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This paper introduces the conceptual framework of the multi-criteria 
decision-making (MCDM) rank model, which embodies the integration and 
harmonization of the aggregation method, the weighing method, the decision 
matrix normalization technique, and the selection of distance metrics. This 
definition serves to broaden the spectrum of acceptable MCDM 
methodologies for problem-solving and specifiing the associated tools. A 
Multi-Method Model (3M) approach is employed for multi-criteria selection 
to enhance the reliability of the results. The methodology is outlined for 
adjusting the rankings of alternatives to account for the distinguishability of 
ratings in a particular MCDM model using the Relative Performance Indicator 
(RPI) of alternatives. Through RPI, four methods are established for 
aggregating individual characteristics of alternatives that yield identical 
results: Weighted Sum Model (WSM), Multi-Attributive Border 
Approximation area Comparison (MABAC), Technique for Order Preference 
by Similarity to Ideal Solutions (TOPSIS (L1)), and Ratio System approach 
(RS), eliminating the need to duplicate these methods in the 3M approach. A 
comprehensive comparison of numerous multi-criteria methods is conducted 
based on two lists: ranking and rating. Additionally, a method for step-by-step 
linear transformation of alternative ratings obtained from various MCDM 
models is defined, facilitating comparison and aggregation of ratings. 
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1. Introduction 

An examination of recent publications indicates a growing trend in addressing multi-criteria 
selection problems through diverse methodologies, culminating in the subsequent synthesis of 
solutions [1-10]. It is posited that the reliability of a solution derived from employing a myriad of 
methods is heightened, rendering it a preferable approach. This approach is hereby designated as 
the resolution of the Multi-Criteria Decision-Making (MCDM) problem based on a set of admissible 
rank methods: the Model of MultiPlicity Methods or 3M. The resolution involves the formation of 
one or more groups of MCDM methods. 
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The initial option entails an ensemble solution, while the second involves group analysis and 
synthesis [11-13]. Addressing the problem in both versions, followed by subsequent analysis and 
synthesis of the results, is also deemed relevant. 

Decision-making in the first option encompasses the analysis and coordination of ranks obtained 
from various methods, employing, for instance, Spearman's rank correlation [14-16]. A common 
scenario involves the preference for the same alternative across a larger number of methods, often 
following the majority principle. Borda's rule and its modifications are frequently applied [17-19]. 
Additionally, a statistical approach based on a histogram of the distribution of ranks for a selected 
set of methods is typical [20]. 

In the second option, several groups of MCDM methods are configured for problem-solving [11]. 
Within each group of methods, a ranked list of alternatives (or Borda points, or ratings) is established. 
Subsequently, the ranking problem is addressed - a typical Multi-Stage Decision-Making (MSDM) 
problem concerning the initial set of alternatives, where the criteria represent groups, and the 
indicators of alternatives are the ranks (scores) from the first stage for each group. 

Rank-based MCDM approaches can be categorized into three groups: 
(1) Cost measurement methods, exemplified by WSM (Weighted Sum Model) [21] and WPM 

(Weighted Product Model) [22]; 
(2) Target or reference level models, such as TOPSIS (Technique for Order Performance by 

Similarity to Ideal Solution) [23] and VIKOR (VIse Kriterijumska Optimizacija kompromisno Resenje, 
in Serbian) [24]; 

(3) Excellence methods, including PROMETHEE (Preference Ranking Organization METHod for 
Enrichment of Evaluations) [25] and ORESTE (Organísation, Rangement Et SynThèse de donnéEs 
relarionnelles, in French) [26]. 

The principal challenges associated with decision-making utilizing the 3M approach, which 
currently lack definitive resolutions, are as follows: 

i. Determining the qualitative and quantitative composition of MCDM methods to be 
included in the list for solving a specific problem. 

ii. Establishing a methodology for comparing results obtained from different methods. 
iii. Assessing the significance (weight) of the employed methods. 
iv. Addressing the question of whether methods should be grouped and, if so, how to form 

these groups. 
v. Defining a method for synthesizing the solution. 

The ongoing research into these issues predominantly relies on the success of specific methods 
in addressing particular problems. 

In the literature, one area of decision-making based on a plethora of methods is referred to as 
Multi-Objective Optimization on the basis of a Ratio Analysis (MOORA) [27]. MOORA involves the 
integration of standard methods such as WSM, WPM, Evaluation based on Distance from Average 
Solution (EDAS), Multi-Objective Optimization on the basis of Simple Ratio Analysis (MOOSRA), 
TOPSIS, etc., with subsequent expansion to MultiMOORA through the incorporation of the full 
multiplicative form Weighted Aggregated Sum Product Assessment (WASPAS) [13, 28]. The current 
outcome of MultiMOORA, regarding the selection of MCDM methods, is a ranking obtained by 
aggregating the results of ternary ranking methods, namely the relation system, control point 
approach, and full multiplicative form [11]. It is noteworthy that, apart from general comments, there 
is no explanation regarding the suitability of specific groups of methods for a given selection task. 
While the MultiMOORA concept, as a variant of the 3M approach, aims to enhance the reliability of 
the solution, it is currently non-constructive and lacks adequate justification in addressing the 
previously identified problems. 
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Given the abundance of MCDM methods, there is a need for studies that compare them with one 
another. In the research presented, this comparison is conducted using two lists: a ranked list and a 
rating list. The rating list represents an integral score for an alternative, formed by aggregating 
individual characteristics using the aggregation method. 

In numerous instances, the ranks of alternatives obtained through different methods exhibit 
consistency, thereby enhancing the reliability of solutions—a fact easily corroborated through rank 
correlation. Conversely, assessment scores for the same set of methods are less correlated. 
Importantly, the rating list, in contrast to the ranking list, reveals the “fine” structure of relationships. 
In specific cases, it is conceivable that the ranks and ratings of alternatives for two or more methods 
follow the same order, as elaborated upon in the subsequent generalization of the MCDM method 
to the MCDM model. However, the disparity in the rating values of two or more alternatives may be 
negligible. Given the heightened sensitivity of ratings to the parameters of the MCDM model, such 
alternatives should effectively hold the same preference status, i.e., identical ranks [20]. 

The primary parameters that determine rating variations include: 

- the method for determining the weight of criteria, with more than 30 options available in the 
absence of a preference criterion [29-32], 

- the method of normalizing the decision matrix, involving more than 10 main methods [33-36], 
the selection of which is based on established principles 

- the selection of a distance metric in the n-dimensional feature space for target level models 
(e.g., TOPSIS) [24]. 

Notably, the VIKOR method [24] appears to be the only MCDM method that adjusts rankings 
based on ratings. This method relies on the difference between the rating values of two or more 
alternatives. In the VIKOR method, the critical difference value is determined under the assumption 
that the ratings of alternatives (Qi) are uniformly distributed on [0, 1] with DQ=1/(m-1) representing 
the length of the interval for m values of the Qi rating of alternatives. 

