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In vehicle routing problems (VRP), the optimal allocation of transportation by 
considering factors such as route hardness, driver experience and vehicle 
worn-out has a significant effect on costs reduction and approaching real-
world conditions. In this paper, a novel fuzzy mixed integer non-linear 
mathematical model to address the two-echelon allocation-routing problem 
under uncertainty is proposed by applying route and fleet conditions. The cost 
of allocating drivers to diverse vehicles is computed at the first echelon of the 
problem, considering factors such as vehicle type, vehicle wear-out, and 
driver experience. Additionally, different routes are defused with varying 
levels of hardness. The goal of the second echelon of the model is to improve 
reliability by defining the reliability of routes within each section. To solve the 
model, the Torabi and Hessini (TH), the Selimi and Ozkarahan (SO) methods, 
and a newly proposed approach (PIA) were utilized to transform the multi-
objective model into a single-objective one. Numerical tests and performance 
indicators were used to validate the effectiveness of both the multi-objective 
mathematical model and the proposed solution method. The validation 
computation results indicate that the proposed solution approach 
outperforms both the TH and SO approaches. 

 
Keywords: Two-echelon allocation-routing 
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1. Introduction 

One of the issues in supply chain management is the problem of vehicle routing in the supply 
chain distribution network. Its objective is to choose and allocate feasible routes to available vehicles 
for distribution and delivery of goods to distribution centers or customers to minimize associated 
costs. It is critical to find the best solution to this problem to reduce distribution costs, ensure prompt 
delivery of goods, reduce storage requirements, and enhance customer satisfaction. On the other 
hand, vehicle routing is among the most formidable challenges in the transportation and supply 
chain. It entails transporting customer-demand items using a fleet of vehicles. The inventory routing 
problem arises from the combination of the vehicle routing problem and the vendor-managed 
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inventory problem. Farahbakhsh and Kheirkhah [1], presented a mathematical model and a novel 
genetic algorithm for solving the multi-period inventory routing problem. The objective of this model 
is to supply products to scattered customers within a given time horizon while managing customer 
inventories to avoid shortages and minimize total inventory and transportation costs. 

 There are two types of goods routing and distribution: direct and indirect. Products are 
transferred directly from the source to the destination in the direct mode, bypassing intermediate 
facilities. In the indirect mode, products are required to traverse one or more intermediate facilities 
before arriving at their intended destination, which may include distribution centers or temporary 
warehouses.  Two-echelon routing is a notable example of indirect distribution, in which products 
initially depart from a designated origin, such as a central warehouse or factory, and then proceed to 
an intermediate facility like a temporary warehouse or distribution center. The intermediate facility 
then forms a net (such as one-echelon routing) to distribute products to customers. Essentially, the 
products depart from the origin and proceed to the intermediate facility in this distribution method. 
The products are delivered to their final destination after a sequence of activities such as separation, 
sorting, integration, and classification. Throughout this process, it is crucial to maintain strong and 
precise coordination between these two echelons. Consequently, this problem cannot solve as two 
separate one-echelon problems; rather, it necessitates a joint two-echelon approach for modeling 
and resolution do C. Martins et al., [2]. In many real-world optimization problems, we are facing 
uncertainties in parameters describing the problem. A mixed linear integer programming for school 
bus routing with mixed loading by using a heterogeneous fleet is presented by [3]. The uncertainty 
of travel times has modeled as interval numbers. They proposed a heuristic algorithm to generate 
extreme scenarios. Each scenario has generated in order to make the last found optimal solution into 
an infeasible one as much as possible. Experimental results show that deploying this novel algorithm 
for generating extreme scenarios, efficiently produces diverse scenarios. After the scenario 
generation algorithm is converged, the intersection of the feasible optimal solutions under diverse 
scenarios has extracted as robust sub-tours or robust trips. However, it is important to note that 
organizations' circumstances vary, resulting in a diverse set of goals and constraints in this field. One 
of these diverse conditions could be the uncertainty that characterizes routing problems, often 
arising in terms of service time, customer presence, and demand. Employing the fuzzy method is a 
common approach to deal with such uncertainty. Hence, to better align with real-world scenarios, 
demand is approached in this article as both uncertain and fuzzy.  

What can be observed in the literature review, and tried to be considered as a research gap in 
this research is Two-Echelon Vehicle Routing Problem (2E-VRP) with new conditions and 
assumptions, which has not been addressed in the literature, and is explained below. One of the 
innovative aspects in this research is the consideration of driver’s performance records in the 
proposed mathematical model, which plays an important role in the level of customers’ 
responsiveness. Additionally, another novel aspect of this study is the application of a condition 
where a driver can have multiple vehicles with heterogeneous capacities, which brings the research 
closer to real-world conditions. As known, vehicles with heterogeneous capacities have varying 
lifespans, resulting in changes to problem conditions and the allocation of vehicles to drivers with 
different levels of experience. Applying this condition in the introduced model is another aspect of 
this research innovation, which has not been examined in the literature so far. Neglecting to consider 
the hardness of route is an additional aspect of innovation that has been overlooked in recent 
research. This article investigates how the presented model adapts to real-world conditions because 
the routes do not have the same hardness due to natural complications, weather conditions, etc., 
and some routes are hard to pass. Therefore, it is required to determine appropriate routes for the 
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vehicle with a useful life or wear-out that is proportional to the hardness of route. In other words, it 
is possible to allocate vehicles with a longer useful life or less wear-out to harder routes, and vice 
versa. This study proposes a mathematical model for the two-echelon allocation-routing problem to 
address all identified research gaps. This model's solution involves allocating vehicles to drivers, 
allocating intermediate facilities to the central warehouse, and ultimately determining the optimal 
route for each vehicle. To solve the model, an approach for converting the multi-objective model into 
a single-objective model is proposed.  This research presents a novel multi-objective, multi-period 
mathematical model that considers uncertain demand. Along with demand uncertainty, the model 
considers driver performance information, route hardness, and vehicle lifespan. 

The article is organized into seven sections. The introduction and literature review are provided 
in the first and second sections. The third and fourth sections focus on the problem statement and 
mathematical modeling, respectively. The fifth section discusses possible solutions to the model. The 
sixth section presents calculation results, and the seventh section presents conclusions and 
suggestions. 
 
2. Literature review 

Recently, the logistics community has identified two-echelon distribution systems as a major 
challenge in the field of location-routing problems. This problem has been extensively researched 
and has been the subject of numerous scientific studies. The 2E-LRP arises when goods from different 
sources must be transported to their intended destinations via intermediate facilities. Yu et al., [4], 
for instance, devised a model to address the multi-objective two-echelon location-routing problem 
(MO-2ELRP) in garbage collection planning. Furthermore, they introduced an NSGA-II algorithm 
enhanced with directed local search to effectively solve this model. Cheng et al., [5] presented a 
model in their study that aims to minimize both the cost and the duration of natural disaster debris 
cleanup. The researchers carefully considered utilizing temporary sites for debris management to 
achieve this goal.  The research focuses on a multi-period 2E-LRP, where critical decisions include 
identifying suitable locations for temporary waste management sites and optimizing vehicle routes 
at both levels. To tackle this challenge, the authors presented a mixed integer programming problem 
as well as a proposed genetic algorithm as an effective solution method. 

The conventional reliability of a system is defined as the probability that the system will perform 
a predefined operation under some specified condition for a fixed time period. Traditionally, system 
reliability evaluation is dependent on the probabilistic approach. But this approach is not always 
valid, since in reality a lot of times data related to the system information do not represent the 
realistic situation correctly due to uncertainties present in it. Therefore, in many cases, reliability 
assessment of the system becomes a very difficult task. Hence, to evaluate reliability of a system 
when available information is uncertain, then people apply the fuzzy approach. a procedure to 
construct the membership and the nonmembership functions of the fuzzy reliability function, by 
considering the failure rates as time-dependent CBFN is introduced. With the introduced approach, 
reliability of different systems is evaluated in the form of a triangular CBFN by Chaube et al., [6]. 

Lagzaie and Hamzehee [7] developed a mathematical model focused on a closed-loop green 
supply chain operating under uncertain conditions. The model and its assumptions are tailored to a 
particular industry. The researchers developed a multi-objective, multi-product, and multi-period 
model to achieve a dual outcome: enhancing profitability while minimizing environmental impact. 
Fuzzy logic was incorporated into the problem with the aim of network design, and Torabi and 
Hassini's (TH) method was combined with Jimenez's proposed method to provide a solution. 
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Wang et al., [8] proposed a Multi-Period Two-echelon Location Routing Problem (MP-2ELRP) that 
entails optimizing facility location selection and vehicle routing at two distinct echelons. They 
proposed a two-echelon hybrid algorithm that combines k-means clustering and an improved multi-
objective particle swarm optimization (MOPSO) algorithm to handle this model. The k-means 
clustering algorithm is utilized to allocate customers to distribution centers during various periods, 
while the PSO algorithm is employed to determine vehicle routes and identify Pareto optimal 
solutions. Bahmani et al., [9] provided an integrated model for a two-stage assembly flow shop 
scheduling problem and distribution through vehicle routing in a soft time window. So, a Mixed-
Integer Linear Programming (MILP) model has been proposed with the objective of minimizing the 
total cost of distribution, holding of products, and penalties of violating delivery time windows. To 
solve this problem, an improved meta-heuristic algorithm based on Whale Optimization Algorithm 
(WOA) has been developed. The main innovations in the study include considering soft time window, 
sequence-dependent setup time, delivery time window, heterogeneous vehicles, holding costs of 
final products, and unrelated assembly machines. 

