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Considering the interior of decision-making units (DMUs) is essential 
when evaluating a system's performance in the practical and real-
world circumstances. Knowing what happens inside a DMU allows a 
more accurate study of relevant process. It identifies the efficiency, 
and inefficiency of the sub-units in the system being evaluated. This 
study focuses on two-stage inverse data envelopment analysis (DEA) 
problems. In these problems, a portion of the outputs from the first 
period is used as inputs in the second stage. For this purpose, several 
models are offered to address the input/output estimation problem, in 
which decision makers should deal with intermediate products and 
shared and non-shared inputs in a two-stage system. Furthermore, the 
proposed models are examined using a window DEA because of the 
importance of assessing repetitive processes in some two-stage 
systems. Next, an Iranian bank is considered as a case study to further 
elucidate using the presented models. Finally, we present a conclusion 
and suggestions for further research. 

 

 

1. Introduction  
Data envelopment analysis (DEA) is a non-parametric method to evaluate the performance of a 

number of decision-making units (DMUs). In DEA problems, multiple inputs of a DMU are consumed 
to generate multiple outputs. It is assumed that each DMU contains at least one non-zero input and 
output. Charnes et al., [1] were the first to introduce DEA in 1974. Furthermore, inverse DEA is a 
critical, and commonly used subfield of DEA in economics, management, and real-world applications. 
Wei et al., [2] discussed this subject by asking the following question: if the inputs of under-evaluation 
DMU (DMUo) increase, how much its outputs will increase such that the efficiency of that DMU 
remains unchanged. The issue described is referred to as the output estimation problem. Hadi-
Vencheh et al. [3] subsequently addressed the same question about the input estimation problem. 
The mentioned problem deals with the estimation of the inputs as the outputs of the DMUo increase, 
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and the efficiency score remained at the same level. Furthermore, the output/input estimation 
problem by increasing the inputs/outputs and improving the performance of DMUo was raised [4].  

The classical DEA comprises one-step processes, where the DMU's structure is limited to inputs 
and outputs. Gradually, these simple one-step DMUs replaced by DMUs with multiple stages as 
network processes became more complex. Therefore, it is crucial to handle these intricate systems, 
which are widely applicable in the actual world and need appropriate instruments. Analyzing the 
subprocess and the DMU's overall performance is made easier with an understanding of the structure 
of the DMU. Neglecting the intermediate structure of DMUs can hinder the accurate analysis of 
complex real-world processes, including but not limited to the reallocation of royalties in the 
technological innovations, investments, and allocating technological resources at different stages. 
Furthermore, classical models fail to accurately assess performance, particularly in cases where the 
proportion of intermediate output allocated is susceptible. Besides, comprehending how to allocate 
intermediate productions enhances the system's proficiency and intelligence, enabling                
decision-makers to make more realistic decisions from a strategic point of view. Jian Feng [5] proposed 
a two-stage DEA model that simultaneously takes into account the intermediate products and input 
structure in order to address the problems with classical DEA. The model's goal was to evaluate 
efficiency by using the intermediate products from the first stage as inputs in the second stage. The 
model they proposed considered the input structure of DMUs based on the distinction among the 
inputs assigned to each stage and the common ones.  

As mentioned before, the examination of the internal structure of DMU holds significant 
importance in the practical and real-world cases. Managers and decision-makers require strong 
theoretical and practical support to manage overall performance, and effectively identify the causes 
of inefficiencies. In addition, inverse DEA is important in theoretical and real-world settings. 
Theoretically, managers may use credible scientific data to support their decisions about resource 
allocation and product delivery. In practice, they can optimally allocate resources and adjust product 
supply for a set of DMUs while keeping predefined conditions. However, in the classic inverse DEA 
models provided in the literature (e.g., [2], [3], and [4]), the internal structure of DMUs was ignored, 
and DMUs were considered black boxes. Consequently, the analyses provided for the input/output 
estimation problem were made independent of the DMU’s interior. Then, issues related to efficiency, 
inefficiency, causes of inefficiency, and actions that can be taken to improve or eradicate inefficiency 
will not be in line with reality in terms of various factors, such as common inputs, intermediate 
outputs, intermediate inputs, and other elements that have an impact on the evaluation system, but 
were not considered in the previous models.  

This paper considers the inverse DEA as a suitable approach to estimate inputs/outputs, and 
resource management in two-stage processes to address the shortcomings mentioned. In this paper, 
we present the inverse case of the Jian Feng [5] model, which permits the evaluation and analysis of 
system performance with intermediate products and input structures taken into account 
simultaneously. Moreover, the concerns mentioned above are examined from point of view of 
window DEA. Our methods can help decision-makers and managers make their policies based on what 
happens in the system under evaluation.  

  The most important novelties of this paper are as follows: 
i. This study presents the inverse case of two-stage DEA models, which address both the 

ii. intermediate output, and the input structure while aiming to estimate all or a portion of 
iii. inputs and improve system performance. 
iv. The expression and proof of necessary and sufficient conditions for estimating the output 

of DMU in the two-stage models are described. 
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v. Considering the importance of analyzing repetitive processes in some two-stage systems, 
the problem is discussed from the viewpoint of window DEA. Consequently, models, 
applications, and some properties of mentioned system are discussed. 

The remaining parts of the paper are organized as follows: Section 2 contains the literature review. 
Section 3 provides a background of inverse DEA, multi-objective programming (MOP), and two-stage 
DEA models. In section 4, we provide modeling of the inverse case of two-stage DEA and present some 
properties of the problem. Then, a numerical example is given to examine the models in section 5. 
Finally, the conclusion is given in Section 6. 

 
2. Literature review 

DEA models asses the performance of a number of DMUs, which utilizes multiple inputs to 
generate multiple outputs. Banker et al., [6] categorized the efficiency of a DMU into technical 
efficiency, and scale efficiency. The study conducted by Färe et al., [7] examined the impact of 
probability on technical efficiency. In order to determine the total efficiency of the DMU, Kao [8] 
calculated the regressive mean of the individual outputs' efficiencies. Charnes et al. [9] conducted a 
pioneering investigation into internal information loss within a single-mode model, employing a      
two-stage methodology to analyze military recruitment. In classic DEA methods, regardless of the 
middle phases of production procedure, a DMU is considered a "black box" in which the initial inputs 
to generate outputs are in a single process, i.e., the inner form of the DMU is often ignored. There is 
a lack of information regarding the specific component of a DMU that is responsible for inefficiency, 
as stated by Lewis, Mallikarjun, and Sexton [10], as well as Wang, Huang, Wu, and Liu [11]. Although 
more information was obtained on the inefficiency of DMUs by decomposing the performance into 
various components, these studies cannot open the black box in terms of the concentration on the 
structure of DEA models. Furthermore, based on the internal structure of DMUs, many researchers 
attempted to break through the "black box."  

In recent years, Färe and Grosskopf [12], Chen and Zhu [13], Liang et al., [14], and Chen et al., [15] 
achieved notable advancements in the expansion of two-stage models within the field of DEA network 
models. In order to evaluate the efficacy of DMUs with a two-stage internal structure, they proposed 
a two-stage DEA model. In the initial phase, their model transforms the inputs into intermediate 
products or middle outputs. In subsequent stage, intermediate products are developed to generate 
the ultimate products. In two-stage DEA models, DMUs are modeled as two-subunit systems where 
the intermediate products of first stage are regarded as subunit inputs of next stage. While a two-
stage DEA model assists decision-makers in examining a DMU's internal structure and operational 
processes, it helps identify unsuitable inputs in the subunits [16]; [17]). The two-stage DEA models 
have the capability to assess the overall performance of the DMU and decompose it into the 
performance of individual stages through the modelling of inter stages' relationships. Kao and Hwang 
[18] posit in their two-stage DEA model that the overall efficiency of the operation is equal to the 
product of the efficiencies of the two stages. 

