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Abstract Building energy-saving design is significant for the industry to 
achieve carbon reduction and sustainable development. Firstly, a multi-
objective model for energy consumption, cost, and carbon emissions is 
established based on the three-dimensional perspectives of society, nature, 
and economy. Then, a polynomial operator is used to improve the non 
dominated sorting genetic algorithm to calculate the optimal solution set. The 
low computational efficiency caused by direct coupling of algorithms in 
traditional optimization processes is expected to be addressed. Based on the 
results, the algorithm proposed in this study showed significant improvement 
in the reverse distance and convergence metrics for both the Square1 and Iris 
datasets, with an improvement of over 70% compared to the support vector 
machine-genetic algorithm and multi-objective clustering algorithm. The 
values obtained were closer to 0. The solution solved by this algorithm had 
lower building costs, energy consumption, and carbon emissions, with values 
of 345,200 yuan, 2,374 KWh/year, and 26 tons, respectively. This validates 
the effectiveness of the multi-objective model and solving algorithm in 
obtaining the optimal energy-saving design scheme for buildings. The results 
provide a reference for low-carbon optimization.  
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1. Introduction 

With the economic transformation and urbanization development, people's demands for living 
environment are constantly increasing. The current proportion of residential energy consumption 
will reach 30% -40%. As an emerging energy building, green buildings not only rely on the building 
itself, but also on the user's behavioral awareness and lifestyle habits. Reducing building energy 
consumption and improving economic efficiency will comply with China's development strategy. 
Improving the living environment also needs to meet the urgent needs of the people for a better life 
[1-2]. In the new era, multi-objective optimization (MOO) research on building energy efficiency 
inevitably attracts widespread attention. Traditional research on building energy consumption 
optimization mainly focuses on certain specific research areas. The optimal research results are 
selected through a series of simulations, experiments, and evaluations, providing improvement 
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strategies and suggestions. With the improvement of the life quality, the requirements for buildings 
are becoming more diverse. Energy efficient buildings with single or dual objectives are difficult to 
meet the various requirements of residents for building economy, comfort, and energy efficiency [3-
4]. To achieve optimal control of residential energy conservation with multiple indicators, firstly, a 
mathematical model with multiple optimal indicators is established. The multi index comprehensive 
evaluation method for building energy-saving design is a technically complex and large-scale system 
engineering, involving the intersection and penetration of multiple fields. How to establish a multi 
index optimal control mode is a key link in building energy efficiency optimization [5]. The 
optimization of building energy design is very challenging because it is a multi-disciplinary problem 
involving multiple fields such as architecture, engineering, mathematics, and economics. Multiple 
opposing objective functions need to be solved. Particle swarm optimization and artificial bee colony 
algorithm are helpful for solving, but their computational complexity is relatively high. To optimize 
the coupling calculation of the social, natural, and economic levels included, while considering the 
competitive characteristics of various building performance indicators, the Non-Dominant Sorting 
Genetic Algorithm-II (NSGA-II) has become a hot algorithm for comprehensive optimization of 
building performance due to the ease of use and variability. In view of this, the NSGA-II is applied as 
the solving algorithm. A building energy-saving renovation model is designed with cost, energy 
consumption, and carbon emissions as multiple objectives. 

The paper presents an innovative building energy-saving optimization model that encompasses 
not only buildings but also engineering, mathematics, design, and other related fields. To address the 
complexity and specificity of the model, the NSGA-II algorithm is utilized for solving it. The study's 
primary contribution is the design and implementation of a model for optimizing building energy 
savings. This model effectively reduces construction losses and costs while improving construction 
efficiency. This paper has four parts. The first part is a literature review on building energy 
conservation. The second part is the construction of building energy-saving models and solving 
algorithms. The third part is the result analysis of the MOO model for building energy conservation. 
The fourth part is a conclusion. 
 