In a separate study, Gandra et al., [10] introduced a generalized 2E-LRP model that incorporates 
two-dimensional loading constraints for the 2E-LRP. They addressed this model with a heuristic 
optimization method that accounts for various loading scenarios and assesses its efficiency with real-
life examples. Fallahtafti et al., [11] presented a multi-objective two-echelon location-routing model 
aimed at reducing the risk of theft during cash transportation. The amount of money carried by the 
vehicle is considered a risk-related function in this model and serves as the first objective, while the 
duration of the money transfer is regarded as the second. The researchers used a combination of 
exact and meta-heuristic methods to solve this model, focusing on small to medium dimensions. Cao 
et al., [12] investigated a two-echelon biomass resource location routing problem (2E-BRLRP) in a 
separate study. They addressed the challenge by considering a predetermined supply of biomass 
resources and proposing a mixed integer programming model. The proposed model effectively 
determines optimal locations for biomass collection facilities as well as corresponding vehicle routes. 
A hybrid heuristic algorithm combining neighborhood search (NS) and Tabu search (TS) algorithms is 
introduced to solve the presented model.  Hajghani et al., [13] a MILP model including minimization 
of costs and CO2 emissions and maximization of social responsibility (creating job opportunities and 
community development) was developed for the problem. The proposed model seeks to minimize 
the total costs by reducing the use of vehicles through reducing the number of transportation routes 
in the two-echelon distribution network (due to the incurred fixed cost of transportation per vehicle) 
and increasing the allowable load of vehicles. Also, in this study, a different type of routing is 
considered in each echelon. Due to NP-Hardness of the problem, two efficient metaheuristic 
algorithms of NSGA-II and Multi-Objective Fractal Random Search (MOSFS) have been used to solve 
the problems. 

A two-stage model is introduced for arranging and locating vehicle routes with simultaneous 
pickup and delivery by Khodashenas et al., [14]. The model developed in the first stage optimizes the 
arrangement of products in packages and thus optimizes packages' length, width, and height for 
delivery to customers. In the second stage, the goal is to provide customers with vehicle in 
simultaneous pickup and delivery. In this part of the model, the location of distribution centers has 
potentially considered, and the demand and cost parameters are considered uncertain. To solve the 
problem, precise methods and meta-heuristic algorithms of PSO for the first stage and multi-
objective meta-heuristic algorithms NSGA II and MOALO for the set have been used. The results of 
examining the efficiency of the algorithms in the second stage show the high efficiency of the MOALO 
algorithm. Mohamed et al., [15] investigated the problem of designing a distribution network under 
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uncertainty, with a focus on strategic levels. The problem, two-echelon stochastic multi-period 
capacitated location-routing (2E-SM-CLRP), entails dividing the network into two distribution 
echelons with distinct location-allocation-transport schemes designed to accommodate future 
demand. The proposed model employs a two-echelon stochastic integer programming approach. The 
first stage determines location and capacity decisions for each period of the planning horizon, while 
the second stage determines routing decisions. the Benders decomposition-based approach is 
proposed as a solution to the proposed problem. In their publication, Xue et al., [16] introduced a 
two-echelon dynamic vehicle routing problem with proactive satellite stations (2E-DVRP-PSSs) to 
optimize both operational and construction costs. Similarly, Du et al., [17] developed a novel joint 
delivery model to reduce operating costs and carbon emissions through enhanced collaboration and 
resource sharing. To this end, they proposed a mathematical model for joint delivery (JD) that 
considers multiple objectives and incorporates a multi-depot two-echelon joint delivery location 
routing problem (MD-2E-JDLRP). Furthermore, they put forward a hybrid heuristic algorithm as a 
solution for the proposed model. 

In their bi-objective mathematical programming model, Heidari et al., [18] addressed the green 
two-echelon close and open location-routing problem (G-2E-COLRP), which included factories, 
warehouses, and customers. The main goals were cost minimization and CO2 emissions reduction. 
The proposed model can determine the optimal routes, the required number of vehicles, and the 
location of facilities. To ensure accurate problem-solving, the modified epsilon method was 
employed to solve the proposed model in small-scale scenarios. 

The Vehicle Routing Problem (VRP) is another type of problem that has received considerable 
attention from researchers. The VRP is a significant supply chain management challenge that involves 
the task of efficiently serving a set of customers with specific demands using a fleet of vehicles 
concentrated at one or more locations (warehouses or nodes). This problem aims to minimize metrics 
such as total travel distance, total travel time, the number of vehicles used, late penalties, and, 
ultimately, the transportation cost function by utilizing mathematical models and route optimization 
techniques. The desired outcome is to achieve maximum customer satisfaction. For example, Neira 
et al., [19] introduced multi-trip vehicle routing problems with time windows, service-dependent 
loading times, and limited trip duration (MTVRPTW-SDLT). The initial model in this paper introduces 
a representation of the vehicle's return to the warehouse. A deterministic approach is used to solve 
the problem. Meta-heuristic optimization techniques have presented over the last two decades by 
[20,21]. The widespread applicability of various optimization methods makes them a hot spot for 
researchers.   also Uniyal et al., [22] have explained the basic components and working of some of the 
most prominent nature inspired optimization algorithms such as Ant colony optimization (ACO), PSO, 
Cuckoo search algorithm (CSA), and Ant-lion optimization (ALO). in another study, Kumar et al., [23], 
introduced an optimum choice of the mean time between failure (MTBF), mean time to repair 
(MTTR), and associated costs in a suitable design unit to bring as much efficiency as possible.  they 
used to minimize the cost satisfying the availability constraints of the system by using a few recent 
nature-inspired optimization techniques named Grey Wolf Optimization (GWO) technique and 
Cuckoo Search Algorithm (CSA) and proposed a modified wild horse optimizer (MWHO) for system 
reliability optimization problems (SROPs) and investigates the reliability allocation of two complex 
SROPs, namely, complex bridge system (CBS) and life support system in space capsule (LSSSC) by 
Kumar et al., [24]. 

Huang et al., [25] introduced multi-trip vehicle routing problems with time windows (MTVRPTW). 
Vehicles in the presented model unload cargo collected from customers at a warehouse with limited 
unloading capacity. In addition, a branch-and-price-and-cut algorithm (PBC) is proposed for the 
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MTVRPTW model. Rezaei Kallaj et al., [26] proposed a Multi-Objective - Multiple-vehicle routing 
problem (MO-MVRP) involving multiple vehicles in critical conditions supplying blood to the injured. 
The objective functions in this model consider vehicle arrival time and the amount of collected blood. 
A CPLEX deterministic solution approach is employed to solve the proposed model. Shiri et al., [27] 
developed a two-stage multi-objective mixed integer linear model for a home healthcare (HHC) 
network. The first stage is focused on establishing efficient health centers, while the second deals 
with routing and scheduling, taking both social responsibility and company efficiency into 
consideration. This model's objectives include minimizing overall costs, addressing inefficiencies, and 
maximizing social aspects. An innovative aspect of this research is the inclusion of social 
responsibility, such as job opportunities and regional economic development, as well as efficiency 
factors like time, energy, and budget management. The proposed optimization model incorporates 
an upgraded form of the data envelopment analysis approach for measuring efficiency. Additionally, 
an interactive fuzzy method known as the TH approach is introduced to effectively handle the multi-
objective model. In the case of the HHC problem, costs, social factors, and service times are naturally 
subject to uncertainty. As a result, a robust fuzzy approach is proposed as a solution to this issue. 

Wang et al., [28] proposed collaborative multi-depot vehicle routing problems with dynamic 
customer demands and time windows (CMVRPDCDTW), considering resource sharing and dynamic 
customer requirements. Researchers have developed a bi-objective optimization model aimed at 
optimizing vehicle routes to fulfill this objective. The model aims to minimize both total operating 
costs and the number of vehicles used. A hybrid algorithm combining an improved k-medoids 
clustering algorithm and multi-objective particle swarm optimization (PSO) is presented to solve the 
proposed model and obtain near-optimum solutions. Hasanpour Jesri et al., [29] have addressed the 
Multi-Trip Open Vehicle Routing Problem (MTOVRP). They formulated an appropriate integer 
programming model to minimize the total costs of buyers. To solve this model, they presented a 
decomposition-based algorithm that breaks the problem down into two parts. The first stage involves 
tactical decisions about supplier selection and the type of cooperation. The visit sequence for each 
vehicle is determined in the second step. Nozari et al., [30] proposed a model for the Multi-Depot 
Vehicle Routing Problem (MDVRP). The main objective of this model is to determine the optimal 
locations for warehouses and production centers, as well as the most efficient routes for distributing 
medical supplies to hospitals. To address the uncertainties associated with parameters such as 
demand, transmission, and distribution costs, this model was solved using a robust fuzzy method. 
The impact of uncertainty has been examined using the Neutrosophic fuzzy programming method. 