Typical two-stage DEA models focus initially on the interior form of DMUs or the interdependence 
of various sub-processes on DMUs. Using these models is not suitable or sufficient when inputs or 
middle values have complex forms. A few researchers investigated this matter and improved the 
models with respect to the input distribution at various stages. For instance, Yu and Fan [19] and Chen 
et al., [20] provided a two-stage DEA model with common inputs between the first and second stages. 
Liang et al., [21] and Chen et al., [22] provided a two-stage model with added inputs to the next stage. 
Castelli et al., [23] gathered a wide range of categorized models and techniques specifically designed 
for different multi-stage architectures, beginning with a basic foundation. Fukuyama and Weber [24] 



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 82-107 

85 
 

 

developed a slack-based model to address a two-stage system that involves undesirable outputs. Liu 
et al., [25] examined DEA models for processing network structures. Cook et al., [26]  presented a two-
stage DEA model for assessing the performance of a two-stage network procedure in which some 
inputs are straightly related to both stages. They extended their model to a two-stage network where 
the second stage contains inputs, and parts of the first stage's outputs are not always regarded as 
inputs of the subsequent stage. Zha and Liang [27] provided a method for handling two-stage process 
where primary input can be flexibly assigned. Nevertheless, there are several issues with their 
strategy. It forbids utilizing more inputs directly in a later phase and sharing intermediate products. 
Yu and Shi [28] improved the approach put forward by Zha and Liang [27], who looked more closely 
at the two-stage procedure's structure. The suggested approach involves using supplementary inputs 
and a portion of the outputs from that first stage as inputs in the subsequent stage. Despite providing 
a parametric approach to examine two-stage structure described, the structure could not 
accommodate the existence of shared inputs or ultimate outputs directly derived from stage one. A 
two-stage DEA model was introduced by Yu and Shi [28], wherein additional inputs are incorporated 
into the second stage, with the part of middle products considered as the final output. Izadikhah et 
al., [4] proposed a two-stage model where DMUs are composed of two sub-DMUs. The sub-DMU of 
the first stage uses a fraction of the intermediate products from the sub-DMU of the second stage. 
The main input may be assigned to one of the two subordinate DMUs. Moreover, the second stage 
immediately consumes new inputs, enabling sub-DMU in the first stage to generate ultimate outputs. 

Inverse DEA was first presented by Zhang and Cui [29]  for evaluating efficiency of sub-units in a 
project evaluation system in China. A typical form of inverse DEA was introduced by Wei et al. [2] to 
handle the topic as an output estimation problem. To achieve this, they proposed the multi-objective 
linear programming model (MOLP). They then tackled the issue by transforming the MOLP into a linear 
programming problem with a single objective function. Many researchers examined and modified this 
concept following the introduction of inverse DEA. Jahanshahloo et al., [30], [31]) expanded upon the 
models proposed by Wei et al., [2] and improved upon them by introducing surplus inputs. Hadi-
Vencheh et al., [3] presented the input estimation problem and modified the sufficient conditions 
provided by Wei et al., [2]. In their study, Hadi-Vencheh et al., [3] recommended using a strong 
efficient solution instead of a weakly efficient solution to estimate the input with increased output. 
Besides, several relevant scholarly papers have explored the use of inverse DEA, including the 
existence of time dependence [32], fuzzy DEA [33], and the inverse DEA problem using pricing 
information [34].   

This study investigated input/output estimation problem in a two-stage DEA process. It considers 
the input, and output factors and the internal structure of the under evaluation DMU. This approach 
will make it easier for managers, investors, and decision-makers to create an expert system. We 
provide the inverse case of Jian Feng [5] in order to evaluate and analyze the performance of a two-
stage DEA method that considers both intermediate products and input structures. Furthermore, we 
analyze the mentioned challenges, namely input/output estimation problems in a two-stage process, 
using a window DEA approach. This approach simultaneously considers the internal processes of 
DMU, including shared inputs, intermediate inputs, and outputs. 

Subsequently, we present basic concepts and models used in our proposed models and 
methodology. 
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3. Background 
3.1. Multi-Objective Programming 

Let  g:  ℝp → ℝq and g′:  ℝp → ℝk are vector functions, an MOP problem generally is as follows: 
 
Minimize   g(x)  

Subject to                                                                    (1) 

gj
′(x) ≤ 0                                                            ,                                                              j = 1, . . . , k                                     

 
in which g(x) = ( g1(x), . . . , gq(x)) and g′(x) = ( g1

′ (x), . . . , gk
′ (x)). Furthermore, the set                        

X = {x ∈ ℝp;    gj(x) ≤ 0,  j = 1, 2, . . . , k} is called a set of feasible solutions. Since there is usually no 

optimal solution for these problems, the efficient (Pareto), and weakly efficient (weak Pareto) 
solutions are defined as follows: 

Definition 1.  A feasible solution x∗ ∈ X is called a Pareto solution for the MOP if there is no feasible 
solution xo ∈ X that gj(xo) ≤ gj(x∗);  j = 1, . . . , q. 

Definition 2.  A feasible solution 𝑥∗ ∈ 𝑋 is a weak Pareto solution for MOP if there is no feasible 
solution xo ∈ X that gj(xo) < gj(x∗);   j = 1, . . . , q. 

 

3.2. Inverse DEA 
Suppose that n DMUs with m inputs and s outputs are given and DMUo; o ∈   {j = 1, 2, . . . , n} is 

the DMU under evaluation. Besides, the vectors Xj ∈ ℝm ≥≠ 0;   (j = 1, 2, . . . , n)  and   Yj ∈ ℝs ≥≠ 0;    

(j = 1, 2, . . . , n) are input and output vectors corresponding to DMUj, respectively. 

The envelopment output-oriented model for efficiency evaluation of DMUo is as follows: 
φo= Maximize φ 

Subject to 

∑  λjxij ≤ xio          
n

j=1
                                                                 , 

                             (2) 

i = 1, 2, . . . , m 

∑  λjyrj ≥ φyro       
n

j=1
                                                               , 

r = 1, 2, . . . , s 

λj ≥ 0                                                                                             ,          j = 1, 2, . . . , n 

 
Wei et al., [2], in 2000, proposed inverse DEA as a solution to "output estimation problem": how 

much should the output of the unit rise if the inputs of unit under evaluation DMUo increase while 
keeping the efficiency index (φo) constant? 

The same question was then posed from an alternate point of view by Hadi-Vencheh et al., [3] in 
2008 as an "input estimation problem," in which the amount of increase in DMUo's inputs would be 
assessed if its outputs increased, and the efficiency score remained unchanged. Estimating an 
evaluation unit's output while increasing inputs and efficiency was a problem that Jahanshahloo et al., 
[30] addressed in 2004. Subsequently, they investigated the input estimation problem concerning a 
steady efficiency index and increasing outputs. In addition, several models for estimating the input 
surplus were provided [31]. 

   The output estimation problem is defined as follows: 
Suppose that certain inputs of DMUo are increased to a specific amount. How much will the output of 
this unit increase so that the performance of this new unit remains unchanged with respect to other 
units? 
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Assume that inputs of DMUo are increased from Xo to αo = Xo + ΔXo so that ΔXo ≥ 0 and  ΔXo ≠
0. Then, by Keeping the efficiency index (φo) unchanged, how should be estimated the output vector 
βo

∗  in which: 
βo

∗ =  (β1o
∗ , β2o

∗ ,  … , βso
∗ )t = Yo  +  ΔYo ;          ΔYo ≥ 0    

 
To answer aforementioned question, the following MOLP was proposed by Wei et al., [2]: 
Maximize  (β1o, β2o, . . . , βso)  

      subject to                  (3) 

∑  λjxij ≤ αio

n

j=1
                                                                          , 

i = 1, 2, . . . , m 

∑  λjyrj ≥ φo
∗ βro    

n

j=1
                                                                , 

r = 1, 2, . . . , s 

βro ≥  yro                                                                                       , r = 1, 2, . . . , s 

 λj ≥ 0                                                                                             , j = 1, 2, . . . , n 

In model (3), (λ, βo) ∈ ℝp × ℝs is the vector of variables, and φo
∗  is the optimal solution of model 

(2). Wei et al., [2] studied the output estimation problem using the following theorem: 
Theorem 1.  Let inputs of DMUo are increased from Xo to αo = Xo + ΔXo such that  ΔXo ≥ 0 

and  ΔXo ≠ 0:  
a) If φo

∗ = 1, then  φ(αo, φo
∗ Yo) = φ(Xo, Yo). 

b) Suppose that  φo
∗ > 1 i.e.,  DMUo is inefficient. If (λ∗,  βo

∗ ) is a weakly Pareto efficient for the 
MOLP    

    (3) and outputs of DMUo are increased from Yo to  βo
∗ , Then the performance level of new DMU 

will remain unchanged. In other words:                      
φ(αo, βo

∗ ) = φ(Xo, Yo) 
 

Conversely, if  (λ∗, βo
∗ ) is a feasible solution for the model (3), and efficiency index of the new DMU 

remains unchanged, i.e., φ(αo, βo
∗ ) = φ(Xo, Yo), then (λ∗, βo

∗ ) is a weak Pareto solution for this 
problem. 

In 2004, Jahanshahloo et al., [30] developed the output estimation model provided by Wei et al., 
[2] considering the condition that the efficiency of new unit is improved from φo

∗  by amount of % η 

where  0 ≤ η ≤
100 (φo

∗ −1)

φo
∗ . They also defined the concept of inputs surplus as follows [31]: 

Definition 3.  The inputs surplus of a DMU is the maximum input reduction to maintain the unit's 
output and performance level.  