In the presented study, the 3M multi-criteria selection approach is adopted. The concept of the 
MCDM model is defined, representing the synthesis and unity of the aggregation method, weighing 
method, decision matrix normalization method, and choice of distance metrics. This approach 
significantly broadens the list of acceptable MCDM methods for problem-solving and specifies its 
tools. 

This paper is dedicated to addressing fundamental questions within the context of MCDM. 
Specifically, it aims to elucidate the process of establishing a meaningful difference in the ratings of 
alternatives obtained in a given MCDM model, leveraging the relative performance indicator (RPI) of 
alternatives. A method designed to adjust the ranks of alternatives while taking into account the 
distinguishability of ratings is introduced. In the pursuit of a comprehensive MCDM framework, the 
RPI is emplyed to establish four distinct methods for aggregating the individual characteristics of 
alternatives that yield identical results. These methods include WSM, MABAC, TOPSIS(L1) , and the 
Ratio System approach (RS), strategically avoiding redundancy within the 3M approach. 

The article further explores how to compare ratings of alternatives obtained from different 
MCDM models using stepwise linear transformation. This enables the aggregation of ratings that 
account for the "thin" structure of relations between alternatives, enhancing result reliability,  in 
contrast to the aggregation of a ranking list, which represents the “coarse” structure of relations. The 
fourth section provides a numerical example of the 3M approach, fully implementing the 
methodology presented in Section 3. 
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2. Preliminaries: MABAC, TOPSIS(L1) and VIKOR MCDM methods 
2.1 Nomenclature 
MCDM methods: 

  CODAS : COmbinative Distance-based ASsessment 
COPRAS : COmplex PRoportional Assessment 
   CRITIC : CRiteria Importance Through Intercriteria Correlation 
        GRA : Grey Relational Analysis 
  MABAC : Multi-Attributive Border Approximation area Comparison  
 MOORA : MultiObjective Optimization on the basis of a Ratio Analysis 
          3M : Multi-Method Model  
  ORESTE : Organization, Rangement Et Synthese De Donnes Relationnelles (fr.) 
PROMETHEE : Preference Ranking Organization METHod for Enrichment Evaluation 
          ReS : Reverse Sorting algorithm 
            RS : the Ratio System approach 
   TOPSIS : Technique for Order Preference by Similarity to Ideal Solutions  
TOPSIS(L1) : TOPSIS with city block metric L1 
 WASPAS : Weighted Aggregated Sum Product Assessment 
       WPM : Weighted Product Method 
       WSM : Weighted Sum Method 
         AHP : Analytic Hierarchy Process  
           EV : EigenVector 

Designation: 
Ai    alternatives (objects) (i=1,…, m) 
Cj

+, Cj
- criteria or objects properties (j=1,…, n), (+) benefit, (-) cost 

aij    elements of decision matrix D 
rij   normalized elements of decision matrix 
rj̅   average value of jth criterion 
aj

max maximum element in criteria j 
aj

min minimum element in criteria j 
wj    weight or importance of criteria (j=1,…, n) 
Qi    the performance indicator of alternatives (objects) (i=1,…, m) 
dQi   relative performance indicator of alternatives (RPI)  

Normalization methods: 
 
Max                   , Sum                      , Vec                        , Max-Min 
 

 
2.2 Initializing the MCDM problem 

The process can be conceptualized as selecting the best (most preferred) alternative from a finite 
set of alternatives. Each alternative is characterized by a specific finite set of attributes within the 
framework of selected criteria. Alternatively, it can be understood as the grouping of alternatives 
into multiple preference groups, followed by the selection of a small set from them. Moreover, these 
problems aim to identify alternatives that are neither dominant nor effective. It is impossible to 
transition from a non-dominated solution to another solution without sacrificing at least one of the 
criteria [21]. 
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In mathematical terms, the MCDM problem is defined as follows: the MCDM rank model for each 
alternative Аi calculates the performance indicator (Q) of each alternative (or key performance 
indicator (KPI), preference score, assessment score). 

( , , , ' ', ' ', ' ')
i k

Q f A C D norm dm=                 (1) 

Here, alternatives (Аi, i=1,…, m) represent different possible courses of action, and the solution 
space is presented as "possible alternatives." Decision variables are defined as components of a 
vector of alternatives. 

Criteria (Сj, j=1,…, n) serve as tools for evaluating and comparing alternatives in terms of the 
consequences of their choice. 

Measures are elements used to quantify an attribute of an alternative, with an attribute defined 
as a measurable characteristic. The set of all attributes forms the decision-making matrix D=(aij). 

Each alternative attribute aggregation method (fk) includes a method for estimating the weight 
of criteria ('w'), normalization method (΄norm΄) of the decision matrices, selection of a metric for 
calculating distances in the n-dimensional space of criteria (΄dm΄). 

For example, WSM has the simple form 

1

n

i j ij

j

Q w r
=

=                  (2) 

Here, rij represents the normalized values of the decision matrix. 
The ranking list Q is arranged in descending (or ascending) order, based on which a ranking list of 

alternatives is formed. Without loss of generality, it is assumed that connected sorting and 
renumbering of these two lists has been performed in the form: 

1 2
...

m
Q Q Q                    (3) 

1 2
...

m
A A A                  (4) 

Here, the symbol ”≻” indicates preference. 
 

2.3 Multi-Attributive Border Approximation area Comparison (MABAC)  
 
The MABAC [37] refers to cost estimation methods. The performance indicator of alternatives is 

defined as: 

1

( )
n

i ij j

j

Q v g
=

= −                       (5) 

( 1) , 1,..., ; 1,...,
ij ij j

v r i m j n= +  = =                   (6) 

min

max min

max

max min

( )

ij j

j j

ij

j ij

j j

a a
, for Benefit type criteria

a a
r  

for Co
a

st  

a

ty

M

pe
a

 

M

c, r e

a

i

x

r

i

t ia

n
a

 
a

 −


−
= − = 

−
 −

                  (7) 

1/

1

m
m

j ij

i

g v
=

 
=  
 
                   (8) 

The best alternative corresponds to the highest value of the performance indicator Q.  
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2.4 Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 
To determine the performance indicator of the ith alternative Qi, a homogeneous function was 

used [21]: 

i

i

i i

S
Q

S S

−

+ −
=

+
                (9) 

where, rij represent normalized values of the decision matrix in accordance with (7), 

, ( , ) , ( , )ij ij j i ij j i ij jv r w S d v v S d v v
+ + − −

=  = =               (10) 

{max ; min }j ij j ij j
ii

v v if j C v if j C
+ + −
=                 (11) 

{min ; max }j ij j ij j
i i

v v if j C v if j C
− + −
=                 (12) 

where, Si
+ and Si

- represent the distances d between the ideal and anti-ideal objects respectively. 
Additionally, the alternative Ai in the n-dimension attributes space, which are defined in one of the 
Lp-metrics. The TOPSIS ranking result depends on the choice of distance metric (dm):  

( ) ( )
1/

1

, ( ) , 1 ; , max

p
m

p

p i i i i
i

i

L X Y x y p L X Y x y


=

 
= −    = − 
 
               (13) 

Let us denote the TOPSIS method with the CityBlock metric L1 as TOPSIS(L1) . 
The best alternative corresponds to the highest value of the performance indicator Q. 
 