Jiao et al., [31] proposed an algorithm for VRP-Energy constraint in disaster scenarios. Their 
innovative approach utilizes a multi-stage vehicle routing algorithm based on task grouping (MSVR-
TG). The algorithm combines k-means clustering and a genetic algorithm to effectively solve the 
routing model. Pirabán-Ramírez et al., [32] presented a problem involving blood unit transportation 
from collection sites to a blood center, referred to as the Vehicle Multi-trip routing problem (VMRP). 
To address this problem, they have developed a mixed integer linear programming model that 
incorporates increasing profit. Moreover, as an alternative approach to finding efficient solutions, 
they have proposed a local search meta-heuristic solution method. Navazi et al., [33] proposed a 
three-stage supply chain model that encompasses various interconnected problems. The first stage 
involves determining optimal facility locations, which is linked to a transportation problem with 
limited truck capacity. Specifically, the problem addresses the routing of cars through distribution 
center locations. It is crucial in this model to ensure that the duration of product distribution between 
stages does not exceed the product's useful life. Furthermore, given the growing awareness of carbon 
footprints among conscious societies, consumers are encouraged to purchase products with lower 
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carbon footprints, as indicated by the carbon footprint (CFP) label. Thus, in addition to minimizing 
network costs, an objective function is included to minimize fuel consumption and CO2 emissions. 
Another objective of the model is to improve customer satisfaction. This is achieved by prioritizing 
on-time delivery, based on customer preferences and deadlines. In addition, the model aims to 
minimize driver accidents, which are recognized as social side effects of a sustainable design. The TH 
method was implemented in this study to effectively address this multi-objective problem.  

Based on the foregoing, the research gap is examined by addressing three aspects: the neglect of 
drivers and their performance, the inclusion of multiple heterogeneous vehicles allocated to each 
driver, and the consideration of varying levels of hardness for different routes. Given these 
considerations, the current study aims to bridge the research gap across three distinct domains. 

1. Including multiple vehicles adds heterogeneity to the driver pool by allowing each driver to 
operate different vehicles with varying load volume and capacity. Moreover, the wear-out 
characteristics of these vehicles vary, which can impact the problem-solving process. 

2. Drivers' experience, as reflected in their performance records, is considered. Consequently, 
drivers with more experience are allocated greater load responsibilities. Drivers' performance 
records are assessed on three levels: low, medium, and high.  

3. The process involves assessing the level of hardness for various routes. For instance, routes 
considered easier or commonly referred to as "not hard" are more manageable than routes allocated 
a hardness level of one. As a route's hardness level increases, so do the desired criteria for allocation. 
The hardness level assessment is a suitable basis for allocating vehicles with less wear-out. In other 
words, vehicles with fewer wear signs are allocated to more challenging routes, while vehicles with 
more wear are considered for smoother routes. 
 
3. Problem statement 

The initial step in the proposed model is to quantity the orders and their corresponding routes at 
the second echelon. Subsequently, the number of orders dispatched to other intermediate 
warehouses and the corresponding vehicle routes are determined considering the demand of those 
warehouses. Furthermore, the model considers the costs of both the first and second echelons, as 
well as maintenance costs in other locations. In addition to costs, the model considers environmental 
pollution and route reliability as secondary and tertiary objectives, respectively. Customers who 
cannot have their demands met by central warehouses or production plants send their requests to 
intermediate warehouses on the outskirts of cities, which then fulfill these demands. Currently, 
intermediate warehouses play a crucial role in meeting the requested demands by relying on central 
warehouses or production factories. Consequently, the warehouse or factory responds to requests 
from intermediate warehouses within the system by dispatching products through vehicles assigned 
to the first echelon. Once the products reach the intermediate warehouses, they are categorized, 
sorted, repackaged, and finally distributed to customers via vehicles designated for the second 
echelon, based on customer demands received. It is important to note that customer service must 
be provided by a single vehicle, and demand cannot be divided. 

A notable aspect of this research is the consideration of fuzzy demand. Furthermore, the 
proposed model includes a group of drivers who are assigned to different vehicles to carry out 
product distribution operations. Consequently, an allocation cost has been established, taking into 
account factors such as vehicle type, vehicle wear-out (life), and driver experience. The cost of 
allocating a vehicle to a driver increases with experience and decreases with inexperience. In 
addition, the wear-out (life) of the vehicle influences the allocation cost. As the vehicle’s wear-out 
(life) increases, maintenance issues and breakdowns are expected to become more likely, resulting 
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in a lower allocation cost for that specific vehicle. Moreover, this study introduces varying levels of 
hardness for various routes. The cost of each route is determined by an initial fixed cost combined 
with the route's hardness level. Routes with higher hardness levels, by definition, incur higher costs. 

Figure 1 helps to enhance problem comprehension and depicts a scenario involving 10 points or 
facilitation. It includes one warehouse or factory, two intermediate warehouses, and seven 
customers. The factory is outside the urban area and is serviced by first-echelon vehicles, which are 
typically heavy vehicles subject to traffic restrictions in urban environments. Goods are transported 
to the intermediate warehouses in the first echelon routes. Following a series of non-production 
activities, the products are transported to customers in second-echelon vehicles designed specifically 
for urban traffic. It is worth mentioning that direct delivery of goods to customers is prohibited, and 
second-echelon vehicles can serve multiple customers without forming sub-nets. In this example, 
two different vehicles are utilized for service at the first echelon, while three vehicles are employed 
at the second echelon. Each vehicle serves multiple customers without forming sub-tours and 
ultimately returns to the origin. 
 
 

 
Fig. 1. A sample of two-echelon inventory routing 

 
4. Model formulation 

An arc-based formula is defined for two-echelon (2e) on the graph 𝐺(𝑉, 𝐸) in this section, which 
𝑉 includes all network nodes, 𝑉0 represents a single member set of the central depot, 𝑉𝑠  is the set of 
intermediate depots, and 𝑉𝑐 represents the set of customers. Additionally, 𝑉0 ∪  𝑉𝑠 denotes the first 
echelon's set of nodes, and 𝑉𝑠  ∪  𝑉𝑐 represents the second echelon's set of nodes. Furthermore, 𝐸 
shows all existing edges in the distribution graph, comprising directionless edges, connecting the 
central depot to intermediate warehouse centers, intermediate warehouse centers to customers, 
and customers to each other. Travel between any two nodes is defined by a network edge with a 
non-negative cost that applies to the inequality 𝐶𝑖𝑘 ≥ 𝐶𝑖𝑗 + 𝐶𝑗𝑘. 

 
4.1 Model hypothesis 

1. The model under discussion is a multi-period model. 
2. Each vehicle completes a round trip in less than one period. 
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3. Because the problem under investigation is an operational problem, therefore, the time 
horizon is considered monthly, during which decisions are made according to each of the 
customer's orders and other parameters. 

4. There are customers with uncertain demands in each period, where the demand is considered 
fuzzy. 

5. There is a central warehouse and a specific number of intermediate warehouses. 
6. There is a feature that allows for multi-trip delivery to an intermediate warehouse. 
7. There is no feature for multi-trip delivery for customers. 
8. Each level has a limited number of vehicles. 
9. Vehicle capacity is considered heterogeneous (varying capacity) 
10. The first echelon considers three types of vehicles: small (𝑀1), medium (𝑀2), and large (𝑀3) 

𝐾1 = {𝑀1 ≈ 1, 𝑀2 ≈ 2, 𝑀3 ≈ 3}, in which the allocation cost increases as the vehicle 

capacity increases from small to large 𝐶𝑖′𝑗′
3 > 𝐶𝑖′𝑗′

2 > 𝐶𝑖′𝑗′
1 , 𝑖′𝑗′ = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

11. The first echelon also considers the driver's experience in three levels: low (𝑃1), medium (𝑃2), 
and high (𝑃3) with 𝑗′ = {𝑃1 ≈ 1, 𝑃2 ≈ 2, 𝑃3 ≈ 3}, in which the allocation cost increases as the 

driver's experience increases from low to high (𝐶𝑖′3
𝑘 > 𝐶𝑖′2

𝑘 > 𝐶𝑖′1
𝑘 , 𝑖′, 𝑘 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 

12. In the first echelon, the passing route cost is calculated considering route hardness level, and 
the vehicle allocation cost is determined by factors such as the vehicle type, vehicle wear-out, 
and driver experience. 

13. Directly sending customer requests from the central warehouse is not feasible. 
14. There is no capacity limit for the supplier. 
15. When utilizing any vehicle, a fixed fee must be paid along with a variable fee for each route. 
16. Goods can be stored in any of the intermediate and customer warehouses, and thus the cost 

of storing the goods at each of these points is considered. 
17. There is no lateral communication between the intermediate warehouses, and goods cannot 

be returned from customers to the intermediate warehouse or from the intermediate 
warehouse to the central warehouse and each customer is served once in each period. 

18. Each route in the first echelon has a distinct hardness rate, and a higher degree of hardness 
imposes higher distribution costs. 

 
Indices, parameters, and variables of the model are presented in Table 1. 