The following model was presented to determine the amount of input surplus, considering the 
efficiency improvement in the output estimation problem [31]: 
 

Maximize  δo = (δ1o, δ2o, . . . , δmo) 
Subject to                                                                                                                                 

 (4) 

∑  λjxij ≤   (αio − δio)  
n

j=1
                                                         , 

i = 1, 2, . . . , m 

∑  λjyrj ≥   (1 −
η

100
) φo

∗ βro     
n

j=1
                                             , 

r = 1, 2, . . . , s 

∑  λj = 1

n

j=1
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αio ≥ 0                                                                                             , i = 1, 2, . . . , m 
 

i = 1, 2, . . . , m                                                                                            , 
 

λj ≥ 0                                                                                               , j = 1, 2, . . . , n 

 
In 2008, Hadi-Vencheh et al. [3] considered and answered the following question about an input 

estimation problem: 
If specified outputs of DMUo are increased to a given amount, then how would the inputs of 

𝐷𝑀𝑈𝑜 increase such that the performance score of this new unit remains unchanged with respect to 
the other units? It means suppose that outputs of DMUo increased from Yo to  βo = Yo  +  ΔYo , 
(ΔYo ≥  0 and ΔYo ≠  0), then how should the inputs vector αo

∗  be estimated such that the 
performance level stays at θo in which αo

∗ =  (α1o
∗ , . . . , αmo

∗ )t = Xo +  ΔXo ,  ΔXo ≥ 0. 
To answer the above question, the following MOLP was proposed:  
 

Minimize αo = (α1o,  α2o,  . . . , αmo) 
Subject to 

∑  λjxij ≤  θo
∗ αio

n

j=1
                                                                     , 

                            (5) 

 
i = 1, 2, . . . , m 

∑  λjyrj ≥ βro            
n

j=1
                                                              , 

r = 1, 2, . . . , s 

αio ≥ 0                                                                                          , i = 1, 2, . . . , m 
 

i = 1, 2, . . . , m 

λj ≥ 0                                                                                            ,          j = 1, 2, . . . , n 

 
In the model (5), (αo, λ) is the vector of variables, and θo

∗  is the optimal value of the input-oriented 
model for efficiency evaluation of DMUo. To address this model, the following theorems were 
provided by Hadi-Vencheh et al., [3]. 

Theorem 2.  If (αo
∗ , λ∗) is a Pareto efficient solution for the MOLP (5), then: 

 
θ(αo

∗ , , βo) = θ(Xo, Yo) 
Theorem 3.  If (αo

∗ , λ∗) is a weakly Pareto efficient solution for the MOLP (5) in which  αo
∗ > Xo, 

then: 
θ(αo

∗ , βo) = θ(Xo, Yo)   

3.3. Two-stage DEA 
In the classic DEA models, DMU is a "black box" (represented by the dotted line in Figure 1), in 

which either the information is missing or its internal structure is not considered. Consequently, the 
DMU in these models exclusively utilizes primary inputs to generate final outputs, irrespective of the 
different stages of its internal processes. Therefore, it is impossible to measure the performance of 
sub-processes or the inefficiency of DMUs to enhance the performance of internal operations and the 
total efficiency of DMUs. The significant features of the model presented by Jian Feng [5] are as 
follows: 

i. Modeling the interior form of a DMU is within a network structure. 
ii. Inputs of the DMU are arranged into three groups: primary inputs, added inputs, and 

common inputs. 
iii. The model is capable of reviewing the performance values based on the traditional model 

and can evaluate it using the conventional two-stage model.                                                                    
                                                                               

 𝑥𝑖2𝑗
"  
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                                          x𝑘𝑗

′                        

 
 
 
 

Fig. 1. A Two-stage Network with common inputs and free middle productions 

 
Consider a group of DMUs like DMUj; (j = 1,  … , n). Assume that each of these DMUs takes part 

in two-stage DEA procedure shown in Figure 1 so that for each DMU, there are three types of inputs: 
the primary, the additional, and the shared inputs. The primary inputs are shown as   xi1j;   i1 ∈  I1, the 

shared inputs are as x”
i2j;  i2 ∈  I2 in which I1 ∪  I2 = {1,  … , m} & I1 ∩  I2 =  ∅ , σi2j and (1 − σi2j) 

are the amount of input x”
i2j that are assigned to the stage 1 and stage 2, respectively.  Similar to the 

constraints mentioned in Cook and Hababou [35], Li2j
1 ≤ σi2j ≤ Li2j

2 ;   (i2 ∈ I2,   Li2j
1 > 0,   Li2j

2 < 1;  

  j = 1, … , n).  
It is obvious that the closer the value of σi2j is to zero, it is expected that the efficiency of stage 1 

to be higher and the efficiency of the stage 2 to be lower. Conversely, the closer σi2j is to 1, the higher 

the efficiency of the stage 2 and the lower the efficiency of the stage 1.  
Furthermore, the additional inputs are stated as x′

kj;  (k = 1, . . . , q) . zdj; (d = 1, . . . , D),  is the 

output of the first stage that part of it i.e., δdj
zdj

 forms input of the second stage. Other part of it i.e.,   

(1 − δdj
zdj

) is considered as the final output of DMU in which Hdj
1 ≤ δdj

≤ Hdj
2 ;  Hdj

1 > 0 and    Hdj
2 ≤

1,  and final outputs of the second stage are represented as  yrj;  (r = 1, . . . , S).  

Now, consider two-stage procedure shown in Figure 1 with (Hdj
2 < 1). More precisely, for each 

DMU, two decisions must be made, including the allocation of resources and the reassignment of 
intermediate products. Considering a two-stage procedure with common inputs and free middle 

products, the performance score of the DMUo in the first and second stage is denoted by Φo
SF1 

and  Φo
SF2, respectively. Furthermore, overall efficiency Φo

SF is calculated as follows (Jian Feng [5]): 
 

Φo
SF1 =

∑   ud
′  zdo

   D

   d=1

∑ vi1
 xi1o

 i1∈ I1

  + ∑ vi2

"  σi2o xi2o
"

 i2∈ I2

 

 

Φo
SF2 =

∑   ur yro
   S
   r=1

∑ vi2

"  (1 − σi2o) xi2o
"

 i2∈I2

  +   ∑   vk
′  xko

′    q

    k=1
  +   ∑   ud

′  δdo zdo
    D

    d=1

 

Moreover, the total performance for DMUo is considered as w1 Φo
SF1 +  w2 Φo

SF2 =  Φo
SF, where: 

 

𝛿𝑑𝑗𝑧𝑑𝑗   

 
𝑥𝑖1𝑗  𝑦𝑟𝑗  

(1 − 𝛿𝑑𝑗)𝑧𝑑𝑗   

𝜎𝑖2𝑗  𝑥𝑖2𝑗
"  (1 − 𝜎𝑖2𝑗) 𝑥𝑖2𝑗

"  

 

𝑥′
𝑘𝑗  

  Stage 1 

 
Stage 2 
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w1 =

∑ vi1
 xi1o

 i1∈ I1

  + ∑ vi2

"  σi2o xi2o
"

 i2∈ I2

∑ vi1
 xi1o

 i1∈ I1

  + ∑ vi2

"  xi2o
" +    ∑   vk

′  xko
′   q

   k=1
  +   ∑   ud

′  δdo zdo
   D

   d=1
 

 i2∈ I2

 

and 

w2 =

∑ vi2

"  (1 − σi2o) xi2o
"

 i2∈ I2

+   ∑   vk
′  xko

′   q

   k=1
  +   ∑   ud

′  δdo zdo
   D

   d=1

∑ vi1
 xi1o

 i1∈ I1

  + ∑ vi2

"  xi2o
" +    ∑   vk

′  xko
′   q

   k=1
  +   ∑   ud

′  δdo zdo
   D

   d=1
 

 i2∈ I2

 

 
 DEA model to assess the total efficiency of the DMUo is presented as the following fractional 

model:  
 

Φo
SF = Maximize 

∑   ud
′  zdo

   D

   d=1
+   ∑   ur yro

   S
   r=1

∑ vi1
 xi1o

 i1∈ I1

  + ∑ vi2

"  xi2o
"

 i2∈ I2

+ ∑   vk
′  xko

′    q

    k=1
  +   ∑   ud

′  δdo zdo
    D

    d=1

 

  subject to        (6) 

 
∑   ud

′  zdj

   D

   d=1

∑ vi1  xi1j
 i1∈ I1

 +∑ vi2
"  σi2j xi2j

"

 i2∈ I2

≤ 1                                    , 
j = 1, . . . , n 

 ∑   ur yrj

   S

   r=1

∑ vi2
"  (1−σi2j) xi2j

"

 i2∈I2
 +  ∑   vk

′  xkj
′

    q

    k=1
 +  ∑   ud

′  δdj zdj

    D

    d=1

≤ 1         , r = 1, . . . , S 

 Li2j
1   ≤ σi2j  ≤  Li2j

2                                                                            , i2 ∈  I2 ;   

j = 1, . . . , n 

 Hdj
1 ≤ δdj  ≤  Hdj

2                                                                               , d = 1,  … , D; 
j = 1, . . . , n 

 vi1
≥ 0,  vi2

" ≥ 0,  vk
′ ≥ 0                                                                 , 

 

i1 ∈  I1; 
i2 ∈  I2; 
k = 1, . . . , q 
 

Remark 1. Since the constraints Hdj
1 ≤ δdj  ≤  Hdj

2  and Li2j
1   ≤ σi2j  ≤  Li2j

2  included in the model (6) 

are in terms of managerial preferences, then they can be considered definite amounts. Therefore, if 
these assumptions make the model infeasible, these can be modified by using the goal programming 
method.  