2. Related Work 

In the research direction related to building energy conservation, scholars such as Langevin et al., 
[6] considered that building operational efficiency and flexibility could provide value for the power 
system. The impact of optimal available building efficiency and flexibility measures on the 
technological potential of annual electricity has been estimated. When discussing the energy-saving 
renovation of buildings, the scholar has only considered the parts related to the power system. 
Berawi et al., [7] proposed an intelligent integrated workspace design framework. The building 
programming system using Internet of Things (IoT) technology was integrated into the value 
engineering process to evaluate the design solutions for future intelligent office buildings. The results 
showed that this method could achieve high efficiency and comfort in buildings. The author only 
considered the energy-saving design and renovation of the office area, which is not universal. More 
building types needed to be analyzed. Loengbudnark et al., [8] investigated the relationship between 
residents' perception control and building automation. On-site experiments conducted in the same 
building demonstrated the potential impact of residential controllability on energy conservation. The 
author analyzed the feasibility of energy-saving renovations for the building but did not provide a 
clear solution. Copiello [9] aimed to study the thematic intersection between discount rates and 
building energy efficiency. The conclusion showed that the positions of private stakeholders involved 
in the decision-making process were related to the energy-saving measures adopted in buildings. The 
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author analyzed only the importance of the discount rate and building energy efficiency in 
architectural design, without addressing how to balance the two. Zhong et al., [10] used spatial 
regression models to test the correlation between building environment and building energy 
consumption. The positive and differential impact of building environment on building energy 
consumption was analyzed and compared. The conclusion showed that the building environment 
should be incorporated into urban planning to reduce building energy consumption. The scholar 
analyzed only the impact of the building environment on building energy consumption and did not 
propose ways to transform the environment to reduce energy consumption levels.  

For the MOO of buildings, Yu et al., [11] minimized the energy costs of heating, ventilation, and 
air conditioning systems in multi area commercial buildings while considering random area 
occupancy, thermal comfort, and indoor air quality comfort. A multi agent deep reinforcement 
learning-based HVAC control algorithm with attention mechanism was proposed to solve Markov 
game. It could run without establishing a thermodynamic model. The real trajectories demonstrated 
the effectiveness, robustness, and scalability. The author analyzed the thermal comfort level of the 
building but did not consider its carbon emissions or the potential for energy-saving transformations. 
Satrio et al., [12]  aimed to study the optimization of heating, ventilation, and air conditioning system 
operation and other building parameters, minimizing annual energy consumption and maximizing 
thermal comfort. The study used artificial neural network and multi-objective genetic algorithm 
(MOGA) to optimize the operation of a dual cooling system in a certain building. Compared to the 
basic scheme design, the optimization considering two objectives performed the best in thermal 
comfort and energy consumption. The author's analysis of the building's energy consumption only 
focused on the cooling system and failed to consider the building's overall situation. Vukadinović et 
al., [13] discussed the optimization of independent passive building structures and building 
parameters. Non-explicit sorting genetic algorithm obtained optimization results. The results showed 
that the window to wall ratio was the most influential factor on energy performance in passive solar 
design. In their analysis of optimizing the structural parameters of independent buildings, the author 
solely focused on the impact of window walls on energy-saving renovations, neglecting the influence 
of other structures such as eaves. Zhai et al., [14] proposed a MOO method combining non dominated 
crowding sorting with genetic algorithm for window design optimization. This method considered 
many parameters and optimized several objectives to evaluate their overall performance. The results 
showed that this method could obtain the best window design solution to minimize building energy 
consumption. The author focused on optimizing the window design when improving the building 
structure, but did not analyze the overall structure of the building. This approach may not be 
universally applicable. Zhao and Du [15] aimed to optimize the important role of windows and 
shading systems in building energy efficiency. A simple, practical, and efficient MOO method was 
proposed, which used the NSGA-II and combined with Design Builder energy simulation software for 
experiments. The results showed that the Pareto optimal solution could also provide different 
scheme choices according to the designer's preferences. It had great significance for providing 
guidance and suggestions for designers in the early design of buildings. The author analyzed the 
window and shading system of the building structure and optimized their role in the building's 
energy-saving transformation. However, no corresponding transformation scheme was proposed. 