2.5 VIsekriterijumsko KOmpromisno Rangiranje (VIKOR) 
Similar in structure to the TOPSIS method, the VIKOR method is outlined [24]. In the initial step 

of the VIKOR method, a matrix of deviations of the natural values of alternative attributes from the 
ideal and anti-ideal objects is formulated.  

To determine the performance indicator of the ith alternative Qi, a homogeneous function is 
applied based on the strategies of maximal R and group utility S: 

( )
* *

* *
1i i

i

S S R R
Q

S S R R
 

− −

− −
=  + −

− −
              (14) 

ij ij j
v r w=                (15) 
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i ij i
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R v R R R R
−

= = =               (16) 

*

1

; min ; max
n

i ij i i
i i

j

S v S S S S
−

=

= = =               (17) 

where, rij represent normalized values of the decision matrix in accordance with (7), 
The parameter β serves as a balancing factor between total benefit (S) and the maximum 

individual deviation (R). Smaller values of β emphasize the strengthening of the group, while larger 
values increase the weight given by individual deviations. 

The result of the VIKOR methodology yields three rating lists: S, R and Q. Alternatives are 
evaluated by sorting the values of S, R and Q according to the criterion of the minimum value. 

As a compromise solution, alternative A1 is proposed, the efficiency indicator Q of which has the 
lowest value and if the following two conditions are met: 

1) “acceptable advantage”: Q(A2) – Q(A1)  1/(m–1), where A2 is an alternative to the second 
position in the Q-rating list, 

2) “acceptable decision stability”: alternative A1 should also be best scored on S or/and R. 
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If one of the conditions 1) or 2) is not satisfied, then a set of compromise solutions is proposed, 
which consists of: 

- the alternatives A1 and A2 if condition 1 is true and condition 2 is false, or 
- the set of alternatives {A1, A2 ,…, Ak} if condition 1 is false; being k the position in the ranking of 

the alternative Ak verifying Q(Ak)–Q(A1)<1/(m–1) and  Q(Ak+1)–Q(A1)1/(m–1). 
The peculiarity of the VIKOR method lies not only in maintaining a balance of utilities but also in 

containing an implicit procedure for evaluating the distinguishability of ranking results. Alternatives 
are considered indistinguishable if the performance indicators of the alternatives differ by less than 
1/(m–1). The latter, however, is not substantiated in any way. The significant difference between the 
alternatives is detailed in Section 3.4. 

 
2.6 The Ratio System approach (RS) 

To determine the performance indicator of the ith alternative Qi, in Ratio System, the non-
beneficial sum is subtracted from the beneficial sum [27]: 

1

( )
n

i j j ij

j

Q sign C w r
=

=                                             (18) 

1, beneficial criteria
( )

1, non beneficial criteria

j

j
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if j C
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if j C
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−

  −
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−  −
                    (19) 

The best alternative corresponds to the highest value of the performance indicator Q.  
 

3. Methodology 
3.1 MCDM rank model 

Historically, the MCDM method is understood primarily as a procedure for aggregating individual 
features of alternatives according to Eq. 1. Numerous studies, for example [1-20], demonstrate that 
the ranks (especially ratings) of alternatives can change with variations of any of the arguments in 
Eq. 1. It is also well known that the three main components of MCDM ranking methods, i.e. the 
method for assessing the significance of attributes (weight of criteria), the method for normalizing 
the decision matrix and the distance metric for target or reference level methods (TOPSIS, etc.) are 
essential and in many cases (tasks) determine the result ranking. If the choice of a set of alternatives 
Ai and criteria Cj are the prerogative of the decision maker (expert) and constitute an unformalized 
part of the solution to the problem, then the three parameters {‘w’, ’norm’, ‘dm’} are multivariate 
and their choice requires analysis of both the situation and results. As highlighted in the introduction 
section, a diverse set of tools is utilized, including:  

- more than 10 basic methods for determining the weight of criteria in the absence of a 
preference criterion, providing a variety of options to choose from, 

- over 5 basic methods for normalizing the decision matrix, with the choice guided by established 
principles 

- three main distance metrics in n-dimensional feature space for MCDM methods based on 
distance from the “ideal” (L1  - ‘CityBlock’, L2 - 'Eucludean’, L∞ -‘Chebyshev’). 

This implies that the range of options for solving MCDM problems is contingent on the number 
of possible (admissible) combinations of model arguments [2]. For instance, utilizing the WSM 

aggregation, over 150=1053 different options can be implemented solely within the main 
methods-arguments of the model. Consequently, the ratings of alternatives will naturally differ 
across various models, with variations in ranks also observed. 
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Given these considerations, it is recommended to employ the term "MCDM rank model", 
specifying the arguments and methods utilized in problem-solving. For instance, the model: 
Qi=TOPSIS(‘w’= AHP-EV, ‘Norm’=Max, ’dm’= L1) 
employs the TOPSIS-method for attribute aggregation, the Max-method for normalization, the 
CityBlock-metric for distance measurement, and integrates a weight estimate derived from a matrix 
of paired criteria comparisons in the Analytic Hierarchy Process (AHP) and eigenvector method (EV).  

It is crucial to emphasize that none of the method arguments used in the model holds priority 
over the others, rendering all models equal. In many instances, combining a triple of model 
parameters {‘w’, ’norm’, ‘dm’} does not significantly alter the ratings, nor does it affects the ranking 
of alternatives, characterizing the stability of the solution to variations in model parameters. This 
situation characterizes the stability of the solution to variations in model parameters. However, there 
are situations where the solution is unstable, and variations in model parameters lead to changes in 
ranking, resulting in an uncertain final choice. For example, works [34, 35] present cases where 
decision matrices yield different rank 1 alternatives for five distinct normalization methods. 

Structurally, each valid triple {normalization, weighting, and aggregation method} is construed as 
one of the MCDM models. To utilize the MCDM model approach effectively, researchers must 
determine which normalization, weighting, and aggregation methods to employ and subsequently 
analyze the independence of models to ensure equal "voting" conditions for each model in the final 
candidate selection. 

 
3.2 “Thin” structure of relationships in MCDM rank model 

The concept of the MCDM rank model expands the array of decision options, necessitating 
comparative studies to aid decision-makers in selecting the most suitable method. It is crucial to 
underscore the distinctions between these methods, as the utilization of different approaches may 
yield discrepancies in the resultant ratings. 