Finally, using Charnes and Cooper Transformations [36], model (7) is obtained as below: 
 

Φo
SF 

Maximize  ∑   ud
′  zdo

   D

   d=1
+   ∑   ur yro

   S

   r=1
 

 

  subject to          (7) 
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∑   ud

′  zdj

   D

   d=1
− ∑ vi1

 xi1j
 i1∈ I1

  − ∑ vi2

"  σi2j xi2j
"

 i2∈ I2

≤ 0                 ,   j = 1, . . . , n 

 
∑ ur yrj

   S

   r=1
− ∑ vi2

"  (1 − σi2j) xi2j
"

 i2∈I2

+ ∑ vk
′  xkj

′
    q

    k=1
 + ∑ ηd zdj

    D

    d=1
≤ 0 j = 1, . . . , n 

 
∑ vi1

 xi1o

 i1∈ I1

+ ∑ vi2

"  xi2o
"

 i2∈I2

  +   ∑   vk
′  xko

′
    q

    k=1
  +   ∑   ηd zdo

    D

    d=1
= 1  r = 1, . . . , S 

   ur ≥ 0,   ud
′  ,  ηd ≥ 0                                                                                        ,  r = 1,  … , S; 

 d = 1, . . . , D 

        vi1
≥ 0,  vi2

" ≥ 0,  vk
′ ≥ 0                                                                                ,  i1  ∈  I1; 

 i2  ∈  I2; 
 k = 1, . . . , q 

in which  vi1
=  tvi1

, ur = tur, ud
′ = tud

′ , vk
′ = tvk

′ , ηd = ud
′ δdj. Model (7) expresses the total 

performance of DMUo for the internal process shown in Figure 1. This model considers the inputs 
structure and middle productions at the same time. Jian Feng [5] showed that if  ur ≥ ε,   ηd, ud

′ ≥ ε ,  

 vi1
≥ ε,     vi2

” ≥ ε,   vk
′ ≥ ε, (r = 1,  … , S ;   i1 ∈  I1;    i2 ∈ I2;   d = 1,  … , D;   k = 1,  … , q) in the model 

(7), then the model has a non-zero optimal solution that satisfies the constraints  ηd , ud
′ ≥ 0,  ur ≥ 0, 

 vi1
≥ 0,  vi2

" ≥ 0,  vk
′ ≥ 0, ( d = 1, . . . , D ; r = 1,  … , S ;   i1 ∈  I1;  i2 ∈  I2;  k = 1, . . . , q).  

 
4. Modelling 

The interior structure of DMUs plays a crucial role in most practical and real difficulties while 
studying two-stage processes. Decision-makers require theoretical and practical support to optimize 
the overall efficiency of units, and thoroughly study the underlying causes of inefficiency. As a result, 
this section presents the inverse version model that Jian and Feng [5] suggested. This model helps 
decision makers analyze the performance assessment of DMUs by taking into account input structures 
and intermediate products at the same time. Furthermore, this study aims to articulate the essential 
and sufficient conditions to assess the outputs and all or a portion of the inputs involved in improving 
performance. Furthermore, since some production processes are taken place and repeated in several 
periods, the models offered are also expressed from a window DEA perspective. 

We consider the dual form of the model (7) as follows:    

 
     θo = Minimize θ  

 
  subject to                            (8) 
 

∑  ρjzdj ≤  θzdo  
n

j=1
                                                             , 

 
d = 1, 2, . . . , D 

 

 
∑  λjxi1j ≤  θxi1o  

n

j=1
                                                           , 

 
 i1  ∈ I1 

 
∑  ρjxkj

′ ≤  θxko
′    

n

j=1
                                                           , 

 
k = 1, 2, . . . , q 

 
∑  ((1 − σi2j)ρj + σi2jλj)xi2j

" ≤  θxi2o
"     

n

j=1
                    , 

  
i2  ∈ I2 

 
∑  λjzdj ≥ zdo   

n

j=1
                                                               , 

 
d = 1, 2, . . . , D 
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∑  ρjyrj ≥ yro         

n

j=1
                                                          , 

 
r = 1, 2, . . . , S 

  ρj , λj ≥ 0                                                                                , j = 1, 2, . . . , n 
 

  
The output-oriented of the model (8) is: 

 
    φo = Maximize φ   
  subject to                         (9)  
 

∑  ρjzdj ≤ zdo  
n

j=1
                                                                , 

 
d = 1, 2, . . . , D 

 
∑  λjxi1j ≤ xi1o  

n

j=1
                                                              , 

 
 i1  ∈ I1 

 
∑  ρjxkj

′ ≤ xko
′    

n

j=1
                                                               , 

 
k = 1, 2, . . . , q 

 
∑  ((1 − σi2j)ρj + σi2jλj)xi2j

" ≤ xi2o
"     

n

j=1
                        , 

  
i2  ∈ I2 

 
∑  λjzdj ≥ φzdo   

n

j=1
                                                            , 

 
d = 1, 2, . . . , D 

 
∑  ρjyrj ≥ φyro         

n

j=1
                                                       , 

 
r = 1, 2, . . . , S 

 
 ρj , λj ≥ 0                                                                                ,  j = 1, 2, . . . , n 

Remark 2.  The efficiency obtained from two models (8) and (9) is the total efficiency. Therefore, 
multiplier models should be used to obtain component efficiency. 

Remark 3.  
   a) It is easy to show that θo

∗ ≤ 1 and φo
∗ ≥ 1. 

   b) If  θo
∗ = 1,  then DMUo is at least weakly efficient. The same result is held for  DMUo in output    

        orientation when φo
∗ = 1. 

 
4.1. Output Estimation 

Now, to apply and extend the output estimation problem provided by Wei et al., [2]  for the             
two-stage DEA framework considering the condition shown in Figure 1, and improving efficiency, 

suppose that inputs of DMUo changes from (Xo, Xo
" , Xo

′ ) to  (αo, μo, γo) in such a way that: 
 

(αo, μo, γo) = (αi1o, i1 ∈  I1;    μi2o, i2 ∈  I2;    γko, k = 1, . . . , q) = (Xo,  Xo
" ,  Xo

′ ) + (ΔXo,  ΔXo
" ,  ΔXo

′ ) 

 

where (ΔXo,  ΔXo
" ,  ΔXo

′ ) ≥ 0 and (ΔXo,  ΔXo
" ,  ΔXo

′ ) ≠ 0. 
Now, output vector βo that βo = Yo + ΔYo  and ΔYo ≥ 0 is estimated such that the efficiency of 

DMUo is improved by (1 −
η

100
)φo

∗ . To estimate the output vector, the following MOLP is considered: 

  



Decision Making: Applications in Management and Engineering 

Volume 8, Issue 1 (2025) 82-107 

93 
 

 

Maximize (βro;    r = 1, . . . , S)   
 subject to                                                                                                                                                      (10)  

∑  ρjzdj ≤ zdo  
n

j=1
                                                                             ,   d = 1, 2, . . . , D 

∑  λjxi1j ≤ αi1o  
n

j=1
                                                                           , 

 
  i1  ∈ I1 

∑  ρjxkj
′ ≤ γko 

n

j=1
                                                                              , 

 
  k = 1, 2, . . . , q 

∑  ((1 − σi2j)ρj + σi2jλj)xi2j
" ≤  μi2o  

n

j=1
                                      , 

  
  i2  ∈ I2 

∑  λjzdj ≥ (1 −
η

100
)φo

∗ zdo   
n

j=1
                                                      , 

 
  d = 1, 2, . . . , D 

∑  ρjyrj ≥ (1 −
η

100
)φo

∗ βro    
n

j=1
                                                      ,   r = 1, 2, . . . , S 

  ρj ,  λj ≥ 0,   βro ≥ 0                                                                         ,   j = 1, 2, . . . , n ; 
  r = 1, 2, . . . , S 

 

   Note that in the model (10), 0 < σi2j  < 1; (j = 1, . . . , n ;    i2 ∈ I2  ) and 0 ≤ η ≤
100(φo

∗ −1)

φo
∗ . It is 

easy to see that if η = 0, the performance level of unit under evaluation remains unchanged with 

respect to the other units. Besides, in the case that η =
100(φo

∗ −1)

φo
∗  , the unit will be efficient. Moreover, 

the vector of variables is (λj,  ρj,  βro); (r = 1, . . . , S ;  j = 1, . . . , n  ). Furthermore, (αi1o,  μi2o,  γko);      