In summary, scholars mainly focus on optimizing heating, ventilation, and air conditioning 
systems in MOO of buildings. Energy-saving design mainly focuses on the economic aspect, with less 
emphasis on comprehensive optimization of energy conservation, cost, and energy consumption. In 
view of this, a multi-dimensional energy-saving design model is constructed based on MOGA. 
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3. Design of Building Energy-Saving Model and Solution Algorithm based on MOO 
The construction industry consumes a lot of energy. In response to this situation, a MOO model 

for building energy-saving design is proposed from an interdisciplinary perspective to balance 
building energy consumption, lifecycle cost, and lifecycle carbon emissions. Additionally, the study 
utilizes NSGA-II as an optimization tool to achieve the seamless integration of optimization goals and 
energy-saving strategies. 
 
3.1 A Multi-Objective Model for Building Energy Conservation based on Energy Consumption, Cost, 
and Carbon Emissions 

Based on the sustainable development concept of the "value triangle", this paper explores the 
environment-friendly development of buildings from multiple perspectives including society, nature, 
and economy. The basic concept is to ensure that the building performs its normal functions while 
achieving the best comprehensive benefits in terms of social, economic, and environmental aspects 
through reasonable operation and maintenance technology. Throughout the entire construction 
process, there will be many different stages and participants. Different expectations are conflicting. 
Therefore, in the optimal selection, it is necessary to ensure the balance and consistency of multiple 
objectives. From a social perspective, advocating for every household to cultivate an atmosphere of 
energy conservation and environmental protection is an important measure to build a resource-
saving society. Therefore, energy conservation and emission reduction is considered as optimization 
goals at the social level. From an individual perspective, reducing construction costs can achieve 
maximum economic benefits when the quality of the building meets the standards. Therefore, the 
lowest construction cost is considered an economic goal. From a national perspective, to achieve the 
grand goal of carbon neutrality in the construction industry as soon as possible, the country has 
recently launched a series of measures to promote decarbonization in the construction industry. 
Therefore, reducing carbon dioxide emissions is a natural indicator. The optimal indicators of overall 
performance are constructed from three aspects: social, economic, and natural, exploring the 
dynamic equilibrium relationship between various dimensions to achieve optimal overall 
performance. Figure 1 shows a schematic diagram of energy consumption, cost, and carbon emission. 
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Fig. 1. Energy consumption, cost, and carbon emission targets 

 
The overall value of building energy consumption is the measurement standard, mainly because 

it not only reflects the equipment energy consumption during the service, but also the operational 
impact brought by renewable energy generation. The calculation limits include the energy 
consumption of internal control equipment, the equipment energy consumption that maintains the 
basic functions of the building, and the renewable energy utilization capacity. The energy 
consumption of cold and heat sources belongs to indoor control energy consumption. The energy 
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consumption of basic equipment refers to the domestic hot water, lighting, and other household 
equipment [16]. In buildings, renewable energy compensation generates the same amount of energy 
as new energy generation. Eq. (1) is the overall value of building energy consumption. 

 

*
r i

total E

E f
E E

A
= −

                                                                                                                                  (1) 

 
In Eq. (1), 

total
E  represents the overall value of the building energy consumption. 

E
E  represents 

the total energy consumption of buildings without new energy. 
r

E  represents the annual power 

generation of sustainable energy on buildings. A  represents the building area. 
i

f  represents the 

energy conversion coefficient, as shown in Eq. (2). 
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In Eq. (2), 

h
E  represents the annual heating energy consumption. 

c
E  stands for annual cooling 

energy consumption. 
l

E  denotes annual lighting energy consumption. 
w

E  represents the annual hot 

water energy consumption. 
e

E  represents the annual power consumption of household appliances. 

The 
h

E  is shown in Eq. (3). 
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In Eq. (3), 

h
Q  represents the annual heating load. 

h
COP  represents the total heating efficiency. 

H  denotes the calorific value of the fuel used for heating. The 
c

E  is shown in Eq. (4). 
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In Eq. (4), 
c

Q  represents the annual cooling load. c

c

Q

COP
 represents the comprehensive efficiency 

of the cooling system. From the perspective of building energy efficiency, life cycle cost is the 
optimization objective for measuring costs. It includes the total cost of various building components 
and renewable energy generation systems required during the construction phase, operation phase, 
demolition and disposal phase, as well as the energy consumption cost during the operation period 
[17]. The cost of building life cycle is calculated as Eq. (5) (denoted as Cbuild). 