 
Table 1  
Indices, parameters, and variables of the model 

Indices 

𝑖, 𝑗 Network points index 
𝑒 Product distribution echelons-related index (echelon 1 and echelon 2) 
𝑘 Vehicle Index 
t Periods index 
𝑖′ Index related to wear-out type (type 1, type 2 and type 3) 
𝑗′ Index related to the type of driver's experience (level 1, level 2 and level 3) 
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Parameters 

𝐶𝑖′𝑗′
𝑘  

The cost of allocating a type 𝑘 vehicle at the first echelon with wear-out type  
𝑖′ to an experienced driver 𝑗′  

𝐶𝑖𝑗𝑖′𝑗′
𝑘  

The cost of allocating a type 𝑘 vehicle with wear-out of type 𝑖′ on the route from 𝑖   to 𝑗  to an 
experienced driver 𝑗′ 

𝑡𝑖𝑗𝑘  Travel time along the arc (𝑖, 𝑗) with vehicle 𝑘  

𝐶0𝑖𝑗  The initial fixed cost related to the route (𝑖, 𝑗) 

𝐶𝑖𝑗
′  The cost of travel related to the arc (𝑖, 𝑗)  with the vehicle 𝑘 at the second echelon 

𝐻𝑖𝑗  The degree of route hardness (𝑖, 𝑗) 

𝐸𝑖𝑗𝑘  
The amount of environmental pollution caused by the travel related to the arc (𝑖, 𝑗)  with the 
vehicle 𝑘 

𝑟𝑖𝑗𝑘  The degree of reliability of the vehicle in the travel related to the arc (𝑖, 𝑗)  with the vehicle 𝑘 

α 
The conversion factor of the degree of hardness of the route (𝑖, 𝑗)  with vehicle type 𝑘 and 
wear-out type 𝑖′based on the type of driver's experience 𝑗′ to the cost 

β 
The conversion factor of the vehicle type 𝑘 and the wear-out type 𝑖′ based on the driver’s 
experience type 𝑗′ to the cost 

𝑄𝑘𝑒  The weight capacity of the kth vehicles at the eth echelon 

𝑑𝑖𝑡̃  The amount of fuzzy demand of customer 𝑖 in period t 

𝐸𝑊𝑖𝑡 The lower bound of the time window of customer 𝑖 in period t 
𝐿𝑊𝑖𝑡  The upper bound of the time window of customer 𝑖 in period t 
𝑃𝐸𝑖𝑡 Early penalty in order delivery to customer 𝑖 in period t 
𝑃𝐿𝑖𝑡  The late penalty in product delivery to customer 𝑖 in period t 
𝑖𝑛𝑣𝑖0 The initial inventory at the point 𝑖  

ℎ𝑖  The maintenance cost at the point 𝑖 
BM The positive large numbers 

𝑜𝑟𝑑𝑖′  Level of wear-out from the degree 𝑖′ 
Variables 

𝑥𝑖𝑗𝑘𝑡 It is one if in the first echelon from 𝑖 to j using the vehicle 𝑘 ∈ 𝐾1 on day t  

𝑍𝑖𝑗𝑖′𝑗′
𝑘  

It is one if the type 𝑘 vehicle with wear-out type 𝑖′on the route 𝑖 to 𝑗 is allocated to an 
experienced driver 𝑗′ 

𝑦𝑖𝑗𝑘𝑡  It is one if in the second echelon from 𝑖 to 𝑗 using the vehicle 𝑘 ∈ 𝐾2 on the day t  

𝑍𝑗𝑡 It is one if the point 𝑗 has been chosen for giving services on day t  

𝐶𝑡𝑘𝑡 It is one if the vehicle 𝑘 has been chosen for use on day t   

𝑑𝑠𝑖𝑡  The total demand requested from temporary warehouse 𝑖 on day t  

𝑝𝑑𝑖𝑡  The amount of product sent to the 𝑖𝑡ℎ customers on day t  

𝑝𝑑𝑗𝑘𝑡  
The amount of product sent to the 𝑗𝑡ℎ  temporary warehouse using the vehicle 𝑘 ∈ 𝐾1on day 
t 

𝑙𝑘𝑖  It is one if the vehicle 𝑘 ∈ 𝐾1 ∪ 𝐾2 is dependent on the temporary warehouse 𝑖 
𝑎𝑘𝑡 The amount of the product transported by the vehicle 𝑘 ∈ 𝐾1 on day t 

𝑖𝑛𝑣𝑖𝑡  The inventory of point 𝑖 (the temporary warehouse and customers) on day t  
𝑇𝑟𝑖𝑘𝑡  The time to reach to point 𝑖 on day t using the vehicle 𝑘 
𝐸𝑅𝑖𝑡 The amount of earliness to reach to point 𝑖 on day t  
𝐿𝐴𝑖𝑡 The amount of lateness to reach to point 𝑖 on day t  
𝑢𝑢𝑖𝑘𝑡 Sub-tour removal covariate 

  

 
4.2 Objective functions 
 

' ' ' '

' ' ' '
1 2\ \ \
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c c
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          

   

= + +

+ +

          

 
  (1) 
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where 

' '

'

'

k
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kj
C

ord
=                                               (2)             

' ' ' '0
k k

ij ijiji j i j
C C H C= +                           (3)   

                           
Expression (2) calculates the cost of vehicle allocation based on vehicle wear-out and the driver's 

experience. It has a direct relationship with vehicle type and driver experience and an inverse 
relationship with vehicle wear-out. Expression (3) calculates the cost of vehicle allocation based on 
route hardness degree, vehicle type, vehicle wear-out, and driver's experience. 
The first objective function, Eq. (1), minimizes the total maintenance costs of other points, variable 
and fixed transportation costs related to first and second-echelon vehicles, and the cost of early and 
late fines in customer order delivery. 
 

0 1 2\ \

2

s o o

ijkt ijk ijkt ijk

i V j V k K t T i V V j V V k K t T

Min Z x E y E
       

= +                                   (4)                       

 
Eq. (4) is the second objective function related to environmental pollution of routing. It consists 

of the routes in the first echelon plus the pollution of the second echelon. Since a complete tour is 
considered a consecutive route, its reliability should be calculated using the logic governing 
sequential systems. Eq. (5) is used to solve this problem because the product of the unselected paths 
in the remaining links will be zero [34]. 
 

𝑓(𝑦𝑖𝑗𝑘𝑡) = 1 − (1 − 𝑟𝑖𝑗𝑘)𝑦𝑖𝑗𝑘𝑡                                                                                                 (5)   

∀𝑖, 𝑗 ∈  𝑉𝑠  ∪  𝑉𝑐, ∀𝑘 ∈ 𝐾2, ∀𝑡 ∈ 𝑇                                                                                                          

Eq. (6) is the third objective function, which maximizes the reliability of the routes traveled in the 
grid: 

2 1

3

,

( )

ss c

ijkt ijkt ijk

k K t T i Vo j V k K t Ti j V V

Max Z f y x r
      

= +    
                                                     (6) 

4.3 Constraints 

𝑍𝑖𝑗𝑖′𝑗′
𝑘 ≥ 𝑥𝑖𝑗𝑘𝑡 

∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑖′  ∈  𝐼′, 𝑗′  ∈  𝐽′, 𝑘 
∈  𝐾1, 𝑡 ∈ 𝑇 

(7) 

∑  ∑ 𝑥𝑖𝑗𝑘𝑡 ≤

𝑗∈𝑉𝑠𝑖∈𝑉0

𝐵𝑀. 𝑐𝑡𝑘𝑡 ∀ 𝑘 ∈ 𝐾1, 𝑡 ∈  𝑇 (8) 

𝑖𝑛𝑣𝑖 1 = 𝑖𝑛𝑣𝑖0 + 𝑝𝑑𝑖 1 − 𝑑̃𝑖 1 ∀ 𝑖 ∈ 𝑉𝑐 (9) 

𝑖𝑛𝑣𝑖𝑡 = 𝑖𝑛𝑣𝑖(𝑡−1) + 𝑝𝑑𝑖𝑡 − 𝑑̃𝑖𝑡 ∀ 𝑖 ∈ 𝑉𝑐 , 𝑡 ≥ 2 (10) 

𝑝𝑑𝑗𝑡 ≤ 𝐵𝑀𝑧𝑗𝑡 ∀ 𝑗 ∈ 𝑉𝑐, ∀ 𝑡 ∈ 𝑇 (11) 

∑ ∑ 𝑦𝑖𝑗𝑘𝑡 = 𝑧𝑗𝑡

𝑘∈𝐾2𝑖∈𝑉\𝑉𝑜

 ∀ 𝑗 ∈ 𝑉𝑐, ∀ 𝑡 ∈ 𝑇 (12) 

∑ 𝑦𝑖𝑗𝑘𝑡 =

𝑖∈𝑉𝑠∪𝑉𝑐

∑ 𝑦𝑗𝑖𝑘𝑡

𝑖∈𝑉𝑠∪𝑉𝑐

 ∀ 𝑗 ∈ 𝑉𝑠 ∪ 𝑉𝑐, ∀ 𝑘 ∈  𝐾2, ∀ 𝑡 ∈ 𝑇 (13) 

∑ ∑ 𝑝𝑑𝑗𝑘𝑡

𝑗∈𝑉𝑠

𝑥𝑖𝑗𝑘𝑡

𝑖∈𝑉0

≤ 𝑄𝑘1
 ∀ 𝑘 ∈  𝐾1, ∀ 𝑡 ∈ 𝑇 (14) 
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∑ ∑ ∑ ∑ 𝑋𝑖𝑗𝑘𝑡

𝑡∈𝑇𝑘∈𝐾1𝑗∈𝑉𝑐𝑖∈𝑉0

= 0  (15) 

∑ ∑ ∑ ∑ 𝑦𝑖𝑗𝑘𝑡

𝑡∈𝑇𝑘∈𝐾2𝑗∈𝑉0𝑖∈𝑉𝑐

= 0  (16) 

𝑎𝑘𝑡 = ∑ ∑ 𝑝𝑑𝑗𝑘𝑡𝑥𝑖𝑗𝑘𝑡

𝑗∈𝑉𝑠𝑖∈𝑉0

 ∀ 𝑘 ∈  𝐾1, ∀ 𝑡 ∈ 𝑇 (17) 