(i1 ∈  I1;     i2 ∈  I2;    k = 1, . . . , q) and (1 −
η

100
)φo

∗  as the optimal solution of model (9) improved by 

η%, are fixed values. Now, suppose that the newly generated unit after the change in its input and 
output levels is shown as DMUn+1. To measure the performance of DMUn+1, the following model, 
derived from the output-oriented model (9), is presented:    

 
φn+1 = Maximize φ  

 
  subject to                 (11) 
 

∑  ρjzdj + ρn+1zdo ≤  zdo 
n

j=1
                                                 , 

 
d = 1, 2, . . . , D 

 
∑  λjxi1j + λn+1αi1o ≤ αi1o  

n

j=1
                                              , 

 
 i1  ∈ I1 

 
∑  ρjxkj

′ + ρn+1γko ≤ γko 
n

j=1
                                                  , 

 
k = 1, 2, . . . , q 

 
∑ ((1 − σi2j)ρj + σi2jλj) xi2j

" + ((1 − σi2(n+1))ρn+1 + σi2(n+1)λn+1) μi2o ≤ μi2o

n

j=1

 
  
i2  ∈ I2 

 
∑  λjzdj + λn+1zdo ≥ φzdo    

n

j=1
                                            , 

 
d = 1, 2, . . . , D 

 
∑  ρjyrj + ρn+1βro ≥ φβro     

n

j=1
                                           , 

 
r = 1, 2, . . . , S 

  ρj,  λj ≥ 0                                                                                     ,  j = 1,  . . . , n+1 
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Now, if the following condition is held for the optimal solution of models (9) and (11), then the 
efficiency score will be improved: 

 

φ(αo, μo, γo, βo) ≤   φ(Xo, Xo
" , Xo

′ , Yo) 
  

The model below is used to determine the input surplus: 
 

Maximize (𝛿𝑖1𝑜 , 𝑖1 ∈  𝐼1;    𝜈𝑖2𝑜 , 𝑖2 ∈  𝐼2;    𝜏𝑘𝑜 , 𝑘 = 1, . . . , 𝑞)  

𝑠uject to                    (12) 

∑  𝜌𝑗𝑧𝑑𝑗 ≤ 𝑧𝑑𝑜   
𝑛

𝑗=1
                                                                  , d = 1, 2, . . . , D 

∑  𝜆𝑗𝑥𝑖1𝑗 ≤ (𝛼𝑖1𝑜 − 𝛿𝑖1𝑜)   
𝑛

𝑗=1
                                               , 

 
 i1  ∈ I1 

∑  𝜌𝑗𝑥𝑘𝑗
′ ≤ (𝛾𝑘𝑜 − 𝜏𝑘𝑜)       

𝑛

𝑗=1
                                              , 

 
k = 1, 2, . . . , q 

∑ ((1 − 𝜎𝑖2𝑗)𝜌𝑗 + 𝜎𝑖2𝑗𝜆𝑗)𝑥𝑖2𝑗
" ≤ (𝜇𝑖2𝑜 − 𝜈𝑖2𝑜)  

𝑛

𝑗=1
           , 

  
i2  ∈ I2 

∑  𝜆𝑗𝑧𝑑𝑗 ≥ (1 −
𝜂

100
)𝜑𝑜

∗𝑧𝑑𝑜   
𝑛

𝑗=1
                                           , 

 
d = 1, 2, . . . , D 

∑  𝜌𝑗𝑦𝑟𝑗 ≥ (1 −
𝜂

100
)𝜑𝑜

∗𝛽𝑟𝑜    
𝑛

𝑗=1
                                          , 

 
r = 1, 2, . . . , S 

𝜌𝑗  ,  𝜆𝑗 ≥ 0,                                                                                 , j = 1, 2, . . . , n 

𝛿𝑖1𝑜 ≥ 0,  𝜈𝑖2𝑜 ≥ 0,   𝜏𝑘𝑜   ≥ 0                                                  , k = 1, 2, … , q;   
i1 ∈  I1; i2 ∈  I2 

 
Note that if (δo

∗ , vo
∗ , τo

∗ , λ∗, ρ∗) is a Pareto solution for (12), then the amount of input surplus for 

the i1
th input is obtained from  αi1o − δi1o

∗ . 

Regarding the output estimation problem with the condition of efficiency improvement, the 
following theorems are stated and proved: 

Theorem 4.  If ( λ∗, βo
∗ , ρ∗) is a Pareto solution of model (10) and the output of DMUo increase 

from Yo to  βo
∗ , then the efficiency score of new DMU will be improved compared with DMUo. It means 

that: 

φ(αo, μo, γo, βo
∗ ) ≤ φ(Xo, Xo

" , Xo
′ , Yo) 

 

Proof: Suppose that ( λ∗, βo
∗ , ρ∗) is a Pareto solution and (1 −

η

100
)φo

∗  is the objective value of the 

model (10). By putting this solution in the model, the following relations are yielded: 

          ∑  λj
∗xi1j ≤  αi1o                                             ,                        i1  ∈ I1                      

n

j=1

 

 
and 
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∑  ρj
∗yrj ≥ (1 −

η

100
)φo

∗ βro
∗                       ,                       r = 1, 2, . . . , S

n

j=1

 

 

Since (1 −
η

100
)φo

∗ ≥ 1, we have: 

 

 ∑  ρj
∗yrj ≥ (1 −

η

100
)φo

∗ βro
∗ ≥ βro

∗          ,                        r = 1, 2, . . . , S

n

j=1

 

 
So, the following inequality is satisfied: 

∑  ρj
∗yrj ≥ βro

∗                                                  ,                       r = 1, 2, . . . , S

n

j=1

 

 
We already know  xi1o ≤  αi1o, βro

∗   ≥ yro; (i1  ∈ I1  &   r = 1, 2, . . . , S)  

Now, we define: 

λ̅ = (λ̅1, . . . , λ̅n+1) = {
λ̅j = λj

∗           j ≠ n + 1 

λ̅n+1 = 0        j = n + 1 
 

 
and 

 

ρ̅ = (ρ̅1, . . . , ρ̅n+1) = {
ρ̅j = ρj

∗           j ≠ n + 1 

ρ̅n+1 = 0        j = n + 1 
 

 

Hence, (λ̅, ρ̅) and the objective value(1 −
η

100
)φo

∗   are the feasible solution for the model (11), 

then: 
 

φ(n+1)o
∗ ≤ (1 −

η

100
)φo

∗ ≤ φo
∗  

 

It means that φ(αo, μo, γo, βo
∗ ) ≤ φ(Xo, Xo

" , Xo
′ , Yo). So, the statement is proved.                 

Theorem 5. If ( λ∗, βo
∗ , ρ∗) is a Pareto solution for the model (10), then the constraints below are 

binding i.e.: 

∑  ρj
∗yrj = (1 −

η

100
)φo

∗ βro
∗                      ,                     r = 1, 2, . . . , S

n

j=1

 

Proof: Based on the absurdum, we assume that there is an index (l) for which the last constraint is 
not binding, i.e.: 

∑  ρj
∗ylj > (1 −

η

100
)φo

∗ βlo
∗

n

j=1

 

Now we consider positive and non-zero number (q), such that satisfies the following inequality: 
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0 < q ≤  

∑  ρj
∗ylj − (1 −

η
100)φo

∗ βlo
∗

n

j=1

(1 −
η

100)φo
∗

 

⇒                                       q (1 −
η

100
) ϕo

∗ ≤ ∑ ρjylj − (1 −
η

100
) ϕo

∗

n

j=1

βlo
∗                                    

    ⇒                                       (1 −
η

100
) ϕo

∗ βlo
∗ ≤ ∑ ρjylj 

n

j=1
                        

 
We define: 
 

β̅ro = {
q + βlo

∗         r = l

βro
∗                 r ≠ l

 

 
 

It can be easily seen that ( λ∗, β̅o, ρ∗) is a feasible solution for the model (10) in which β̅lo >  βlo
∗ . 

This contradicts point ( λ∗, βo
∗ , ρ∗) being Pareto efficient. Therefore, the absurdum is rejected which 

means that all mentioned constraints are binding. 

Theorem 6.  Let (λ̅, β̅o, ρ̅) is a feasible solution for the model (10), such that: 

φ(αo, μo, γo, β̅o) ≤ φ(Xo, Xo
" , Xo

′ , Yo) 
 

Then, (λ̅, β̅o, ρ̅) is a weak Pareto solution of the model (10). 