 

build

IC OC RC
C

A

+ +
=                                                                                                                                             (5) 

 
In Eq. (5), IC  represents the cost during engineering manufacturing and construction. OC  

represents the cost during the construction and operation period. RC  represents the cost of 
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building demolition and disposal stages. Eq. (6) is the cost calculation during the production and 
construction stages. 

 

0

n

Mi

i

IC IC IC= +                                                                                                                                                     (6) 

 
In Eq. (6), 

0
IC  represents the cost of selecting a reference building during the construction phase. 

Mi
IC  represents the additional cost of components of Class and building during the construction 

process. Eq. (7) is used to calculate the operating cost of a building. 
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In Eq. (7), a  represents the compensation coefficient that takes into account fluctuations in fuel 

prices and electricity prices. W  denotes the unit price of heating fuel. 
2

W  denotes the residential 

electricity price. 
3

W  represents the selling price of renewable electricity connected to the grid. dw  

represents the cost required for component replacement. Eq. (8) represents the cost of demolition 
and disposal stages. 

 

( )D T C y
RC RC RC RC a= + +                                                                                                                                  (8) 

 
In Eq. (8), 

D
RC  represents the cost of alternative building solutions. 

T
RC  represents the cost of 

waste transportation. 
C

RC  represents the disposal cost. Buildings release significant carbon 

emissions after construction, use, and demolition. Carbon emissions during the life cycle are used as 
a measure of carbon emissions based on the concept of life cycle. Table 1 shows the carbon emission 
sources for each stage of the life cycle. 
 
Table 1 
Carbon emission sources at various stages of the life cycle 

Stage 
Carbon source category 

Artificial Material Machinery 

Production and 
Construction 

Personnel 
respiratory 
carbon 
emissions 

Implied carbon emissions from 
prefabricated component 
composition materials 

Carbon emissions generated by 
energy consumption in the 
production, transportation, and 
construction of prefabricated 
components 

Working 

Implied carbon emissions from 
materials required for 
maintenance, refurbishment, 
and replacement 

Carbon emissions generated by 
energy consumption in renewable 
energy systems, indoor living 
equipment, etc 

Demolition and 
disposal 

Implied carbon emissions from 
consumables such as oxygen and 
acetylene required for 
dismantling 

Carbon emissions generated by 
energy consumption of excavators, 
trucks, and other machinery 
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From Table 1, the carbon dioxide generated during the production and construction process 
mainly includes personnel respiration, material production, material transportation, and machine 
consumption. During the operation, it mainly comes from personnel respiration, material production 
and transportation, machine consumption, and backup energy inside the building. The carbon 
dioxide generated during the dismantling and reuse process includes personnel respiration, material 
handling and handling, mechanical consumption, etc. At present, there are two methods for 
estimating carbon dioxide emissions in China: the quota method and the actual measurement 
method. Considering that the construction quota is mainly applicable to the construction stage, it is 
difficult to calculate the operation stage, demolition and disposal stage. Therefore, the actual 
measurement method is adopted. 
 
3.2 MOO Algorithm based on NSGA-II Competitive Screening 

The MOO problem includes multi-dimensional decision variables x  and total m  objective 

functions ( ) ( )( )1
,...,

m
Obj x Obj x . The task of solving MOO problems is to maximize (or minimize) 

multiple objective functions. A multi-dimensional decision variable is searched within the selectable 
range of the solution set. The multi-dimensional decision variable is in Pareto optimization when it 
no longer reinforces all objective functions and does not affect them. Figure 2 shows the Pareto 
optimal front matrix. 
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Fig. 2. Pareto optimal front matrix 

 