In contrast to the ranking list, the rating list reveals the "thin" structure of relationships. A 
scenario may arise where the difference between the rating values of two or more alternatives is 
insignificant, leading to variations in the order (ranks of alternatives) across different MCDM models. 
Due to the heightened sensitivity of rankings to the parameters of the MCDM model, such 
alternatives should ideally share the same preference status (i.e., possess identical ranks). Therefore, 
to ascertain the priority of alternatives, a mere comparison of ratings ─ absolute values of the 
efficiency indicator Qi is insufficient. The identification of situations with high decision sensitivity is 
achievable through the use of the RPI of alternatives [34, 35]: 

1( )
d 100%, 1,..., 1

( )

p p

p

Q Q
Q p m

rng Q

+−
=  = −                 (20) 

where, Qp is the value of the performance indicator corresponding to the p-rank alternative (ordered 
list), rng(Q)=maxQi−minQi=Q1−Qm.  

The dQ score represents the relative (given in the Q scale) increase or decrease in the 
performance indicator for an ordered list of alternatives. It is believed that two alternatives, the 
relative increase in dQ of which differ less than the value of a given a priori error, should be 
considered indistinguishable. 

In order to demonstrate the above reasoning with an example, the ordered scale of results is 
Q1=0.712>Q2=0.711>…>Qm=0.137. In fact, alternatives A1 and A2 are indistinguishable, since 
dQ1=(0.712−0.711)/(0,712−0.137)∙100≈0.17%. 

Thus, the 0.17% difference in the ratings of the first and second alternatives is considered small, 
implying that the alternatives are indistinguishable and should be assigned the same rank. The 
process of determining the critical error value dQcr is explained in paragraph 3.4. 
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3.3 Comments on adjusting ranks in the VIKOR method 
The VIKOR method stands out as the only MCDM method that performs ranking adjustments 

based on ratings. Figure 1 illustrates the rank adjustment process in the VIKOR method. 

 
Fig. 1. Illustration of rank adjustment in the VIKOR method 

 

Although Q6 > Q2 > Q4 where a smaller value is considered better, alternatives A4, A2, A6 according 
to VIKOR, are deemed indistinguishable and are assigned the same rank of 1. 

Formula (13) represents the performance indicator Q of an alternative, striking a balance 
between the sum of particular features (normalized), considering significance (weight), and the 
largest normalized value of the feature, also taking into account weight. Two rating lists, S and R are 
pre-converted to [0, 1]: 

* *

* *
,i i

ii

S S R R
S R

S S R R
− −

− −
= =

− −
                (21) 

[0,1], [0,1]iiS R                     (22) 

The Max-Min transformation method, a linear normalization preserving the proportions of values 
[38], is then applied: 

max minmax min max min max min

,
p qp q p q p q

S S R RS S R R

S S R RS S R R

− −− −
= =

− −− −
               (23) 

Thus, the converted data still reflects the actual proportions of these ranking lists. This method 
ensures that the converted data retains the actual proportions of the original ranking lists. 

VIKOR's ranking relies on the significant difference between the rating values of two or more 
alternatives. In the fundamental VIKOR method, the critical value of the difference DQ is determined 
based on the assumption that the normalized, dimensionless values of the ratings Qi are uniformly 
distributed on [0, 1] resulting in  DQ=1/(m−1) — the length of the interval for m values Qi from [0, 1]. 
However, the assumption of a uniform distribution of the Q rating indicator may not always be valid, 
prompting the first remark. The critical value of DQ in the case of a non-uniform distribution of Qi 
ratings should be chosen in accordance with the distribution law.  

The second remark pertains to the balance formula (13), which, considering notation (21), takes 
the form: 
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( )1 iii
Q S R =  + −                  (24) 

It is evident that Qi ∈ [0, 1] if and only if the values 0 and 1 for S̅i and R̅i are achieved simultaneously 
for two alternatives. In many cases, Qi ∈ (0, 1) indicating that the range of the set Qi is less than 1. 
However, the predetermined critical value DQ is a fraction of 1, revealing an inherent inaccuracy. 

The impact of these inaccuracies on the results should be considered in light of the subjectivity 
inherent in MCDM. The choice of alternatives, criteria, and methods of aggregation, normalization, 
weighting, and distance metrics is subjective. A minor deviation in the selection of DQ likely does not 
compromise the solution, the main error of which is influenced by the subjectivity stemming from 
the uncertainty in the choice of the MCDM model. 

It's noteworthy that if, in formula (20), the range of the efficiency indicator is equal to 1, then the 
relative increase in the efficiency indicator dQ coincides with the absolute increase (without 
conversion to a percentage), as determined in the VIKOR method. 

The relative increase in the relative performance indicator dQ, as determined by (20), serves as a 
universal metric for all MCDM ranking methods, encompassing WSM, CODAS, COPRAS, TOPSIS, 
PROMETHEE, etc., with variations in the arguments and methods of the model (1). The purpose of 
dQ  lies in assessing the distinguishability of alternatives based on rating values and adjusting the 
ranks accordingly. 

 
3.4 Distinction of alternatives 

Addressing the question of how to determine the critical value dQcr of the relative increase in the 
efficiency indicator to assess the distinguishability of alternatives, the following approaches emerge:  

I. Subjective approach 
The subjective characteristic is established by the decision maker. It is reasonable to require that 

two alternatives be considered meaningfully different if the relative change in the performance 
measure exceeds a given value. For instance, a manufacturer may task the designer with improving 
the overall rating by at least 15% when releasing new models. Alternatively, a consumer might seek 
an alternative superior to analogues by at least dQcr percent; otherwise, the alternatives are deemed 
indistinguishable, resulting in the same rating. In this case, the relative error is set "a priori." 

II. Statistical approach 
The statistical approach relies on variations in the ranking of alternatives due to changes in the 

decision matrix D or variations caused by the design of the MCDM model. 
In the first case, attributes may be imprecisely measured, data sources may be unreliable, errors 

in measurements may occur, measurements for different alternatives may be conducted using 
different methods, and some attributes may be random variables or defined by interval values. All 
these factors can alter the decision matrix D. By varying the corresponding elements of matrix D 
within a possible interval, one can estimate the magnitude of the rating dispersion for alternatives of 
ranks 1 and 2 [20]. 

In the second case, the choice of argument method also induces a change in the ranking of 
alternatives. In some cases, this change may cause a shift in the ranking (high sensitivity). It is often 
impossible to determine which method-argument is suitable for the problem at hand, and all 
available methods should be considered equal. 

Let us consider the situation of variation of matrix D. 
To statistically assess the distinguishability of the rating dQcr, it is necessary to obtain a 

representative statistical sample of size N for the performance indicators of alternatives Qi with 
variations of the decision matrix aij in the range of acceptable values. The true value of an attribute 
is taken to be either the average of many observations or, in the absence of statistics, the available 
value, denoted as aij

0. It is assumed that the error estimate for the attribute aij is known (given): δij= 
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δ(aij). A special case is the situation when, for a fixed criterion, under the conditions of the same data 
source, the error in assessing alternatives does not depend on the alternatives, i.e. δij= δj. Condition: 
δij= δj for all i=1,…, m, excludes the priority of alternatives before making decisions. This requirement 
is mandatory when evaluating alternatives, as an overestimated (underestimated) assessment of any 
alternative for any of the attributes entails its prioritization. 