Proof: Suppose that (λ̅, β̅o, ρ̅) is not a weak Pareto solution for the model (10), then there is 

another feasible solution (λ̃, β̃o, ρ̃) such that:  

 

∀r                   β̃ ro>β̅ro 
 

Since (λ̃, β̃o, ρ̃) is a feasible solution for the model (10), then in terms of the 6th constraint of the 

model and the absurdum we have: 

∀r                   ∑  ρ̃jyrj ≥ (1 −
η

100
)kφo

∗ β̃ro > (1 −
η

100
)kφo

∗ β̅ro  

n

j=1

 

 
So, there exist k>1 such that:  

 

                         ∀r                   ∑  ρ̃jyrj > (1 −
η

100
)kφo

∗ β̅ro                                       
n

j=1
 

 
We define: 

 

λ̂ = (λ̂1, . . . , λ̂n+1) = {
λ̂j = λ̃j            j ≠ n + 1 

λ̂n+1 = 0        j = n + 1 
 

 
and  
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ρ̂ = (ρ̂1, . . . , ρ̂n+1) = {
ρ̂j = ρ̃j           j ≠ n + 1 

ρ̂n+1 = 0        j = n + 1 
 

 
and 

 

α̂o = αo, μ̂o = μo, γ̂o = γo , kφo
∗ = φ̂o, β̂o = β̅o 

 

Hence, ( λ̂, β̂o, ρ̂, kφo
∗ ) is a feasible solution for the model (11). Then, the objective value for this 

possible solution is kφo
∗ . Based on the assumption, we should have kφo

∗ ≤  φo
∗  which results in  k ≤ 1. 

This contradicts the primary assumption for (k). Therefore, the absurdum is rejected, and the 
statement is proved.  

Theorem 7.  Let DMUo is efficient and (λ̅, β̅o, ρ̅) is a weakly efficient solution of the model (10), 

then: 

φ (αo, μo, γo, β̅o) ≤ φ (Xo, Xo
" , Xo

′ , Yo) 
 

Proof: Since DMUo is efficient, then φo
∗ = 1. We need to illustrate ϕN+1

∗ ≤ ϕo
∗  to achieve the goal, 

let β̅o = β̃o  ,    λ̅ = λ̃  ,    λ̅N+1 = 0  ,    ρ̅ = ρ̃  ,    ρ̃N+1 = 0.  
Then, we have: 

∀r                   ∑  ρ̃jyrj ≥ φN+1
∗ β̅ro >  β̅ro = φo

∗ β̅ro          

n

j=1

 

Based on the absurdum, suppose that ϕN+1
∗ > ϕo

∗ . Since φo
∗ = 1, we have  ϕN+1

∗ > 1. 
Hence: 
 

∀r                   ∑  ρ̃jyrj ≥ φN+1
∗ β̅ro >  β̅ro = φo

∗ β̅ro       

n

j=1

 

For k > 0, define: 
    

β̃ro = β̅ro + k;  r = 1, . . . , S 
 

So, (λ̃, β̃o, ρ̃) is a feasible solution for the model (10). But, according to the above definition 

 

β̃ro > β̅ro;      r = 1, . . . , S 
 

This contradicts point (λ̅, β̅o, ρ̅) being a weakly Pareto solution. Hence, the proposition is proved. 

 
4.2. Input Estimation  

Two cases are addressed to study the input estimation problem: the first considers the input 
estimation by improving the efficiency, and the second deals with the input estimation by increasing 
the shared inputs and maintaining the efficiency. Now, we discuss the first case, i.e., The input 
estimation with efficiency improvement. In the two-stage DEA structure shown in Figure 1, suppose 
that outputs of the DMUo change from Yo to βo such that  βo = Yo + ΔYo  and ΔYo ≥ 0, ΔYo ≠ 0. In 
the following, the input vector (αo, μo, γo) is estimated so that the efficiency of DMUo is improved 

by (1 +
η

100
) %. 

 Hence, for the input vector, we have:  
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(αo, μo, γo) = (αi1o, i1 ∈  I1;    μi2o, i2 ∈  I2;    γko, k = 1, . . . , q) = (Xo,  Xo
" ,  Xo

′ ) + (ΔXo,  ΔXo
" ,  ΔXo

′ ) 

 

in which (ΔXo,  ΔXo
" ,  ΔXo

′ ) ≥ 0. For the next step, following MOLP is considered to approximate 
the input vector:  

 
Minimize (αi1o ;   i1 ∈   I1,   μi2o;   i2 ∈   I2,   γko;   k = 1, . . . , q)      

subject to                       (13)  

 ∑  ρjzdj ≤ (1 +
η

100
) θo

∗ zdo  
n

j=1
                                                       , d = 1, 2, . . . , D 

∑  λjxi1j ≤ (1 +
η

100
) θo

∗ αi1o   
n

j=1
                                                     ,  i1  ∈ I1 

∑  ρjxkj
′ ≤ (1 +

η

100
) θo

∗ γko       
n

j=1
                                                   , k = 1, 2, . . . , q 

∑ ((1 − σi2j)ρj + σi2jλj)xi2j
" ≤ (1 +

η

100
) θo

∗ μi2o   
n

j=1
                  , i2  ∈ I2 

∑  λjzdj ≥ zdo   
n

j=1
                                                                             , d = 1, 2, . . . , D 

∑  ρjyrj ≥ βro    
n

j=1
                                                                            , r = 1, 2, . . . , S 

αi1o ≥  xi1o                                                                                           , i1  ∈ I1 

γko  ≥  xko
′                                                                                             , k = 1, 2, . . . , q 

μi2o ≥  xi2o
"                                                                                            , i2  ∈ I2 

 ρj ,  λj ≥ 0                                                                                            , j = 1, 2, . . . , n 

 

Note that in the model (12), 0 < σi2j  < 1, (j = 1, . . . , n ;    i2 ∈ I2  ) and 0 ≤ η ≤
100(1−θo

∗ )

θo
∗ . It can 

be seen here that if η = 0, then the performance level of unit under evaluation will be unchanged 

with respect to the other units. Besides, if  η =
100(1−θo

∗ )

θo
∗ , then the unit will be efficient. Note that 

(λj, ρj, αi1o, μi2o, γko); (j = 1, . . . , n  ,   i1 ∈   I1 ,   i2 ∈   I2 ,  k = 1, . . . , q) is the vector of variables. 

Furthermore, θo
∗  which was the optimal value of the model (8) improved by  η% , and βro are constant 

values. 
Assume that new DMUo after altering its input and output levels is shown as DMUn+1. Then, the 

following model taken from the model (8) is applied to evaluate the efficiency of DMUn+1: 
 

θn+1 = Minimize θ 

    Subject to                  (14) 

∑  ρjzdj + ρn+1zdo ≤  θzdo 
n

j=1
                                                         , 

d = 1, . . . , D 

∑  λjxi1j + λn+1αi1o ≤ θαi1o  
n

j=1
                                                      , 

 i1  ∈ I1 

∑  ρjxkj
′ + ρn+1γko ≤ θγko 

n

j=1
                                                          , 

k = 1, . . . , q 
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∑ ((1 − σi2j)ρj + σi2jλj) xi2j
" + ((1 − σi2(n+1))ρn+1 + σi2(n+1)λn+1) μi2o ≤ θμi2o

n

j=1

 
 
 i2  ∈ I2 

∑  λjzdj + λn+1zdo ≥ zdo    
n

j=1
                                                          , 

 
d = 1, . . . , D 

∑  ρjyrj + ρn+1βro ≥ βro     
n

j=1
                                                         , 

 
r = 1, . . . , S 

  ρj,  λj ≥ 0                                                                                                  ,                                                                                                    +   j = 1,  . . . , n + 1 

 
   Now, consider the models (8) and (14). If in optimality, we have: 
 

θ(αo, μo, γo, βo) ≥ θ(Xo, Xo
" , Xo

′ , Yo) 
 

then, the efficiency score is improved. 
 

in the following the input estimation by increasing the shared inputs and maintaining the efficiency 
is discussed: 

 As shown in Figure 1, there are three different types of inputs. Now, in two-stage inverse DEA we 

aim to answer the following question: If the shared inputs of the first and second stages (xi2o
" )  and 

the inputs of the second stage (xko
′ ) as well as the outputs (yro) increase simultaneously, then how 

much should increase the input of the first stage (xi1o) such that the efficiency score of DMUo does 

not change? 
Let outputs of DMUo change from Yo to βo such that βo = Yo + ΔYo and ΔYo ≥ 0, ΔYo ≠ 0. Also, 

let the input vector (Xo
" ,  Xo

′ ) changes to (μo, γo) such that: 
 

(μo, γo) = (Xo
" ,  Xo

′ ) + (ΔXo
" ,  ΔXo

′ ) ; ((ΔXo
" ,  ΔXo

′ ) ≥  0  & (ΔXo
" ,  ΔXo

′ ) ≠  0) 
 
Therefore, estimating input vector (αo) is aimed such that efficiency score of DMUo i.e., θo 

remains unchanged where: 
 

αo = (αi1o;   i1  ∈  I1) = Xo + ΔXo ;  ΔXo ≥ 0 

 
If DMUn+1 is supposed to be the new unit after changing inputs, and outputs of DMUo, then model 

(14) is applied to assess the performance of DMUn+1. It is clear that if the optimal value of the models 
(8) and (14) is the same, then the value of the efficiency is constant, i.e.: 