Assuming two objective functions ( )1
Obj x  and ( )2

Obj x  are selected, the two decision variables 

within the range of values are 
1

x  and 
2

x . If ( ) ( )1 1 1 2
Obj x Obj x  and ( ) ( )2 1 2 2

Obj x Obj x , then the 

decision variable 
1

x  dominates 
2

x , and the decision variable 
2

x  is dominated by 
1

x . If a variable is 

not affected by other variables, it is the Pareto optimal solution. In MOO problems, the best Pareto 
solution is usually a set rather than one. This combination is called a Pareto optimal solution set, also 
known as a Pareto matrix. Genetic algorithm is an optimization method based on natural selection 
and the principle of natural inheritance. This method simulates the evolutionary laws of organisms, 
writing individual genetic information into chromosomes. When the suitability of the species is 
determined, these genes will be deciphered [18]. In the simulation evolution process, each individual 
can represent a consensus and obtain the optimal solution by solving the objective function of the 
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problem. Among these methods, NSGA-II is the most efficient and widely used high-dimensional 
MOGA. Figure 3 shows the NSGA-II competitive screening process. 
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Fig. 3. NSGA-II competitive screening process 

 
The NSGA-II method is aimed at multi-objective programming problems. After determining a 

population and its offspring, a competitive screening method is used to generate a new generation 
of population. It utilizes a fast non dominated sorting algorithm to retrieve and control the front 
matrix. It uses the distance of crowding to classify groups. NSGA-II adopts a selective approach, 
dividing each population into several levels. The populations with higher status survive, while the 
populations with lower status are eliminated [19]. However, individuals within the same taxonomic 
group do not dominate each other. Their order is determined based on their level of crowding. Eq. 
(9) is the expression for calculating the crowding distance. 

 

       ( ) ( )max min
1 . 1 . /

m mdistance distance
P i P i P i m P i m f f + + − − −                                                          (9) 

 

In Eq. (9),  1 .P i m+  represents the m -th objective function value of the 1i + -th individual. 

 1 .P i m−  represents the m-th objective function value of the 1i − -th individual. max

m
f  and min

m
f  

denote the maximum and minimum values of the m-th objective function in the solution set, 
respectively. Genetic algorithms typically include two types of operators. One is the selection 
operator and the other is the recombination operator. The former performs directional control on 
the algorithm. The latter generates new search scopes. Both of these methods can ensure the implicit 
parallelism of genetic algorithms, thereby finding a near optimal solution within a larger problem 
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range. Chromosome crossover and mutation are two implementation methods of operators. Eq. (10) 
is the calculation method for the binomial crossover operator. 
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In Eq. (10), qi
  represents the crossover operator. 

i
u  represents a random number with a value 

between 0 and 1. 
c

  represents the cross distribution index. Eq. (11) is the calculation method for 

polynomial variation. 
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In Eq. (11), 

k
r  represents a random number that follows uniform sampling, with values ranging 

from 0 to 1. 
m

  represents the variation distribution index. From Eqs. (10) and (11), the crossover 

operator is the exchange of genetic information between two parent individuals through certain 
methods, forming two new offspring [20]. The polynomial variant achieves genetic diversity of the 
population by setting mutation rules. Figure 4 shows the flowchart of the NSGA-II. 
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Fig. 4. Algorithm flowchart of NSGA-II algorithm 

 
From Figure 4, after establishing a new sample set, each sample is initialized according to the 

prototype encoding method. On this basis, the refactoring operation is performed and an appropriate 
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fitness function is introduced to continuously evolve and form a new population. This algorithm 
adopts two methods, cross operation and mutation operation. Finally, the recommended individuals 
are selected from the population as the output. 
 
4. Result Analysis of MOO Building Energy Efficiency Model based on NSGA-II 

To verify the effectiveness of the MOO model based on cost, energy consumption, and carbon 
emissions, as well as the MOGA, artificial datasets and machine learning datasets were selected. The 
performance of different algorithms was compared from multiple indicators. Finally, the solution 
results of the MOO model were obtained. 
 