The variation of the decision matrix is performed using a random number generator uniformly 
distributed on the interval [−1, 1]. The variation algorithm has the following simple formula: 

( )
(1 ()), 1, ,

o

ij ij k

k

ij
a rnd k Na =  +  =                  (25) 

where, rndk() — a function that returns a random number uniformly distributed on the interval [−1, 
1] for each variation of a matrix element D, δij — relative error in estimating the attribute aij, for 
example at 5%, δij =0.05. 

For each variation of the decision matrix aij
(k), the value of the performance indicator for each 

alternative Qi
(k), i=1,…, m is determined. Subsequently, based on the statistics Qi

(k), a statistical 
assessment of the standard error σQ of the performance indicator of alternatives of the 1st and 2nd 
ratings is carried out. In the situation of “method-argument” variation, there is also a similar 
statistical sample Qi

(k), only of a fixed volume, since the number of variations is finite. 
The resulting indistinguishability estimate dQcr takes the form: 

1 2
1.96 ( )

d 100%
( )

Q Q

cr
Q

rng Q

  +
=                  (26) 

where, σQ1, σQ2 are, respectively, the standard deviation of the performance indicators Q1 and Q2 of 
alternatives of the 1st and 2nd ratings according to N statistical tests; rng(Q̅)= Q̅1−Q̅m the average 
range of the rating. 

Formula (26) corresponds to the statistical deviation between the values of the ratings Q1 and Q2 
by the value of the 95% confidence interval, normalized to the Q value scale. The 1st and 2nd ranked 
alternatives are evidently crucial for decision making. If dQ2 > dQcr (or dQ3 > dQcr) alternatives of the 
1st and 2nd ranks (or the 2nd and 3rd ranks) are significantly distinguishable; otherwise, they are not 
distinguishable. 

 
3.5 Rank adjustments. Ranking algorithm using difference criterion 

For compromise solutions that include three alternatives of the first three ranks based on the 
ordering of Qi values, 5 groups of solutions are possible according to the indistinguishability criterion: 

1) I ≠ II, II ≠ III — alternatives of the first three ranks are significantly distinguishable, 
2) I ≈ II, II ≠ III — alternatives of rank I and II are indistinguishable, 
3) I ≠ II, II ≈ III — alternatives of rank II and III are indistinguishable, 
4) I ≈ II, II ≈ III, I ≈III — alternatives of rank I, II and III are indistinguishable, 
5) I ≈ II, II ≈ III, I ≠ III — alternatives of rank I, II and II, III are indistinguishable. 
Let us divide the alternatives of the first three ratings (Q1 > Q2 > Q3) into classes in accordance 

with the rating distinctiveness criterion (dQcr) in an ordered list as follows: 
Group 1: dQ2> dQcr and dQ3> dQcr 

Group 2: dQ2 dQcr and dQ3> dQcr 

Group 3: dQ2> dQcr and dQ3 dQc 

Group 4: dQ2 dQcr and dQ2+dQ3 dQcr 
Group 5: elseif 
 If it is necessary to use more than three alternatives to analyze distinguishability, the number of 

classes will increase. Nevertheless, the algorithm for assigning a result to a specific class remains 
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consistent — the combinatorial method. The following presents a function procedure implementing 
the technique for adjusting ranks based on the dQ indicator. 

function R=Rank_dQ(Q, dQ, DQ) 
   %-- DQ - Critical difference,% 
   %-- dQ - RPI of alternatives  
   %        for the sorted list of Q 
   m=size(Q,1); 
   R=[1:m];                       %-- normal rank list 
   s=0;  
   for i=2:m 
        if dQ(i)<=DQ & s<=DQ 
            s=s+dQ(i); 
            R(i)=R(i-1);          %-- corrected rank list  
        end 
        if dQ(i)<=DQ & s>DQ 
            s=dQ(i); 
            R(i)=i-1;             %-- corrected rank list  
        end 
        if dQ(i)>DQ  
            s=0;  
            R(i)=R(i); 
        end 
   end   
end 
 
An illustration of the rank adjustment for 8 alternatives in 12 different calculation options, with a 

random variation of the decision matrix D within 5% of the scale of changes in the values of each 
attribute, is presented in Figure 2. 

 
Fig. 2. Corrected rank based on significant difference 
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In the illustration provided, the critical value dQcr “a priori” is set to a relative error of 15%. The 
1st rank is achieved in 20 cases, the 2nd rank is achieved in 16 cases (instead of 12), and so on. This 
implies that the competition between alternatives competing for leadership is intensifying. 

 
3.6 Equivalence of the MABAC, TOPSIS(L1) and RS methods to the WSM 

Despite the notable difference in the aggregation formulas for the WSM, MABAC, TOPSIS(L1) and 
RS methods, these approaches exhibit identical RPI values. Disparities in the aggregation formulas 
(2), (5)−(8), (9)−(13), (18)−(19) naturally result in distinct values for the performance indicator of 
alternatives Qi. Nevertheless, the coincidence of dQi values stems from the scaling effect: 
transformations of the decision matrix D (formulas for aggregation of private features) do not alter 
the relative distances, demonstrating the invariance of dispositions of Qi values. 

In both instances, the authors encountered challenges in obtaining definitive proof of this effect 
due to the presence of nonlinearities in transformation formulas (8) and (9), complicating rigorous 
calculations. Nonetheless, the authors conducted numerous computational experiments, varying the 
problem dimension, decision matrix, normalization methods (performed exclusively for linear 
transformations), and weighting coefficients across a broad spectrum. In all cases, the dQi values 
remained consistent. 

Figure 3 illustrates the results of one of several tests affirming the equivalence of the WSM, 
MABAC, TOPSIS(L1) and RS methods (grey highlighted area). 

The equivalence of methods becomes evident as dQi remains consistent for equivalent methods, 
while Qi exhibits proportionality in terms of displacement and tension-compression. 

 
Fig. 3. Equivalence of WSM, MABAC, TOPSIS(L1) and RS 
methods ― numerical illustration 

 
This observation leads to several consequential considerations: 
- the MABAC, TOPSIS(L1) and RS methods may be excluded from the collection of MCDM methods, 

as the simpler WSM method produces identical results, 
- the identity between RS and WSM suggests that the ReS inversion [38], employed in WSM to 

transform cost criteria values, incorporates the inversion -r and ensures the continuity of the 
aggregation method, 
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- the significance of the additive WSM method is heightened, given that its results are 
corroborated by TOPSIS(L1), utilizing the longest distance from the anti-ideal approach (target level 
model), and the nonlinear aggregation method MABAC, employing a multiplicative component. 

Equivalence tests for RPI (dQ) were also conducted to assess the aggregation methods WPM, 
WASPAS, CODAS, COPRAS, VIKOR, TOPSIS(L2), PROMETHEE, and ORESTE. No evidence of RPI equality 
was found. Figure 3 illustrates the results for the WPM and WASPAS aggregation methods, serving 
as a comparative reference. 