 

θ(αo, μo, γo, βo) = θ(Xo, Xo
" , Xo

′ , Yo) 
 

Now, the following MOLP is provided to approximate the input vector:  
 

Minimize (αi1o ;   i1 ∈   I1)   

subject to                                         (15)  

∑  ρjzdj ≤  θo
∗ zdo  

n

j=1
                                                                     , 

 
d = 1, 2, . . . , D 
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∑  λjxi1j ≤  θo
∗ αi1o   

n

j=1
                                                                  , 

 
 i1  ∈ I1 

∑  ρjxkj
′ ≤  θo

∗ γko       
n

j=1
                                                                , 

 
k = 1, 2, . . . , q 

∑ ((1 − σi2j)ρj + σi2jλj)xi2j
" ≤  θo

∗ μi2o   
n

j=1
                               , 

  
i2  ∈ I2 

∑  λjzdj ≥ zdo   
n

j=1
                                                                          , 

 
d = 1, 2, . . . , D 

∑  ρjyrj ≥ βro    
n

j=1
                                                                         , 

 
r = 1, 2, . . . , S 

αi1o ≥  xi1o                                                                                         , 
i1  ∈ I1 

ρj ,  λj ≥ 0                                                                                           , 
j = 1, 2, . . . , n 

 
   Note that θo

∗  as the optimal value of the model (8), and given vectors  γko , μi2o &  βro are 

constant. Furthermore, (λj, ρj, αi1o ) is the vector of variables, and 0 < σi2j  < 1;  (j = 1, . . . , n ;    i2 ∈

I2  ) are as mentioned before. 
 

 4.3. Window DEA  
   As stated in section 3.3, Figure 1 shows the production process used in the model proposed by 

Jian Feng [5]. Suppose that measuring the performance trend of the DMU under evaluation among a 
set of DMUs at a specific point in time is aimed such that data are also functions of time. In this case, 
observing the performance of the DMU under evaluation at the point in time may have a large error 
in the actual performance. To address this issue, it is recommended that the data be collected and 
analyzed at different periods when there is a possibility of its change. As illustrated in Figure 2, the 
aforementioned production process can occur in several periods. This problem is dealt with as window 
DEA in which it is no longer possible to use the traditional DEA models (Jahanshahloo et al., [37] ,and 
Emrouznejad and Thanassoulis [38]). Therefore, the inverse two-stage DEA problem should be 
examined from the window DEA perspective.  

 
                                               𝑥𝑜

𝜏                                   τ                                   𝑦𝑜
𝜏 

 
                                             𝑥𝑜

𝜏+1                              τ + 1                              𝑦𝑜
𝜏+1 

                                                                                                         
 
                                             𝑥𝑜

𝜏+𝑇                              τ + T                             𝑦𝑜
𝜏+𝑇                                            

                                        
Fig. 2. Multi-period production cycle of DMUo without internal temporal dependencies 

 
For this purpose, assume that the aim is to assess the performance of the number of DMUs given 

in an arbitrary time interval (performance window). Since this interval was arbitrarily chosen, without 
the loss of generality, we can consider the evaluation window as t = τ + 1, . . . , τ + T. It is imperative 
to acknowledge that the activity of a decision-maker persists both prior to and subsequent to the 
arbitrary time interval in which the arbitrary choice is proposed. According to Figure 1, as mentioned 
earlier, for each DMU in each period, there are three types of inputs (primary inputs, added inputs, 
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and common inputs) and two outputs (middle and final outputs) in which primary and common inputs 

are shown as  xi1j;  (i1 ∈  I1) and x"
i2j; (i2 ∈  I2) respectively and I1 ∪  I2 = {1, . . . , m}  &  I1 ∩  I2 =  ∅ .     

Furthermore, added inputs are shown as x′
kj; (k = 1, . . . , q). Moreover, assume that each DMUj;                                 

(j = 1, . . . , n), contains D outputs of the first stage as  zdj; (d = 1, . . . , D) and S ultimate outputs 

as  yrj; (r = 1, . . . , S) from the second phase.  

Furthermore, note that part of  zdj; (d = 1, . . . , D) as the middle outputs are considered input for 

the second stage, and the rest have entered the market as the final output. The share of intermediate 
outputs and the share of final outputs are denoted by δdjzdj and (1 − δdj) zdj, respectively so that  

0 < δdj < 1.  

Suppose that xi1j
t=τ+1, ..., τ+T is a general representation of the initial inputs of each period 

and zdj
t=τ+1, ..., τ+T express intermediate outputs of each stage where τ + 1 and τ + T are considered 

as initial and final periods in τth evaluation window, respectively. In the production process shown in 
Figure 2 as the internal structure of Figure 1, it is important to note that the efficiency of a DMU is 
expressed as the average of the periodic efficiencies in a specified period. 

   To estimate the relative efficiency in the production procedure in Figure 1, the following input-
oriented model is proposed which derived from model (8) and the model presented by Jahanshahloo 
et al., [37]: 

θo = Minimize 
∑ θtt= τ+T

t= τ+1

T
 

  

subject to                                               (16)  

∑  ρjzdj
t + δd

t =  θtzdo
t        

n

j=1
                                                          , 

 d = 1, 2,  … , D  ; 
t = τ + 1, . . . , τ + T 

∑  λjxi1j
t + si1

t =  θtxi1o
t    

n

j=1
                                                            , 

 i1  ∈ I1 ; 
 t = τ + 1, . . . , τ + T 

∑  ρj(x′)kj
t + (s′)k

t =  θt(x′)ko
t      

n

j=1
                                             , 

 k = 1, 2, . . . , q ; 
t = τ + 1, . . . , τ + T 

∑  ((1 − σi2j)ρj + σi2jλj)(x")i2j
t + (s")i2

t =  θt(x")i2o
t                 , 

n

j=1

 
 i2  ∈ I2 ; 
 t = τ + 1, . . . , τ + T 

∑  λjzdj
t + γd

t = zdo
t      

n

j=1
                                                                 , 

 d = 1, 2, . . . , D; 
 t = τ + 1, . . . , τ + T 

∑  ρjyrj
t + (γ′)r

t = yro
t     

n

j=1
                                                              , 

 r = 1, 2,  … , S ; 
 t = τ + 1, . . . , τ + T 

θ t ≤ 1                                                                                                   ,  t = τ + 1, . . . , τ + T 

ρj ,  λj ≥ 0                                                                                             ,   j = 1, 2, . . . , n  

δd
t   ≥ 0;      si1

t ≥ 0;    (s′)k
t   ≥ 0;  (s")

i2

t
≥ 0;    γd

t ≥ 0                ,  d = 1, 2,  … , D;   i1 ∈ I1 ; 
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(γ′)r
t   ≥ 0                                                                                              ,  k = 1, 2,  … , q; i2 ∈ I2 

 r = 1, 2,  … , S  ; 
 t = τ + 1, . . . , τ + T 

 

In above model, δd
t , si1

t , (s′)k
t , (s")i2

t , γd
t & (γ′)r

t  are all auxiliary variables. Now, suppose the 

evaluation path for DMUj; (j = 1, . . . , n) is as follows: 

 

(xj
τ+1, ..., τ+T,   (x")j

τ+1, ..., τ+T,   (x′)j
τ+1, ..., τ+T,   yj

τ+1, ..., τ+T,   zj
τ+1, ..., τ+T) 

 
Emrouznejad and Thanassoulis (2005) [38] referred to the evaluation path for DMUo in a multi-

period system if any of the following conditions are satisfied: 
i. There is currently no evaluation path or combination of assessment paths that, when 

utilizing the DMUo-path, yields a higher output in at least one of the evaluation periods 
without compromising the outputs in certain periods or necessitating an additional input 
in at least one of the stages.  

ii. There are no evaluation pathways or combinations of assessment paths that, when 
followed via the DMUo-path, lead to more significant outcomes with less input within a 
specified evaluation time. This is not possible without increasing the number of entries in 
other periods or the ability to generate more outputs at any stage. 

The following definition is proposed by Emrouznejad and Thanassoulis [38]: 
Definition 4.  The evaluation path for the DMUo is efficient if the following relationships satisfy 

optimality: 
 

θo
∗ = 1 ,  (δd

t )∗ = 0 ,   (si1

t )
∗

= 0 ,  ((s′)k
t )∗ = 0 ,   ((s")

i2

t
)

∗

= 0 ,  (γd
t )∗ = 0 ,  ((γ′)r

t)∗ = 0 ;    

∀  (d = 1, 2, . . . , D  , i1  ∈ I1 , k = 1, 2, . . . , q, r = 1, 2, . . . , S,  i2  ∈ I2 & t = τ + 1, . . . , τ + T). 
 