4.1 Performance Analysis of MOGA 

To present a visual comparison analysis of algorithm performance, the Square1 dataset and Iris 
dataset were selected for experiments from both manual datasets and machine learning databases. 
The Square1 dataset contained 4 clusters of the same size, totaling 103 data points. Each cluster 
appears as a cube, with some overlap between clusters. The Iris dataset included three types, 
Vericolor, Virginia, and Setosa. The number of samples in three clusters was 50. The data points 
between the first two clusters overlapped significantly. Genetic algorithm required setting parameter 
values for four factors, i.e. population size, iterations, chromosome crossover, and mutation 
probability. The study used the expert experience method, selecting 200, 100, 0.8, and 0.2. The 
comparison methods were Multi-Objective Clustering with Automatic K-determination (MOCK) and 
Support Vector Machine Genetic Algorithm (SVM-GA). The evaluation indicators included the 
clustering effect of the solution set, Inverse Generation Distance (IGD), and Convergence Metric (CM). 
IGD represented a comprehensive evaluation index for algorithm performance. It was used to 
evaluate the convergence rate and population difference. A low IGD value indicated that the 
algorithm had a high convergence rate and good population diversity. CM was used to evaluate the 
convergence performance of the solution set obtained by the algorithm. This convergence measure 
referred to the difference between a set of approximated optimal solutions and the true optimal 
solution set. Therefore, a small indicator indicated that the algorithm had better convergence. Figure 
5 shows the partitioning performance of the proposed algorithm on the selected dataset. 
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Fig. 5. The partitioning effect of the dataset 

 
From Figure 5, the actual Square1 dataset presented a four cluster data distribution of two rows 

and two columns. There was slight overlap between the clusters. The Square1 data based on NSGA-
II also presented four distinct approximate clusters. Although the overlap between square clusters 
was not obvious, there was a trend of convergence. The Iris actual dataset presented a three row 
distribution of data clusters. There was a significant overlap between the data clusters in the previous 
two rows. The Iris data cluster based on NSGA-II was also divided into three clusters. The overlapping 
treatment was more prominent. The above results show that the proposed model has a better 
performance when distinguishing the data structure, and can realize the complete differentiation of 
the data. Figure 6 shows the comparison curve of IGD mean. 
 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

IG
D

0 90 10010 20 30 40 50 60 70 80
Iterations

(a) Square1 dataset

SVM-GA
MOCK
Algorithm in this article

 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 2 (2024) 275-293 

286 
 
 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 90 10010 20 30 40 50 60 70 80
Iterations

(b) Iris dataset

SVM-GA
MOCK
Algorithm in this article

IG
D

 
Fig. 6. IGD mean comparison curve 

 
From Figure 6, on the Square1 dataset, the IGD index value curve obtained by the MOGA 

converged faster. It had smaller convergence values. The number of iterations to start convergence 
was 40, and the IGD value to complete convergence was 0.01. The SVM-GA and MOCK algorithms 
converged in the later stages of iteration. The convergence only started after 70 iterations. The final 
IGD values obtained were 0.063 and 0.042, respectively, which were 84.1% and 76.2% higher than 
the proposed algorithm. On the Iris dataset, the proposed method had a lower initial convergence 
value for the IGD metric value. The convergence process was more stable. The final obtained IGD 
value was 0.008. The comparison algorithm had a larger fluctuation range. The SVM-GA algorithm 
ultimately failed to obtain a convergence value. The IGD value of the MOCK algorithm was 0.058. The 
above results show that the proposed algorithm has obvious advantages in both convergence speed 
and data miniature. Figure 7 shows the CM mean comparison curve. 
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Fig. 7. CM mean comparison curve 

 
From Figure 7, the proposed multi-objective algorithm achieved smoother convergence curves 

and lower CM convergence values on both the Square1 and Iris datasets. The SVM-GA algorithm and 
MOCK algorithm exhibited significant fluctuations in the early and mid stages. There was also a 
significant difference in convergence speed and convergence value compared to the proposed 
algorithm. For example, on the Square1 dataset, the CM convergence values of the three algorithms 
were 0.05, 0.18, and 0.28, respectively. On the Iris dataset, the CM convergence values of the three 
algorithms were 0.06, 0.22, and 0.35, respectively. On the CM metric, the proposed algorithm was 
70% lower than the comparison algorithm on both datasets. Therefore, it indicates that the algorithm 
has more advantages in convergence performance. The study further analyzed the results of 
comparing the proposed model with SVM-GA and MOCK models on different size datasets, as shown 
in Figure 8. 
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Fig. 8. Comparison of model running time 