𝑑𝑠𝑖𝑡 = ∑ 𝑙𝑘𝑖. 𝑎𝑘𝑡

𝑘∈𝐾1

 ∀ 𝑖 ∈  𝑉𝑠, ∀ 𝑡 ∈ 𝑇 (18) 

∑ ∑ 𝑦𝑖𝑗𝑘𝑡 ≤ 𝐵𝑀. 𝑙𝑘𝑖

𝑡∈𝑇𝑗∈𝑉𝑐

 ∀ 𝑖 ∈  𝑉𝑠, ∀ 𝑘 ∈ 𝐾2 (19) 

∑ 𝑥𝑖𝑗𝑘𝑡 ≤ 𝑑𝑠𝑗𝑡

𝑖∈𝑉0

 ∀ 𝑗 ∈  𝑉𝑠, ∀ 𝑘 ∈ 𝐾1, ∀ 𝑡 ∈ 𝑇 (20) 

𝐵𝑀(∑ ∑ 𝑥𝑖𝑗𝑘𝑡) ≥ 𝑑𝑠𝑗𝑡

𝑘∈𝐾1𝑖∈𝑉0

 ∀ 𝑗 ∈  𝑉𝑠, ∀ 𝑡 ∈ 𝑇 (21) 

∑ 𝑥𝑖𝑗𝑘𝑡

𝑖∈𝑉0∪𝑉𝑠

= ∑ 𝑥𝑗𝑖𝑘𝑡

𝑖∈𝑉0∪𝑉𝑠

 ∀ 𝑗 ∈  𝑉0 ∪ 𝑉𝑠, ∀ 𝑘 ∈ 𝐾1, ∀ 𝑡 ∈ 𝑇 (22) 

∑ 𝑝𝑑𝑗𝑘𝑡

𝑘∈𝐾2

= 𝑑𝑠𝑗𝑡 ∀ 𝑗 ∈  𝑉𝑠, ∀ 𝑡 ∈ 𝑇 (23) 

∑ ∑ 𝑝𝑑𝑖𝑡.

𝑗∈𝑉𝑐∪𝑉𝑠

𝑦𝑖𝑗𝑘𝑡

𝑖∈𝑉𝑐∪𝑉𝑠

≤ 𝑄𝑘2
 ∀ 𝑘 ∈ 𝐾2, ∀ 𝑡 ∈ 𝑇 (24) 

 

∑ ∑ 𝑦𝑖𝑗𝑘𝑡

𝑗∈𝑉\𝑉𝑂𝑖∈𝑉\𝑉𝑂

≤ 𝐵𝑀. 𝑐𝑡𝑘𝑡 ∀ 𝑘 ∈ 𝐾2, ∀ 𝑡 ∈ 𝑇 (25) 

∑ ∑ 𝑢𝑢1𝑘𝑡

𝑡∈𝑇𝑘∈𝐾2

= 0 ∀ 𝑘 ∈ 𝐾2, ∀ 𝑡 ∈ 𝑇 (26) 

𝑢𝑢𝑖𝑘𝑡 + 1 ≤ 𝑢𝑢𝑗𝑘𝑡 + 𝐵𝑀(1 − 𝑦𝑖𝑗𝑘𝑡) 
∀ 𝑖 ∈  𝑉𝑐 ∪ 𝑉𝑠, ∀ 𝑗 ∈ 𝑉𝑐, ∀ 𝑘 ∈  𝐾2, ∀ 𝑡 

∈ 𝑇 
(27) 

𝑖𝑛𝑣𝑖1 = 𝑖𝑛𝑣𝑖0 + 𝑑𝑖1
~ − ∑ 𝑝𝑑𝑖𝑘1

𝑘∈𝐾2

 ∀ 𝑖 ∈  𝑉𝑠 (28) 

𝑖𝑛𝑣𝑖𝑡 = 𝑖𝑛𝑣𝑖𝑖(𝑡−1) + 𝑑𝑖𝑡
~ − ∑ 𝑝𝑑𝑖𝑘𝑡

𝑘∈𝐾2

 ∀ 𝑡 ≥ 2, ∀ 𝑖 ∈  𝑉𝑠 (29) 

∑ 𝑇𝑟𝑖𝑘𝑡

𝑘∈𝐾2

− 𝐿𝑊𝑖𝑡 ≤ 𝐿𝐴𝑖𝑡 ∀ 𝑖 ∈  𝑉𝑐, ∀ 𝑡 ∈ 𝑇 (30) 

𝐸𝑊𝑖𝑡 − ∑ 𝑇𝑟𝑖𝑘𝑡

𝑘∈𝐾2

≤ 𝐸𝑅𝑖𝑡 ∀ 𝑖 ∈  𝑉𝑐, ∀ 𝑡 ∈ 𝑇 (31) 

𝑑𝑠𝑖𝑡, 𝑝𝑑𝑖𝑡, 𝑝𝑑𝑗𝑘𝑡, 𝑎𝑘𝑡, 𝑖𝑛𝑣𝑖𝑡 , 𝑇𝑟𝑖𝑘𝑡, 𝐸𝑅𝑖𝑡 , 𝐿𝐴𝑖𝑡, 𝑢𝑢𝑖𝑘𝑡

≥ 0 

 𝑥𝑖𝑗𝑘𝑡, 𝑧𝑖𝑗𝑖′𝑗′
𝑘 , 𝑦𝑖𝑗𝑘𝑡, 𝑧𝑗𝑡 , 𝑐𝑡𝑘𝑡, 𝑙𝑘𝑖 ∈ {0, 1} 

                          (32) 

Constraint (7) states that if a route exists from point 𝑖 to point 𝑗 with a type 𝑘 vehicle, the type of 
wear-out the driver's experience must be determined. Constraint (8) allows goods to be transported 
between the central warehouse and temporary warehouses on a specific day with a truck, subject to 
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the payment of a fixed truck fee and the use of that truck on that day. Expressions (9) and (10) are 
the inventory equations for customers. Constraint (11) states that if customer 𝑗 is selected for service 
on that day, a load will be sent to him. Constraint (12) ensures that each customer is served only once 
if they are selected to be served. In the case of entering customer’s points, Constraint (13) is also the 
condition for exiting them. Constraint (14) ensures that the total load carried by a truck from all 
points on a given day is less than the truck's capacity. Expressions (15) and (16) prevent impossible 
commuting between two echelons. Constraint (17) returns the sum of loads sent by each truck on a 
given day, and constraint (18) returns the sum of demands requested from each temporary 
warehouse on each day. According to constraint (19), a special truck can only travel from a temporary 
warehouse to a customer if it is affiliated with that temporary warehouse. Constraints (20) and (21) 
are related to permission to travel at the first echelon. Constraint (22) is the condition for exiting a 
second-echelon temporary warehouse after entering it. Constraint (23) ensures that the load sent to 
each temporary warehouse is exactly equal to the total demand requested from it. Constraint (24) is 
concerned with meeting the capacity of second-echelon trucks. Constraint (25) states that if 
transportation can be accomplished with a truck in the second echelon, whose fixed cost has been 
paid for use on a specific day, that truck must be used. Constraints (26) and (27) prevent sub-tour 
formation in the second echelon. Constraints (28) and (29) are related to the inventory balance in 
the second echelon. Eq. (30) defines lateness as the positive difference between the delivery time 
and the upper bound of the time window. Eq. (31) defines earliness in order delivery as the positive 
difference between the delivery time and the lower bound of the time window. Constraint (32) 
specifies the model's decision variables.  
 
4.4 Linearization of the first objective function 

Since the initial objective function of the proposed mathematical model is the product of two 
binary variables, it is non-linear. To linearize this expression, suppose that 𝑧 = 𝑥1 + 𝑥2 is the product 
of two binary variables. The expression 𝑧 is equal to one only when both of its binary variables equal 
one; otherwise its zero. We can linearize 𝑧 using auxiliary constraints (33) to (35) by Norouzi et 
al.,[35]. 

(33)     𝑧 ≤ 𝑥1                                                                                                                                           
(34)     𝑧 ≤ 𝑥2                                                                                                                                                      
(35)      𝑧 ≥ 𝑥1 + 𝑥2 − 1                                                                                                                                 

 
We will use the above noted to linearize the expressions in the first objective function as below: 
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
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   

= + +

+ +

          

 
     (36) 

 

𝜌
𝑖𝑗𝑖′𝑗′
𝑖𝑗𝑘𝑡

= 𝑧𝑖𝑗𝑖′𝑗′
𝑘 𝑥𝑖𝑗𝑘𝑡                                                                                                                                    (37) 

𝜌
𝑖𝑗𝑖′𝑗′
𝑖𝑗𝑘𝑡

≤ 𝑧𝑖𝑗𝑖′𝑗′
𝑘                                                                                                                                              (38) 

𝜌
𝑖𝑗𝑖′𝑗′
𝑖𝑗𝑘𝑡

≤ 𝑥𝑖𝑗𝑘𝑡                                                                                                                                             (39) 

𝜌
𝑖𝑗𝑖′𝑗′
𝑖𝑗𝑘𝑡

≥ 𝑧𝑖𝑗𝑖′𝑗′
𝑘 + 𝑥𝑖𝑗𝑘𝑡 − 1                                                                                                                      (40) 
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4.5 Defuzzification of the demand parameter 
Triangular fuzzy numbers (TFNs) are the most popular type of fuzzy numbers and are widely used 

in representing uncertainty in applied sciences because of their ability to express the perception of 
experts. This paper used the TFN to represent the fuzzy demand parameter. TFN can accurately 
represent the uncertainty of the parameter and is close to the actual situation because it represents 
uncertainty as a main-pointed value surrounded by margins [36]. In this article, we use triangular 

fuzzy numbers to express fuzzy parameters. The demand fuzzy parameter is defined as (𝑑𝑖𝑡
𝑝 , 𝑑𝑖𝑡

𝑚, 𝑑𝑖𝑡
𝑜 ), 

with indices 𝑝, 𝑚 and 𝑜 repressing the most pessimistic, possible, and optimistic values for the fuzzy 
parameter, respectively. We use the weighted mean method to defuzzify the fuzzy demand 
parameter into a deterministic parameter. Therefore, the fuzzy constraints (9), (10), (28), and (29) 
are defuzzified using Eqs. (41)-(44). 