5. Numerical Example  

Table 1 contains twenty-five DMUs, Including information  of Iranian bank branches. First, we 
describe some definitions regarding the expressions given in the case study:  

i. Interests paid: The amount of interest that the bank pays to customers' long-term 
accounts. Obviously, the higher this number is, the lower the performance of bank. 

ii. Personnel score: The score is calculated by combining and adjusting the weighted values 
of many parameters, including the number of people, executive positions, work 
experience, compensation, and training hours of staff. 

iii. Received Claims: When the bank provides banking facilities to the customers, and the 
customer is not able to pay his installments at the specified time, in this case, the 
customer's debt to the bank for the facilities is called the bank's claims. Thus, the amount 
of collection of these claims by the bank in a period of time is called received claims. 

iv. Loan: The amount of money that the bank provides to the customers and the customers 
repay the mentioned facilities along with the interest based on the type of contract. 

v. Profit received: The amount of interest that the bank receives from customers for 
providing facilities. 

   As shown in Figure 3, each of these DMUs has three groups of inputs, including inputs of the first 

stage (Interests paid) 𝑋, shared inputs (Personnel score) 𝑋", inputs of the second stage (Received 
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Claims) 𝑋′, intermediate products (Loan) Z, outputs (Profit received) Y. Furthermore, the last column 
denotes the efficiency score obtained from model (2).  
 

 

 

 
 

Fig. 3. A Two-stage Network of Iranian bank branches 
 

Following the region's needs, the management of the Bank Branch Office wants to expand the 
sixth branch and improve its efficiency, so estimating the required output is aimed. 

Table 1 
Twenty-five DMUs, Including information of Iranian bank branches 

DMUs X X′ X" Z Y φo
∗  

DMU1 2805177638 11994821504 3.84 64212392856 2791562738 1.47996739 

DMU2 3594467903 110059103 5.35 77880596974 4233879876 1.09059259 

DMU3 3544897361 3361995150 9.81 92496206596 6950574909 1.69146388 

DMU4 1637026869 17200888 4.82 10229324293 621536914 1.65522112 

DMU5 1141193835 230962380 6.68 18044217945 1210386464 4.08135735 

DMU6 1298058057 298605509 4.97 6216822256 640204744 6.39624619 

DMU7 1655720390 2517935136 10.97 6723276986 809282030 5.47213389 

DMU8 3269705080 783841829 7.34 50514419171 4442615481 2.28613285 

DMU9 1879114081 96797863 5.57 21579730074 1550192752 2.3926002 

DMU10 1057686290 20084929 6.54 14053333853 1314742636 1 

DMU11 1440411328 157240192 1.56 29119166915 1585159187 1.1724436 

DMU12 2973130019 106858226 4.53 90504304878 4522740900 1 

DMU13 3828801690 304483790 7.14 14000129445 9221629290 1 

DMU14 1641873024 31582000 6.55 21135376814 1499295285 1.34433106 

DMU15 1133793983 1217039129 3.85 51746989236 2233950758 1.15939884 

DMU16 877247942 85475000 5.23 29495575267 2236306947 1.48333974 

DMU17 4839219824 7716168688 4.87 13798127749 9068971211 1.00216157 

DMU18 3188240311 1708846082 12.93 44417322288 3039268874 3.82456206 

DMU19 6775382776 985942000 7.2 47467684724 2080344159 3.66549764 

DMU20 472101054 708507168 11.17 57863179290 1775227490 1 

DMU21 3083576526 2661711908 5.83 60957146147 3746829194 1.84735109 

DMU22 3301629838 5721986246 6.52 28131631731 2077376915 4.32897853 

DMU23 1830532119 2653205624 3.86 18056815228 1315620133 3.85960441 

DMU24 7686691834 8492311825 7.61 68523607568 5835683004 2.2093554 

DMU25 1933947316 238079274 9.89 13600845684 933400866 7.87795739 

     
Table 2 compares results obtained from our inverse two-stage models and classic inverse DEA 

models, which perform as black box for DMU6. Suppose that inputs of DMU6, i.e.,                       

 Stage 1  Stage 2 

Y 

𝑋′ 

𝑋" 

 𝑋 Z 
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(129805857, 2986.5509, 4.97) increased to (1408058057, 3586.5509, 7.07) such that the primary 

efficiency score improved by 30%. In other words, inputs 𝑥6, 𝑥6
′ , and 𝑥6

"  were multiplied by 1.085, 1.2, 
and 1.423, respectively. If the classic inverse DEA model with a black box structure is applied, then the 
new output is estimated as 𝛽6

∗ = 12215730959, which is almost 19.081 times the initial value of 𝑌6. 
If our proposed inverse two-stage model (10) is applied for estimating the outputs, then                        
𝛽6

∗ = 914578000 which is almost 1.43 times of 𝑌6 . It states that our model can be considered efficient 
to deal with the inverse two-stage problem with common inputs and intermediate products. Because, 
in many cases, due to the existing limitations on available resources, decision makers cannot increase 
the outputs 19 times to achieve the desired efficiency. But, by applying our presented model, we only 
need to increase the 𝑌6 1.43 times that is a reasonable amount.  

Furthermore, by applying model (16), a window DEA problem with t=1,2 was solved for assessing 
DMU6. Then, we have  𝛽1,6

∗ = 690478000, 𝛽2,6
∗ = 970521000 in which 𝛽1,6

∗  and 𝛽2,6
∗  are the amount 

of output increase for DMU6 in periods t=1 and t=2, respectively.  

Table 2 
Comparison between classic, inverse, and window two-stage models for DMU6 

Models (α6, μ6, γ6) 𝛽6
∗ Multiples of  𝑌6 

Classic model (3) (1408058057, 358605509, 7.07) 12215730959 19.08 

Proposed model (10) (1408058057, 358605509, 7.07) 2134015813 1.43 

Proposed window 
model (16) 

t=1 (1408058057, 358605509, 7.07) 690478000 
Proposed window 

model (16) 
t=2 (1408058057, 358605509, 7.07) 970521000  

 
The results illustrate that the static model and the model presented by Jian Feng are not able to 

give details about what would happen in each stage. It means that, if the process in Figure 1 is 
repeated for a period of time, the model provided by Jian Feng and static model are not applicable for 
solving the problem. For example, if we want to assess the performance of a bank for 5 years, the 
mentioned models are not capable of dealing with the performance of the bank within a model, but 
by applying the model (16) and considering t=1, 2, …, 5 the decision maker can study the two-stage 
process within 5 years.   

 
6. Conclusions  

An efficient manager should comprehensively understand resource allocation and product supply, 
drawing upon scientific support. In fact, the decision-maker need to provide appropriate models to 
efficiently distribute resources and control the product supply for several DMUs in accordance with 
preset parameters. DEA is widely recognized as a precious approach in this context. However, classic 
DEA models typically treat the initial inputs to generate the outputs as a singular process, wherein the 
DMU is seen as a "black box". Consequently, the DMU's internal structure and the production 
process's middle stages are often disregarded. Therefore, there is no information on which part of a 
DMU is the cause or source of inefficiency. In contrast, DMUs are represented as systems with two 
subunits in the two-stage DEA models. Intermediate products are regarded as second stage subunit 
inputs. Consequently, a two-stage DEA model allows for examining the internal structure of a DMU 
and its processes. Thus, while emphasizing two issues mentioned above, this paper used the 
envelopment form of the two-stage models proposed by Jian Feng [5]  in the inverse DEA problem for 
the first time and considered the intermediate productions and input structure simultaneously to 
provide appropriate tool for analyzing input/output estimation problems. The following issues were 
also addressed: 
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• Our presented models discussed estimating all or part of the inputs to improve efficiency, 
which will help managers, decision-makers, and investors make an expert system. 

• The proposed model to estimate the final output to achieve a specified level of efficiency of 
the stages has the following properties:  

o After estimating the output, the efficiency is not worse than the efficiency with the 
previous coordinates. 

o The necessary and sufficient conditions for estimating outputs were proved. 
• Due to the repetitive processes in some two-stage systems, the presented models were also 

examined from the viewpoint of window DEA.   

The following issues can be mentioned for future research: 

• In a network structure, when we have an undesirable final output that is a function of the 
desirable outputs, how should the output estimation problem be addressed? 

• If there is a window network structure that is considered over a period of time, then how the 
outputs are estimated while the output at the last period is a function of all the inputs from 
the previous periods? 

• The article examined the effect of increasing inputs (excluding the values of intermediate 
products used as inputs in the subsequent stage) on the output level in the second stage. 
Subsequent studies might examine the impact of augmenting these inputs on the 
augmentation of intermediate productions and the consequent rise in final outputs.Since the 
rate of increase in outputs to achieve a certain level of performance must occur in the future, 
it is reasonable to treat the number of inputs, and outputs of the unit under evaluation and 
other units as values of a random variable. Thus, suggesting suitable models for random inputs 
and outputs appears more valuable than those for specific ones. 

• Considering the potential effect of altering primary input on intermediate products, it is 
recommended to incorporate intermediate products as variables in the output estimation 
model. The optimal solution can be determined by solving the corresponding nonlinear 
programming problem. 
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