 
Figure 8 (a) showed the running time results of the three models on small sample data sets. With 

the increase of sample data, the running time of the three models was increasing, but the running 
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time of the model used in the study was always lower than that of the other two models. The 
proposed model had the highest running time of about 20ms, while the remaining two models were 
higher than 30ms. Figure 8 (b) showed the running time results of the three models on large sample 
data sets. The running time of the research model was still significantly better than the other two 
models. The research model could complete the target task more quickly and realize the optimization 
goal. The study also compared the accuracy of the three models on the size sample data sets, and 
the results are shown in Figure 9. 
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Fig. 9. Comparison of the model accuracy rate 

 
Figure 9 (a) showed the results of the accuracy comparison of the three models in small sample 

data sets. With the increase of the number of samples, the accuracy of SVM-GA model and MOCK 
model was constantly decreasing, but the accuracy of the research model basically did not change 
with the number of samples, and always remained above 90%. Figure 9 (b) showed the change of the 
accuracy of the three models on large sample data sets. When the data sample was large enough, 
the accuracy of the model would show an upward trend with the increase of the sample data, and 
the accuracy of the proposed model could reach 98.6%. The proposed model not only has a lower 
running time than the other two models but also has a higher accuracy than them. 
 
4.2 The application effect analysis of multi-objective building energy-saving model 

To verify the effectiveness of the building energy efficiency optimization objective function 
established in the research and the MOGA in practical applications, a typical residential building in a 
certain province was taken as the research object. The building had a height of 2.8 meters and a total 
of 15 floors. The total construction area was 4850 m2. The range of values for basic building variables 
was displayed in Table 2. 
 
Table 2 
Range of values for building basic variables 

Entry name Variable value Unit 

South window to wall ratio 0.1-0.45 - 

North window to wall ratio 0-0.3 - 

Building area 90-160 m2 

Thermal conductivity of walls 0.1-0.6 W/(m2·k) 

Roof thermal conductivity 0.1-0.45 W/(m2·k) 

Door thermal conductivity 0.1-1.5 W/(m2·k) 

Thermal conductivity of window 0.1-3.0 W/(m2·k) 
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After on-site research and statistics, the heat transfer coefficient of the door was mainly 

1.5W/(m2 k). The ratio of the north and south window walls to the building area was set to 0.25. This 
study mainly examined the optimization situation without significant changes to the original design. 
Therefore, the similarity variation diagram of each part of the building was first obtained, as shown 
in Figure 10. 
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Fig. 10. Similarity curve 

 
From Figure 10, the similarity between the exterior walls, roofs, windows, doors, and floors was 

maintained between 0.8 and 1. Among them, the ground and roof had larger fluctuations, with 
fluctuations within 0.2. The overall similarity curve had the smallest fluctuation and the overall value 
was also above 0.9. This indicates that the proposed optimization techniques can ensure minimal 
modifications to the original building. It is effective to study the optimized structure of the doors, 
which can obviously reduce the energy consumption of buildings. Table 3 shows the design 
parameters under different optimal solutions. 
 
Table 3 
Design parameters under different optimal solutions 

Category 
Thermal conductivity 
of external walls 

Roof thermal 
conductivity 

Thermal 
conductivity of 
window 

Door thermal 
conductivity 

Energy saving 
optimization 

0.3 0.15 1.5 1.5 

Economically optimal 0.7 0.3 2.5 1.5 

Comfort optimal 0.2 0.08 0.8 1.5 

Optimal carbon emissions 0.4 0.3 1.5 1.5 

Comprehensive optimal 0.2 0.1 1.5 1.5 
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Category 
Construction cost 
(10000 yuan) 

Total energy 
consumption 
(KWh/year) 

Carbon 
emissions (tons) 