 

𝑖𝑛𝑣𝑖1 = 𝑖𝑛𝑣𝑖0 + 𝑝𝑑𝑖1 − (𝑤1𝑑𝑖1,𝛽
𝑝 + 𝑤2𝑑𝑖1,𝛽

𝑚 + 𝑤3𝑑𝑖1,𝛽
𝑜 ) ∀ 𝑖 ∈  𝑉𝑐 (41) 

𝑖𝑛𝑣𝑖𝑡 = 𝑖𝑛𝑣𝑖(𝑡−1) + 𝑝𝑑𝑖𝑡 − (𝑤1𝑑𝑖𝑡,𝛽
𝑝 + 𝑤2𝑑𝑖𝑡,𝛽

𝑚 + 𝑤3𝑑𝑖𝑡,𝛽
𝑜 ) ∀ 𝑖 ∈  𝑉𝑐, 𝑡 ≥ 2 (42) 

𝑖𝑛𝑣𝑖1 = 𝑖𝑛𝑣𝑖0 + (𝑤1𝑑𝑖1,𝛽
𝑝 + 𝑤2𝑑𝑖1,𝛽

𝑚 + 𝑤3𝑑𝑖1,𝛽
𝑜 ) − ∑ 𝑝𝑑𝑖𝑘1

𝑘∈𝐾2

 ∀ 𝑖 ∈  𝑉𝑠 (43) 

𝑖𝑛𝑣𝑖𝑡 = 𝑖𝑛𝑣𝑖(𝑡−1) + (𝑤1𝑑𝑖𝑡,𝛽
𝑝 + 𝑤2𝑑𝑖𝑡,𝛽

𝑚 + 𝑤3𝑑𝑖𝑡,𝛽
𝑜 ) − ∑ 𝑝𝑑𝑖𝑘𝑡

𝑘∈𝐾2

 ∀ 𝑡 ≥ 2, ∀ 𝑖 ∈  𝑉𝑠 (44) 

where 𝑤1 + 𝑤2 + 𝑤3 = 1 and 𝛽 denote the minimum acceptable possibility for converting the 
fuzzy parameter into an equivalent real number. 𝑤1, 𝑤2, 𝑤3 indicate weights of the most pessimistic, 
possible, and optimistic fuzzy demand values, respectively. The appropriate values for these weights 
are often determined by decision-makers (DM) based on their experience and expertise, which is 

considered  𝛽 = 0.5, 𝑤1 = 𝑤3 =
1

6
, 𝑤2 =

4

6
 using the suggested values of Liang and Wang, as well as 

other studies by [37,38].  
 
5. Solution Methodologies 

The following is a definition of a multi-objective planning problem: 
                                                                      
𝑀𝑎𝑥 𝑍1, 𝑍2, … , 𝑍𝑘 
𝑀𝑖𝑛 𝑍1, 𝑍2, … , 𝑍𝑙  

                                            (45) 
s.t   𝑥 ∈ 𝐹𝑥 = {𝑥|𝑔𝑠(𝑥) ≤ 0, ∀𝑠} 
 

where 𝑍𝑘 maximization and 𝑍𝑙  minimization are considered concurrently in the solution space 𝐹𝑥. 
In multi-objective problems, since no solution vector can simultaneously optimize all 𝑍𝑘 and 𝑍𝑙, the 
optimal solution is no longer significant, and only efficient solutions (Pareto optimal) are considered. 
This way, in addition to the set of justified solutions known as the decision space (𝐹𝑥), other solutions 
can be considered as the goal space, which are images of the points in the decision space in terms of 
the values of the goal functions. There are generally three main approaches to solving multi-objective 
problems: pre-solution weighting, post-solution weighting, and the interactive approach. 

Before solving the problem, the DM's preferences are collected using the pre-solution weighting 
approach. This information includes the degree of importance (weights) or the acceptable 
minimum/maximum values for the objective functions. This category includes several approaches 
such as the weighted sum method, the limit method, and reference points-based methods like the 
goal programming method. In the post-solution weighting methods, also referred to as Pareto 
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frontier approximation methods, a set of efficient solutions (known as Pareto optimal) is initially 
generated. The DM's preferences are then used to select the final preferred solution. In the 
interactive approach, an effective solution is created and offered to the DM throughout the problem-
solving process. If the DM does not approve it, an alternative solution is attempted by collecting 
modified preferences from the DM. This interaction with the DM continues until a final, satisfactory 
solution is reached.  

One approach to solving deterministic multi-objective problems is to use concepts from the well-
known technique of fuzzy multi-objective programming (FMODM). These FMODM approaches offer 
a distinct advantage over other methods by utilizing fuzzy membership functions to represent the 
level of satisfaction for each objective function with respect to each decision vector. The foundation 
of all FMODM methods is defining membership functions for the functions and transforming the 
multi-objective model into a single-objective model using an integration function by [39,40]. 

This article employs the methodologies proposed by [41,42], as well as an interactive approach 
based on the TH method to transform the multi-objective model into a single-objective model. The 
fuzzy membership functions of the objective functions are specified in these approaches as follows: 

𝜇𝑧𝑙(𝑥) = {

1
𝑍𝑙

+−𝑍(𝑥)

𝑍𝑙
+−𝑍𝑙

−

0

  
𝑍𝑙≤𝑍𝑙

−

𝑍𝑙
−≤𝑍𝑙≤𝑍𝑙

+

𝑍𝑙≥𝑍𝑙
+

                        (46) 

 

𝜇𝑧𝑘(𝑥) = {

1
𝑍𝑘(𝑥)−𝑍𝑘

−

𝑍𝑘
+−𝑍𝑘

−

0

  
𝑍𝑘≥𝑍𝑘

+

𝑍𝑘
−≤𝑍𝑘≤𝑍𝑘

+

𝑍𝑘≤𝑍𝑘
−

                                   (47) 

 
where 𝜇𝑧𝑙(𝑥), 𝜇𝑧𝑘(𝑥)represent the fuzzy membership function for minimization of objectives 

(𝑍𝑙), and linear membership function for objective maximization (𝑍𝑘), respectively, and  𝑍𝑙
−and𝑍𝑘

+  
obtain a single-objective problem from a multi-objective problem in each solution. Furthermore, 𝑍𝑘

− 
indicates the minimum value (worst solution) of the maximization objective function 𝑍𝑘, and 
𝑍𝑙

+expresses the maximum value (worst solution) of the minimization objective function 𝑍𝑙. 
 
5.1 The Selim and Ozkarahan Approach 

Selim and Ozkarahan introduced the SO approach, which utilizes the Werners, [43] integration 
function to solve FMODM problems in a fuzzy manner. Using this approach, the original general 
model (45) is transformed into the following model:  

𝑀𝑎𝑥 𝜆(𝑥) = 𝛾𝜆0 + (1 − 𝛾) ∑ 𝜃𝑘𝜆𝑘(𝑥)

𝑘

 

  𝜆0 + 𝜆𝑘 ≤ 𝜇𝑘(𝑥)     ∀𝑘                                                   (48) 
𝑥 ∈ 𝐹(𝑥) 

s.t        𝜆0, 𝜆𝑘, 𝛾 𝜖[0, 1]                          
 

𝜇𝑘(𝑥), 𝜆0 = min
𝑘

{𝜇𝑘(𝑥)} show the degree of satisfaction of the 𝑘𝑡ℎ objective function and the 

minimum degree of satisfaction of the objective functions. 𝜃𝑘  parameters are determined by DM and 
based on its priorities so that ∑ 𝜃𝑘𝑘 = 1, 𝜃𝑘 > 0. In this model, 𝜆𝑘 = 𝜇𝑘 − 𝜆0 and 𝛾 denote the 
compromise coefficient between min and weighted sum operators.  
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5.2 The Torabi and Hassini approach 
Torabi and Hassini's approach (TH) combines elements from Lia and Huang's and the SO methods 

Diaz-Madronero et al., [44]. It is known as the TH approach. Applying this approach leads to the 
transformation of the general model (45) into the subsequent model: 

𝑀𝑎𝑥 𝛾𝜆0 + (1 − 𝛾) ∑ 𝜃𝑘𝜇𝑘(𝑥)

𝑘

 

       𝜆0 ≤ 𝜇𝑘(𝑥)   ∀𝑘                      (49) 
s.t 𝜆0, 𝛾 ∈ [0, 1] 
 

𝜇𝑘(𝑥), 𝜆0 = min
𝑘

{𝜇𝑘(𝑥)}  indicates the satisfaction degree of the 𝑘𝑡ℎobjective function and the 

minimum satisfaction degree of the objective functions, respectively. The parameters 𝜃𝑘are set by 
the DM and are based on its preferences, so that ∑ 𝜃𝑘 = 1, 𝜃𝑘 > 0𝑘 . In this model, 𝛾 is a compromise 
coefficient among the objectives. 𝜆0 is given more importance as 𝛾 increases and indeed, a more 
balanced response will be generated. In addition, more importance is given to increasing the 
satisfaction level of the objective function with more 𝜃𝑘  as 𝛾 level decreases, and more unbalanced 
efficient solutions are produced. Accordingly, given the DM preferences and as the 𝛾 value changes 
(from zero to one), differentiated balanced and unbalanced efficient solutions can be obtained.  
 