 
3.7 Synthesis of a solution within the list of acceptable MCDM ranking models 

The simplest and most commonly employed synthesis approach involves the aggregation of rank 
lists, commonly known as Borda voting. However, due to the inherent nature of ranks not accurately 
reflecting the actual relationship structure among alternatives, there is a loss of information within 
the ranking list. 

Option 1. Tournament-style counting 
Tournament-style counting assigns each alternative in the 3M list (m−i) points for the i-rank, 

where m represents the number of alternatives. Thus, an alternative ranked 1st receives m−1 points, 
a 2nd rank gets m−2 points, ..., and so forth, with m-rank garnering 0 points, where m is the total 
number of alternatives. 

Option 2. The Dowdall system 
The Dowdall system awards each alternative in the 3M list 1/i point for i-rank. Consequently, a 

1st rank receives 1 point, a 2nd rank obtains 1/2 points, and so forth, with m-rank acquiring 1/m 
point, where m is the number of alternatives. Notably, this method is more favorable to candidates 
with many first preferences compared to the traditional Borda count. 

Subsequently, the scores for each alternative are aggregated across all models, potentially 
incorporating the weight of the model. When employing the weighted sum method for solution 
synthesis, there are inherent risks of inaccurately determining the weight of the model or group, 
which can significantly impact the resulting ranking. 

In accordance with (20), the proportions between the points assigned to each alternative in 
Borda’s approach are detailed as follows: 

Option 1: dQi=1/(m−1)∙100%, meaning points are evenly distributed. 
Option 2. dQp=m/(m−1)∙100/p%, indicating points are distributed inversely to the rating, with 

points for 1st rank being significantly higher than those for subsequent ranks. For m=8, this difference 
is respectively [57.1  19.1  9.5  5.7  3.8  2.7  2.0] %. This implies that alternatives are not on equal 
footing, necessitating justification. As previously noted, this method favors candidates with a greater 
number of first preferences. 

 
3.8 Synthesis of a solution based on the transformation of the rating scale 

Utilizing the solution to the MCDM problem through the 3M approach ― the set of admissible 
MCDM rank models, let k models be selected. 

Synthesizing a solution based on a rating scale is deemed preferable to synthesizing a solution 
based on a ranking scale. The latter scenario entails a loss of information inherent in the rating list, 
specifically the degree of proximity-removal of the integral indicator Qi for various alternatives. 
Although the adjustment of the ranking list was previously demonstrated based on dQi, it still results 
in a loss of the "fine structure of relationships." 

Various MCDM models possess distinct scales, with some having different directionalities, as 
exemplified by VIKOR where a lower Qi value is considered better. 
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Hereinafter, the ease of transforming different scales into a common scale is demonstrated 
through Steps 1-4: 

Step 1. Selecting an alternative (rank), wherein a larger value of the performance indicator Qi is 
considered better, is taken as the base. 

Step 2. For methods included in 3M, where a smaller Qi value is preferred, an inversion of 
values is performed using the ReS algorithm [38]: 

max min

i i i i
Q Q Q Q= − + +                 (27) 

This transformation preserves the proportions between the Qi values. 
Step 3. Shifting the values to the zero reference point: 

min

i i i
Q Q Q= −                 (28) 

This is relevant if the rating list contains negative values. In this case Qi
min=0. 

Step 4. Transforming the Qi values for all methods included in 3M to [0, 1] using the linear Max-
Min transformation: 

min

max min max

i i i

i

i i i

Q Q Q
Q

Q Q Q

−
= =

−
                (29) 

The normalized values are interpreted as a fraction of the largest value or, given Qi
min=0, as a 

fraction of the range of values, specific to each MCDM model. In accordance with [36, 38], for linear 
transformations the proportions between the Qi values are preserved: 

max min max min

p q p q

i i
i i

Q Q Q Q

Q QQ Q

− −
=

−−

                (30) 

The best value of Q̅i for all models is equal to 1 and is indifferent to the rating scale of each model. 
Thus, for all methods included in 3M, the rating values of the alternatives are Q̅i ∈[0, 1], while 

maintaining the ordering and proportions of the original values. 
Now, the synthesis of the solution is expressed as: 

( )

1

k
j

i j i

j

Qs Q
=

=                     (31) 

where, θj is the weight of the jth MCDM model in the selected 3M structure, j=1,..., k; Qsi is the 
integral indicator of the ith alternative over k MCDM models. 

The best alternative corresponds to the highest Qsi value. 
This resulting rating surpasses the Borda rating, reflecting the real proportions of ratings or the 

"thin" structure of relations. In contrast, the Borda ranking assigns scores in proportion to the ranking 
list under the same ordering, but these scores do not correspond to the actual proportions of the 
performance indicator of the alternatives. 

 
4. Numerical example 
4.1 Background data and methods 

A numerical example is performed for a multi-criteria selection problem with a decision matrix D 
presented in the Table 1.  

Within the framework of the 3M approach to decision-making, seven distinct aggregation  
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Table 1  

Decision matrix D [85] 
Criteria: benefit(+)/cost(–) C1

+ C2
+ C3

- C4
+ C5

- 

A
lt

er
n

at
iv

es
 

A1 71 4500 150 1056 478 

A2 85 5800 145 2680 564 

A3 76 5600 135 1230 620 

A4 74 4200 160 1480 448 

A5 82 6200 183 1350 615 

A6 81 6000 173 1565 580 

A7 80 5900 160 1650 610 

A8 85 4700 140 1650 667 

 
methods are employed, i.e., WSM, WPM, WASPAS, CODAS, COPRAS, TOPSIS(L2), GRA. 

These methods are coupled with four normalization techniques [34]: IZ(Max,4), MS(Max,4), mIQR 
and Sgm(Z). Additionally, six methods for evaluating the weight of criteria, falling within the category 
of objective methods [32], are integrated, i.e., Entropy, CRITIC, SD using normalized decision matrix 
D for 4 different normalization methods. 

The amalgamation of the aforementioned methods results in 7×4×6=168 MCDM models. 
Expanding the 3M list, an additional 6 models are derived by incorporating the VIKOR aggregation 
method along with the Max-Min normalization method for the decision matrix, accompanied by the 
same six methods for assessing criteria weights. Furthermore, the 3M list incorporates the 
PROMETHEE-II aggregation method paired with three distinct preference functions H(d): V-Shape, 
Linear, Gauss.  This combination, along with the same six methods for estimating criteria weights, 
yields an additional 18 models. 

Similarly, the 3M list encompasses the ORESTE aggregation method, characterized by parameters 
α=0.5, β=0.05, γ=1.4 in conjunction with three different distance metrics L1, L2, L∞ . This configuration, 
along with the same six methods for estimating criteria weights, contributes 18 more models.  

Consequently, the 3M approach in the presented example involves the utilization of a total of 
210 models. The sequential transformations applied in normalizing the decision matrix for these 
methods are detailed in the Table 2. 