Comfort 

Energy saving 
optimization 

36.85 2155 32 0.39 

Economically optimal 33.48 2274 35 0.10 

Comfort optimal 37.13 2716 30 1.05 

Optimal carbon emissions 34.65 2553 18 -0.54 

Comprehensive optimal 34.52 2374 26 0.28 

 
From Table 3, there were differences in the design parameters obtained from the energy 

conservation, economy, and carbon emissions. If energy conservation was considered the best, the 
construction cost was the highest, with a size of 368,500 yuan. However, its total energy consumption 
was the lowest, with a size of 2,155 KWh/year. Considering the economic optimum alone, the 
construction cost was 334,800 yuan, but the comfort level was also reduced to 0.10. Considering the 
optimal carbon emissions alone, the carbon emissions were significantly reduced, but the comfort 
level was also reduced to a negative value, with a magnitude of -0.54. Under the comprehensive 
optimal solution, the comfort value, construction cost, and carbon emissions all achieved lower 
values of 0.28, 345,200 yuan, and 26 tons, respectively. This indicates that single objective 
optimization has significant limitations. MOO can obtain global optimization and a more 
comprehensive design solution. Figure 11 shows the construction cost, carbon emissions, and energy 
consumption curves of different algorithms for MOO. 
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Fig. 11. Construction cost, carbon emissions, and energy consumption curve 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 2 (2024) 275-293 

291 
 
 

 

From Figure 11, compared with the SVM-GA and MOCK algorithm, the proposed method had the 
lowest building cost, carbon dioxide emissions, and energy consumption. Although there were some 
fluctuations in the early and middle stages of convergence, the curve tended to stabilize in the later 
stage. The convergence performance was good. The SVM-GA algorithm did not obtain convergence 
values in the carbon emissions. Compared to the proposed algorithm, the construction cost and 
energy consumption had increased by 11.5% and 7.8%, respectively. The MOCK algorithm had 
increased construction costs and energy consumption by 7.2% and 5.1% compared to the proposed 
algorithm. This indicates that the multi-objective model established in the study has good 
optimization effects. 
 

5. Conclusion 
The current energy-saving design in the construction industry is difficult to balance multiple 

performance goals, such as energy consumption, cost, and carbon emissions. The MOO model is 
established to adjust design parameters for this problem. The multi-objective solution algorithm 
based on NSGA-II was designed to achieve comprehensive optimization of buildings. According to the 
results, for the Square1 dataset, the algorithm proposed in the study had a value of 0.01 for the IGD 
metric. The SVM-GA and MOCK algorithms were 0.063 and 0.042, respectively. The proposed 
algorithm had improved by 84.1% and 76.2%. For the CM indicator, the proposed algorithm had a 
value of 0.008 on the Iris dataset, while the comparative algorithm MOCK was 0.058. The proposed 
algorithm had improved by more than 70%. In addition, the MOO model designed in the study 
achieved higher comprehensive benefits than the single objective model. It could achieve a balance 
of multi-objective values. Under the comprehensive optimal solution, the comfort value, 
construction cost, and carbon emissions all achieved lower values of 0.28, 345,200 yuan, and 26 tons, 
respectively. The numerical values were better than single objective optimization algorithms. In 
terms of building energy consumption, the model proposed in the research had reduced by 7.8% and 
5.1% compared to the comparison algorithm. Therefore, this indicates that the multi-objective design 
method has more advantages in energy conservation, emission reduction, and cost reduction, which 
is feasible. At the same time, the multi-objective solving algorithm based on NSGA-II achieves the 
global search ability and local development ability of the balanced algorithm, making the multi-index 
performance better. The study's model consistently demonstrates strong performance during the 
training process and achieves excellent results across various datasets, successfully meeting the goal 
of energy-efficient building transformation. In practical applications, the model also exhibits 
exceptional performance, enhancing comfort levels while reducing construction costs and carbon 
emissions. 

While a MOO model for building energy-saving transformation has been constructed and solved, 
the development of IoT technology means that building construction projects must now consider 
both design and time construction. This can make it difficult for some architectural designs to be 
realized in actual construction. In the future, the building information model technology should be 
combined with building energy-saving transformation design to analyze the feasibility of building 
energy-saving transformation in detail. This will optimize the design and improve the effectiveness 
of the research and constructed model on building energy-saving transformation. 
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