5.3 Proposed interactive approach (PIA) 

The TH method uses 𝛾 parameter to determine and control the minimum satisfaction level for 
the objective functions. Increasing this parameter raises the minimum satisfaction level (𝜆0), and the 
amount of raise is not controlled by the DM. On the other hand, as the satisfaction level increases, 
the objective functions with 𝜃𝑘  are given less priority. To control the minimum satisfaction level, the 
following single objective function, which is an extended TH model, is proposed. 
                

𝑀𝑎𝑥 𝛾𝜆0 + (1 − 𝛾) ∑ 𝜃𝑘𝜇𝑘(𝑥)

𝑘

 

s.t 𝜇𝑘(𝑥) ≥ 𝜆0 
𝜇𝑘(𝑥) ≥ 𝛼𝑘    ∀𝑘                   (50) 
𝑥 ∈ 𝐹𝑋 
𝛾, 𝜆0 ∈ [0, 1] 
 ∑ 𝜃𝑘𝑘 = 1, 𝜃𝑘 > 0 

 
In TH and SO models, the DM lacks control over the minimum satisfaction level for each objective 

function. This minimum satisfaction is determined by both the variable 𝜆0 and the model itself. In 
other words, the DM has no control over the degree of compromise between the goals of the multi-
objective mathematical model and the minimum level of satisfaction of those goals. However, in the 
proposed approach, by implementing constraint 𝜇𝑘(𝑥) ≥ 𝛼𝑘   ∀𝑘, the DM controls the minimum 
satisfaction level for each objective function through the parameter 𝛼𝑘. In other words, the DM can 
regulate the compromise between the objectives and the minimum level of satisfaction for the 
objective functions using the 𝛾, 𝛼𝑘 parameters, thereby enhancing the controllability of the single-
objective model. 

In the proposed approach, if model (50) is possible, the following restrictions will be applied 
(assuming that 𝐹𝑋 is possible): 
𝜇𝑘(𝑥) ≥ 𝜆0 
𝜇𝑘(𝑥) ≥ 𝛼𝑘    ∀𝑘                      (51) 
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That is, the model could find the variable 𝜆0 in such a way that  ∀𝑘;  𝜆0 ≥ 𝛼𝑘, otherwise, (if the 
model is impossible), then: 
∃𝑘; 𝜆0 < 𝛼𝑘                                 (52) 

Otherwise, DM should either increase 𝛾 i.e. the compromise level, or decrease 𝛼𝑘 as much as the 
model becomes possible. The objective function of model (50) is converted to the weighted sum 
method of satisfaction levels of the objective functions per 𝛾 = 1, i.e., max-min  model and per 𝛾 =
0, which in this state, it is possible to obtain an effective solution that satisfies the objective functions 
to a higher degree by allocating greater importance to the minimum level of satisfaction. The 
flowchart of the proposed algorithm is shown in the Figure 2. 
 

Step 1: Creating a deterministic multi-
objective model/converting a fuzzy-

multi-objective model to a deterministic 
multi-objective model

Step 2: Formation of 
membership functions (2), (3) 

for objective functions

Step 3: Forming the deterministic multi-
objective model into a single-objective 
model using the proposed integration 

operator

Step 4: model 
solution

Step 6: changing              
the                 parameters

Step 5: Presenting an 
optimal answer to the 

decision-maker

Is the model 
feasible

Is the decision-
maker satisfied

End

Yes No 

Yes No 

 
Fig. 2. Flowchart of the proposed algorithm 

 
5.4 Limitation and application of PIA approach 

Since introducing an additional limitation to an assumed mathematical model can lead to either 
the infeasibility of the model, or if it remains feasible, the resulting solution will not be superior, the 
constraints 𝜇𝑘(𝑥) ≥ 𝛼𝑘   ∀𝑘 can render the model infeasible in the presented approach, or 
negatively impact the value of the optimal solution, which can be considered as the controllability 
cost of the minimum satisfaction level of the objective functions. While the proposed approach may 
not generate all Pareto solutions as decision alternatives for DM or stakeholders, in such situations, 
the mathematical model should be solved using metaheuristic methods. However, when the 
minimum satisfaction level of the objective functions is important for the DM or stakeholders, the 
presented approach proves highly beneficial and practical because if the model is feasible, the output 
will fulfill the minimum expectations of the stakeholders. On the other hand, if the model becomes 
infeasible, DM and stakeholders will recognize the need to lower their minimum satisfaction level for 
the objective functions or adjust it in a way that the mathematical model becomes feasible. In either 
case, they will gain a better understanding of the decision-making environment. 
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6. Computational Experiments 
6.1 Experimental Design 

The effectiveness of the SO, TH, and proposed interactive approaches has been investigated in 
this section through numerical results analysis. For this purpose, 30 randomly generated problems were 

used  and coded using GAMS software and executed on a computer with a CPU Core i5 2.3 GHz and 
4GB RAM. Table 2 contains the specific input details for these problems. 
 
Table 2  
Dimensions of generated problems 

Problem 
No. 

Number of 
intermediate 
warehouses 

Number of 
echelon 1 
vehicles 

Number of 
echelon 2 
vehicles 

Number of 
customers 

Number of 
periods 

Type of 
wear-out 

Types of 
experience 

1 1 3 2 5 3 1 1 
2 2 3 2 5 2 1 1 
3 2 4 4 8 4 1 1 
4 3 2 2 4 4 2 2 
5 4 3 5 9 2 2 2 
6 2 4 2 5 3 2 2 
7 2 3 3 5 4 3 3 
8 2 4 2 6 3 3 3 
9 2 2 5 4 4 3 3 

10 3 3 3 7 4 3 3 
11 3 4 5 4 2 1 1 
12 2 2 4 5 3 1 1 
13 4 4 5 4 2 1 1 
14 1 3 5 5 4 2 2 
15 4 3 2 3 3 2 2 
16 4 2 2 6 4 2 2 
17 4 3 2 9 3 3 3 
18 4 3 5 5 2 3 3 
19 1 3 5 6 2 3 3 
20 4 3 3 8 4 3 3 
21 2 4 5 3 4 1 1 
22 3 2 5 9 2 1 1 
23 3 3 2 3 4 1 1 
24 4 2 2 5 4 2 2 
25 1 2 4 3 3 2 2 
26 1 3 5 7 2 2 2 
27 1 4 3 5 4 3 3 
28 1 3 5 7 3 3 3 
29 3 4 4 8 4 3 3 
30 3 4 4 5 3 3 3 

 

The weights vector of the objective function has been considered 𝜃 = (0.5, 0.3, 0.2) based on the 
relative importance of model objectives by the DM (𝜃1 > 𝜃3 > 𝜃2). Therefore, an unbalanced 

compromise solution with the highest degree of satisfaction for 𝑍1 is of particular interest. 
 
6.2 Results analysis 

Two efficiency indices 𝑑𝑝(𝑣) and 𝑅𝑆𝐷 by Torabi & Hassini approach have been used to compare 

the efficiency of both introduced approaches to solve the proposed mathematical model: 

𝑑𝑝(𝑣) = [∑ 𝜃ℎ
𝑝(1 − 𝜇ℎ(𝑣))

𝑝
ℎ ]

1

𝑝     𝑝 ≥ 1 & 𝐼𝑛𝑡𝑒𝑔𝑒𝑟                          (53) 
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𝑅𝑆𝐷(𝑣) = max
ℎ

{𝜇ℎ(𝑣)} − min
ℎ

{𝜇ℎ(𝑣)}                                       (54) 

Eq. (53) measures the closeness degree of each solution to the corresponding ideal solution, 
where p is a distance parameter. The 𝑝 = 1, 2, ∞ states is of particular importance in the literature 
so that 𝑑1 (the Manhattan distance) and 𝑑2 (the Euclidean distance) are the longest and shortest 
distances in the geometrical sense, respectively, and 𝑑∞ (the TChebyshev distance) is the shortest 
distance in the numerical sense. Generally, 𝑑𝑝 distance decreases as 𝑝 increases Lai et al., [45] . It is 

worth noting that based on the 𝑑𝑝 definition, the approach with the least 𝑑𝑝value (particularly for p 

= 1) is preferred over others Torabi and Hassini [42] approach. The RSD (range of satisfaction degrees) 
index is a dispersion index that calculates the maximum difference  between the satisfaction degrees 
of objectives to measure the balancing amount of a compromise solution by Torabi & Hassini 
approach. Considering Eq. (54), higher RSD values are preferred. 

The problems in Table 2 were solved with different 𝛾 values to analyze the 𝛾 interaction on the 
final solutions of the SO and TH methods and the PIA proposed approach; the mean results of each 
are given in Tables 3 and 4. 
 