A reader may understandably question the rationale behind such intricate transformations. 
Several reasons underlie this approach. Firstly, the selected normalization adheres to fundamental 
principles governing the normalization of multidimensional data [34-36]: 

– preservation of the proportions of natural values, 
– absence of prioritization among the normalized values of any criterion. 

IZ(Max,4) constitutes a linear transformation that upholds the dispositions of natural attribute 
values while eliminating lower bound bias in the domains of normalized attribute values. This 
normalization proves more effective than standard Max normalization and aligns with Max-Min 
normalization, yet surpasses it by avoiding zero values for each attribute. The presence of null values 
renders some aggregation methods (WPM, WASPAS, COPRAS) impractical.  

Additionally, Sum and Vec normalizations, causing shifts in both upper and lower bounds within 
the domains of normalized attribute values, are not recommended. 

MS(Max,4) serves as a linear normalization method that preserves the dispositions of natural 
attribute values, as well as the equality of means and variances for all attributes. It is effective for 
data processing in population analysis, with the absence of criterion prioritization in the "average."  
Similar to Z-score but more effective for aggregation, it ensures that the range of values (0, 1] does 
not include negative values and zeros. 
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Table 2 
Normalization procedure of decision matrix D 

mIQR[0, 1] s akin to Z-score but utilizes a robust estimate for the bias parameter, incorporating 
the median and interquartile range for the scale compression parameter. The range of values (0, 1] 
does not include negative values and zero. For normalized values, the median values and 
interquartile range for all attributes are equal. 

Sgm(Z) involves the conversion of Z-score values to (0, 1) using the sigmoid function (a "soft" 
transformation), reinforcing alternatives with a greater number of high feature values, although not 
necessarily the highest. The range does not encompass negative values and zero. 

The domains of normalized values are presented in Figure 4. 

 
Fig. 4. Domains of normalized values of matrix D according to the Table 1. 
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For aggregation methods requiring the inversion of values for cost criteria, the universal ReS 
algorithm [38] is employed to invert normalized values. 

Table 3 displays the values of the weighting coefficients and the methods utilized for normalizing 
the decision matrix.  

 
Table 3 
Weight of criteria 

 method 1w 2w 3w 4w 5w 

1 SD, IZ(Max,4) -norm 0.210 0.222 0.198 0.174 0.196 
2 SD, MS(Max,4) -norm 0.200 0.200 0.200 0.200 0.200 
3 SD, mIQR[0, 1]-norm 0.151 0.143 0.172 0.341 0.193 
4 SD, sgm(Z)-norm 0.195 0.179 0.212 0.216 0.198 
5 CRITIC 0.142 0.252 0.199 0.221 0.186 
6 Entropy 0.166 0.195 0.256 0.190 0.193 

 Mean: 0.177 0.199 0.206 0.223 0.194 
 Std: 0.0282 0.0373 0.0279 0.0599 0.0050 

 
All six methods fall within the class of objective weighing methods [33]. It's important to note 

that this classification is not a reflection of the authors' preference. The presented example lacks 
real-world application support, precluding the use of subjective methods for comparison within AHP 
without the possibility of pairwise comparisons. 

Of particular interest is row 2 of Table 3, where all weights are identical. This uniformity arises 
because, for this normalization method, the standard deviations for all attributes are equal. This 
example illustrates how data can be manipulated to achieve equal weights through straightforward 
linear transformations during normalization. 

The most substantial weight variation in SD weighting methods occurs with mIQR[0,1] 
normalization. Any attempt to assign greater significance to a specific method is untenable. 
Weighting statistics demonstrate a criterion weight variation within the range of 10-15%, which is 
deemed acceptable. 

 
4.2 Estimation of rating indistinguishability with variation of the decision matrix 

The variation of the decision matrix D, including all its elements, is executed in accordance with 
formula (25), utilizing a given (expert) value δij, representing the relative error in estimating the 
attribute aij. 

For each variation of the decision matrix aij.(k), the efficiency indicator value Qi
(k), for each 

alternative i=1,…,m is determined. Subsequently, based on the Qi
(k), statistics, a statistical assessment 

of the standard error σQ1 is conducted for the efficiency indicator of alternatives within the 1st and 
2nd ratings, 2nd and 3rd ratings, and so forth. The resulting indistinguishability estimate dQcr is 
determined using formula (26). Table 4 provides an example of the results of assessing the critical 
value of indistinguishability. 

With a 3% variation in the elements of the decision matrix, the average discriminability for the 
WSM(IZ(Max,4) model was approximately 4%. The distribution of the performance indicator Q for 
various models is illustrated in Figure 5. 

Each fragment in Figure 5 illustrates the distribution of a performance measure for all alternatives 
within one MCDM rank model. The partial distributions for the rank 1 alternative are positioned at 
the bottom right of each fragment. The numerical values presented in the table inside each fragment 
indicate the proportion (%) of indistinguishable alternatives within the identified critical value dQcr. 
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Table 4 
Example of critical value assessment. WSM(IZ(Max,4) 
model with equal weights, 1024 variations, δij=δ=3% 

rank-Ai mean Q std Q dQ, % , %crQd 

1-A4 0.873 0.011 - - 
2-A2 0.863 0.009 8.1 4.0 
3-A6 0.829 0.013 26.6 4.3 
4-A5 0.821 0.010 5.8 4.5 
5-A8 0.821 0.011 0.0 4.1 
6-A1 0.813 0.012 6.7 4.5 
7-A7 0.805 0.012 6.1 4.7 
8-A3 0.745 0.011 46.7 4.5 

 
The results exhibit a normal distribution of the efficiency indicator Q, aligning with the central 

limit theorem in probability theory: the distribution of a sum of independent random variables 
subject to a uniform distribution is normal. 

 

 
Fig. 5. Distribution of performance indicator Q for various models. 1024 variations, δij=3% 

 
4.3 Calculation results 

The numerical values in Table 5 represent the number of occupied alternatives Ai (rows) for one 
of the 8 ranks (columns) in a series of 210 MCDM models. 

Preferences, based on the criterion of the number of I, II, III, etc. ranks (left block of Table 4), are 
distributed as follows: A4, A2, A6, A5, and so forth Accounting for the distinctiveness of the rating (RPI) 
leads to increased competition among alternatives of lower ranks (right block of Table 5). For 
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instance, Alternative A2 occupies rank 1 in 119 models out of 210, compared to 122 for Alternative 
A4. In terms of the sum of ranks 1 and 2, Alternative A2  actually surpasses Alternative A4. 

