes and driving styles. Future research should focus on 
advanced adaptive Q-learning techniques, integrating real-time V2G data, and improving grid 
management for better charging solutions, particularly in smart tourism contexts. 
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