Table 3  
The effect of changes in 𝛾 values on the satisfaction level of objective functions in SO, TH, and PIA methods 

 
𝛾
− 𝑉𝑎𝑙𝑢𝑒 

PIA  Method(mean)  TH Method(mean)  SO  Method(mean) 

𝜇𝑍1
(𝑣) 𝜇𝑍2

(𝑣) 𝜇𝑍3
(𝑣)  𝜇𝑍1

(𝑣) 𝜇𝑍2
(𝑣) 𝜇𝑍3

(𝑣)  𝜇𝑍1
(𝑣) 𝜇𝑍2

(𝑣) 𝜇𝑍3
(𝑣) 

0 0.820 0.748 0.168  0.800 0.724 0.181  0.801 0.814 0.167 

0.1 0.839 0.693 0.095  0.819 0.669 0.108  0.784 0.801 0.183 

0.2 0.609 0.342 0.422  0.589 0.318 0.435  0.804 0.819 0.164 

0.3 0.580 0.309 0.449  0.560 0.285 0.462  0.792 0.813 0.187 

0.4 0.580 0.309 0.449  0.560 0.285 0.462  0.800 0.814 0.167 

0.5 0.580 0.309 0.449  0.560 0.285 0.462  0.818 0.833 0.146 

0.6– 0.9 0.580 0.309 0.449  0.560 0.285 0.462  0.560 0.375 0.448 

1 0.573 0.309 0.433  0.553 0.285 0.446  0.553 0.375 0.432 

 
Table 4  
Comparing the performance indicators for different 𝛾 values 

Mean of 
RSD 

 Mean distances measures Fuzzy 
Approach 𝛾 − 𝑉𝑎𝑙𝑢𝑒 

 𝑑∞ 𝑑2 𝑑1 

0.285  0.198 0.271 0.342 SO 

0.0 0.312  0.230 0.274 0.386 TH 

0.425  0.202 0.307 0.366 PIA 

0.493  0.173 0.288 0.407 SO 

0.1 0.578  0.165 0.303 0.382 TH 

0.548  0.202 0.313 0.330 PIA 

0.263  0.221 0.314 0.410 SO 

0.2 0.312  0.199 0.312 0.398 TH 

0.493  0.219 0.314 0.399 PIA 

0.274  0.209 0.315 0.369 SO 

0.3 0.315  0.179 0.303 0.399 TH 

0.415  0.199 0.298 0.380 PIA 

0.775  0.202 0.296 0.394 SO 
0.4 

0.712  0.221 0.296 0.403 TH 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 2 (2024) 172-196 

191 
 

 

Mean of 
RSD 

 Mean distances measures Fuzzy 
Approach 𝛾 − 𝑉𝑎𝑙𝑢𝑒 

 𝑑∞ 𝑑2 𝑑1 

0.624  0.171 0.313 0.405 PIA 

0.432  0.193 0.266 0.361 SO 

0.5 0.512  0.225 0.293 0.326 TH 

0.641  0.216 0.311 0.397 PIA 

0.432  0.218 0.278 0.372 SO 

0.6-0.9 0.529  0.181 0.300 0.385 TH 

0.628  0.173 0.266 0.347 PIA 

0.319  0.176 0.273 0.419 SO 

1 0.615  0.206 0.301 0.404 TH 

0.712  0.176 0.307 0.382 PIA 

 
As shown in Table 3, the PIA and TH membership functions are less sensitive to 𝛾 parameter 

changes and give unique balanced solutions for 0.3 ≤ 𝛾 ≤ 0.9. In addition, the membership 
functions' values are better in the PIA proposed approach since their values are controllable by DM 
in this part.  

 
Fig. 3. The impact of different 𝛾 values on the 𝑑1 efficiency index 

 
Fig. 4. The impact of different 𝛾 values on the 𝑑2 efficiency index 
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Fig. 5. The impact of different 𝛾 values on the 𝑑∞ efficiency index 

 
As shown in Figure 3, considering 𝑑1 index, SO, 𝛾 = 0.2, 0.5, TH, and  𝛾 = 0.1, 0.6 − 0.9, 1 

methods, the PIA proposed method is more efficient in 𝛾 = 0, 0.3, 0.4 states. In other words, when 
𝛾 > 0.5, the PIA method generates better-balanced solutions. Concerning 𝑑2 index, SO, 𝛾 = 0.2, 0.4, 
TH, 𝛾 = 0.1, 0.6 − 0.9 methods, the proposed PIA method is more efficient as seen in Figure 4. That 
is, if 𝛾 > 0.5 − {1}, the PIA method is more efficient, and based on 𝑑∞ index in Figure 5, in 𝛾 =
0.1, 0.2, 0.3 states, TH, and 𝛾 = 0.4, 0.6 − 0.9, 1 methods, the proposed PIA method generates more 
balanced solutions. Figures 3-5 demonstrate that the PIA  method can produce more balanced 
solutions. 
 

 
Fig. 6. The impact of different 𝛾 values on RSD efficiency value 

 
Considering Figure 6, the proposed PIA method is more efficient in the RSD index, 𝛾 = 0.4 state, 

TH method, and others since the minimum satisfaction level of the objective functions is more 
controllable by the DM and more consistent with the DM's preferences. Furthermore, based on the 
procedure line in Figure 6, as 𝛾 increases, a more balanced solution is generated, and the objective’s 
satisfaction increases due to the maximum difference among the satisfaction degrees 

. 
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7. Conclusion and suggestions 
A novel multi-objective, multi-period mixed integer programming model for routing allocation 

with non-deterministic demand was introduced in this study. The model incorporates driver 
performance records, route hardness, and vehicle lifetime (heterogeneous vehicles). In addition to 
costs, the model also accounts for environmental pollution and route reliability as secondary and 
tertiary objectives. The proposed model evaluates costs by considering vehicle type parameters, 
vehicle wear-out, and driver experience. The cost of allocating a vehicle to a driver increases with 
their level of experience and decreases with less experience. Another factor influencing allocation 
cost is the vehicle wear-out. A vehicle that has been used for a longer period is expected to have 
higher wear-out, increasing the probability of breakdown. Consequently, the cost of assigning such a 
vehicle to drivers is reduced. This model also defines varying degrees of hardness for different routes. 
The cost of traveling a route is determined by an initial fixed cost and the hardness level of the route. 
Naturally, higher hardness levels result in higher route costs. In addition to the commonly used SO 
and TH methods, an interactive approach was proposed to solve the presented model. In the previous 
approaches, the DM has no control over the minimum satisfaction of each objective function, and 
this minimum satisfaction of the objective functions is determined by the model; but in the proposed 
approach, the DM controls the compromise between the goals and the minimum level of satisfaction 
for the objective functions by 𝛾, 𝛼𝑘 parameters, thereby increasing the controllability of the single-
objective model. To compare the efficiency of the introduced approaches to solve the proposed 
mathematical model, two efficiency indices 𝑑𝑝(𝑣) and 𝑅𝑆𝐷 have been used. The results showed that 

in the proposed approach of PIA and TH, the membership functions are less sensitive to the changes 
of parameter 𝛾 and give unique balanced solutions for 0.3 ≤ 𝛾 ≤ 0.9. Based on index 𝑑1, in the case 
where 𝛾 > 0.5, the PIA method created better-balanced solutions. Regarding the index 𝑑2, while 𝛾 =
0,0.1,0.5,1, SO method, 𝛾 = 0.2, 0.4, TH method and 𝛾 = 0.1, 0.6 − 0.9, proposed PIA method, 
showed better efficiency. Based on index 𝑑∞, in cases 𝛾 = 0.1, 0.2, 0.3, the TH method and 𝛾 =
0.4, 0.6 − 0.9, 1 proposed PIA method created better-balanced solutions. Finally, based on the RSD 
index, in case 𝛾 = 0.4  the TH method and in the remaining cases, the proposed PIA method showed 
better performance. 

For future study, applying the reliability of vehicles causes the amount of cargo carried by each 
of them is determined and optimized in such a way as to reduce their failure rate, thus the logistics 
process will be more agile and responsive. Furthermore, it is possible to incorporate a reward system 
into the model, where the amount of reward allocated to a driver increases in proportion to their 
performance. In addition, the use of a robust planning approach to deal with the uncertainty of the 
two-echelon model to face stronger uncertainty and make the model more flexible, utilization of data 
mining and machine learning methods to categorize drivers based on performance and considering 
a more appropriate criterion such as time to calculate routing costs are suggestions for further study 
due to factors like vehicle break down or traffic congestion, which lead to delays and increasing 
logistics expenses. Because Neutrosophic sets extend the representation of uncertainty beyond what 
traditional fuzzy sets provide. While traditional fuzzy sets express degrees of membership and non-
membership, Neutrosophic sets add a third component: indeterminacy. This three-degree 
membership concept allows for a more comprehensive and accurate representation of uncertainty, 
which is particularly useful when dealing with complex and ambiguous data. Therefore, it is suggested 
to use Neutrosophic numbers to express uncertainty to reach more accurate results in future studies  

As it is known, this research also has limitations like other research works. Here, some useful 
suggestions for future studies are presented based on these main limitations. In this article, to 
simplify the mathematical model and prevent its excessive complexity, the capacity limit for the 
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supplier is considered unlimited, which is practically not possible in the real world. Therefore, it is 
suggested to consider limited capacity in future studies and include its inventory equations in the 
model. Another important and significant limitation of this article is the lack of benchmark functions 
and the lack of access to real data. For this reason, it is designed from simulated data in different 
sizes to validate the proposed model. Therefore, it is suggested that the effectiveness of the 
mentioned model be measured and investigated with completely real data. 
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