 

Table 5  
Ranking according to the highest score (210 models) 
Rank I II III IV V VI VII VIII ∑ 

Without taking into account distinguishability in ratings  

1A 0 16 13 5 22 43 98 13 210 
2A 89 92 10 1 0 2 5 11 210 
3A 18 0 0 0 0 0 14 178 210 
4A 102 77 10 2 4 0 8 7 210 
5A 0 7 20 57 52 60 13 1 210 
6A 1 16 141 22 9 17 4 0 210 
7A 0 2 2 52 51 47 56 0 210 
8A 0 0 14 71 72 41 12 0 210 

∑ 210 210 210 210 210 210 210 210 168 

 
Table 5 (continued) 
Rank I II III IV V VI VII VIII ∑ 

 7%=crQdDistinctiveness in ratings   

1A 0 19 27 9 41 52 50 12 210 
2A 119 72 1 0 2 1 8 7 210 
3A 18 0 0 0 0 0 16 176 210 
4A 122 66 3 1 3 1 11 3 210 
5A 0 15 73 53 34 28 6 1 210 
6A 9 34 140 7 10 8 2 0 210 
7A 0 9 32 70 43 31 25 0 210 
8A 0 5 66 77 48 12 2 0 210 

∑ 268 220 342 217 181 133 120 199 1680 

 
Histograms and the dynamics of the distribution of places for different values of the 

distinguishability criterion dQcr (set a priori) are presented in Figure 6. 

 
Fig. 6. Histogram of the distribution of alternative ranks in 210 models 
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For the problem under consideration, employing 210 ranking MCDM models, it is calculated that 
in 10% of cases, the relative difference in the ranking of alternatives between 1st and 2nd ranks does 
not exceed 3%, for 27% of models, this difference does not exceed 7%, and for 48% of models, this 
difference does not exceed 12%. This underscores the importance of considering errors as a 
necessary component when solving decision-making problems, especially in cases of sensitivity of 
ratings to the initial data or the choice of model components (methods). 

Applying Borda's count may result in a change in rankings, as shown in Table 6, presented in two 
versions: Tournament counting and the Dowdall system. Unlike the results of simple statistics (Table 
6), the Borda count, when accounting for distinctiveness, alters the 1st and 2nd rank alternatives 
(highlighted). 

 
Table 6 
Scoring without and taking into account the distinctiveness of the rating of alternatives (210 models) 

 Borda count: tournament-style counting  the Dowdall system 
Rank base 3% 7% 12% base 3% 7% 12% 

#1 A4 1255 A4 1276 A4 1294 A2 1315 A4 146.2 A4 152.7 A2 160.9 A2 170.4 
#2 A2 1244 A2 1263 A2 1292 A4 1308 A2 142.9 A2 150.1 A4 159.8 A4 165.0 
#3 A6 958 A6 991 A6 1037 A6 1087 A6 66.0 A6 70.0 A6 77.0 A6 85.9 
#4 A8 679 A8 774 A8 848 A8 931 A5 46.5 A5 51.2 A5 56.5 A5 63.9 
#5 A5 649 A5 730 A5 811 A5 910 A8 45.8 A8 51.0 A8 55.8 A8 62.5 
#6 A7 528 A7 593 A7 690 A7 779 A3 42.0 A7 43.2 A7 48.1 A7 53.8 
#7 A1 440 A1 492 A1 570 A1 667 A7 40.5 A1 42.4 A1 45.9 A1 50.3 
#8 A3 127 A3 128 A3 128 A3 131 A1 40.3 A3 42.0 A3 42.0 A3 42.0 

 
The range of alternative rating values varies when using different aggregation methods, 

weighting coefficients, and normalization methods. Within the framework of the 210 models 
considered, the range of rating values is presented in Table 7. 

 
Table 7 

 iQValue range of performance indicator of the alternatives 
for various aggregation methods (210 models) 

Number of methods  iQ 
Aggregation  Weight Norm ∑ min max 

WSM 6 4 24 0.2 0.9 
WPM 6 4 24 0.0 0.9 

WASPAS 6 4 24 0.1 0.9 
CODAS 6 4 24 0.0 6.5 

COPRAS 6 4 24 0.1 1.1 
TOPSIS 6 4 24 0.1 0.8 

GRA 6 4 24 0.5 1.5 
PROMETHEE 6 3 18 -3.8 3.0 

ORESTE 6 3 18 69.5 153.0 
VIKOR 6 1 6 0.0 1.0 

Total models:   210   

 
To synthesize a solution based on ratings, the different ranges of values necessitate transforming 

the rating scale of each model into a single scale on the interval [0, 1] while maintaining the 
proportions of the original ratings. This is achieved through linear transformations (3.8-3.12). The 
degree of proximity, removal of the performance of various alternatives, is preserved under linear 
transformations, thereby maintaining the "thin" structure of relationships in the ratings of 
alternatives. All calculations were executed following the step-by-step algorithm described in section 
3.8 and are presented in Table 8. 
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It is suggested that the indicated calculation of the integral rating is more effective than the Borda 
count, which distributes points in an even, inversely proportional, or otherwise voluntaristic manner 
in accordance with occupied places. Maintaining the proportions of the rating scale is considered a 
natural procedure. 

 
Table 8  
Rank based on rating score of alternatives (210 models)  
Rank iA Score , %iQd  Rank iA Score , %iQd 

#1 2A 179.90 -  #5 5A 110.27 0.8 
#2 4A 173.95 3.7  #6 7A 103.78 4.0 
#3 6A 129.72 27.4  #7 1A 95.79 5.0 
#4 8A 111.61 11.2  #8 3A 18.72 47.8 

5. Conclusions 
Through the research presented in this study, the 3M multi-criteria selection approach was 

employed, embodying the synthesis and integration of the aggregation method, the weighing 
method, the normalization method of the decision matrix, and the selection of distance metrics. The 
acceptability of MCDM methods for resolving problems was significantly broadened, enhancing the 
instrumental toolkit employed in this context. 

Within the investigation, the introduction and utilization of the RPI of alternatives allowed for the 
identification of significant differences in the ranking of alternatives obtained through a specific 
MCDM model. The RPI facilitated adjustments to the ranking of alternatives, exerting influence on 
subsequent rankings. Leveraging the RPI led to the identification of three methods for aggregating 
individual characteristics of alternatives with identical results:  WSM, MABAC, TOPSIS(L1) and RS 
eliminating the need for duplicating these methods within the 3M approach. 

Given the profusion of MCDM methods, a necessity for comparative analyses emerged. This 
comparison was conducted utilizing two lists: ranked and rating. A method for the step-by-step linear 
transformation of ratings of alternatives obtained in various MCDM models was delineated, enabling 
the comparison and aggregation of ratings while preserving the degree of proximity. This 
preservation ensured the retention of the integral indicator Qi for various alternatives during linear 
transformations, thereby preserving the “fine structure of relationships” of the ratings of 
alternatives, thereby enhancing the reliability of the results. 

Directions for future research based on the 3M approach, currently lacking definitive solutions, 
encompass: 

- Determining the MCDM methods to be incorporated into the list of methods used to address 
specific problems, considering both qualitative and quantitative composition;  

- Establishing methodologies for comparing results obtained from different methods; 
- Developing approaches for assessing the significance (weight) of methods; 
- Exploring methodologies for grouping methods and formulating criteria for such grouping; 
- Investigating methodologies for synthesizing solutions within the 3M framework. 
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