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Abstract: This research proposes a decision-making framework in which the 
Adaptive Multi-Agent Reinforcement Learning (MARL) model and the concept 
of Vehicle-to-Grid (V2G) interactivity are employed to improve the effective 
management of smart grids. The research hypothesis introduces innovations 
for improving the efficiency and security of power systems in the global south, 
primarily by controlling the net energy transmission between the defined 
electric vehicles (EVs) and the grid. Other issues that require attention to 
ensure the proper functioning of smart grids include demand response, load 
management, and energy storage optimization. In this instance, these gaps are 
filled by the system’s proposed framework. With the help of MARL, the system 
dynamics' autonomous learning aspects allow the system to adapt to the 
capacity of renewable energy sources and electricity demand, which is also 
time-dependent. Because of the MARL, the autonomous coordination of 
decision-making has resulted in very positive changes in the system's 
effectiveness. In particular, this framework permitted an increase of 13.6% in 
the total energy exchange between EVs and the grid, and the grid stability 
index improved from 0.84 to 0.87 compared to what would have been 
achieved with the conventional methods. Enhanced energy management and 
pricing rehabs added another 22% to net savings. Further, it is stated that 
deploying MARL-based V2G systems in developing areas has many benefits, 
including more robust grid reliability and energy security and better 
integration of renewable energy resources. Such changes aid in reducing fossil 
fuel use and greenhouse gas emissions. 
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1. Introduction 
The world’s automotive landscape is changing rapidly with a shift toward electric vehicles (EVs) 

[1-2]. This evolution is supported by many streams, such as rising ecological apprehensions, the 
development of technology, and active state interventions to improve carbon emission rates [3-5]. 
Climate change, being an existential threat, has brought about an increasing emphasis on sustainable 
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mobility solutions. EVs answer the call for mitigating greenhouse gas emissions and moving away 
from fossil fuels in energy supply. Chen et al. [6] argue that enhanced usage of EVs globally, mainly 
using renewable sources for charging, can provide extensive savings on CO2 emissions globally. 

Simultaneously, the demand for EVs is increasing due to the awareness and availability of various 
models [7]. With more automotive manufacturers devising new models, the demand for vehicles is 
anticipated to rise significantly and redefine the automotive market [7][8]. Additionally, EVs are 
beginning to be complemented by advanced technologies such as autonomous driving and 
connected car systems, which promise to improve the prospects of EVs and transform transportation 
[9]. In smart cities, EVs shall be able to operate within renewable energy sources smoothly, smart 
grids, and self-sufficient ecosystems for responsible and effective transportation solutions [9][10]. 
This is especially relevant for developing countries experiencing increasing pressure from the growing 
world population, urbanization, and economic development to cope with their energy resources 
sustainably [9][11]. This creates a need for sustainable energy options, which ensures that 
consumption is healthy for the environment and economy [9][11][12][13]. 

On the other hand, adopting EVs allows for addressing some of these barriers, especially through 
Vehicle-to-Grid (V2G) technology. V2G allows EVs to participate in bi-directional energy transfer with 
the grid, increasing the capacity of the EVs as energy storage and supply devices, which helps balance 
the grid and improve the integration of renewable sources [14-16]. On the contrary, the V2G concept 
suffers from technical implementation issues, including battery aging, communication interface 
issues, and grid facilities requirements. Battery cycle aging arising from the constant cycling of the 
batteries towards grid services and management remains an issue. These metering systems must be 
upgraded to allow energy transfer and communication in two directions [15][16]. The widespread 
adoption of V2G technology can also help promote energy equity in developing economies. V2G can 
help improve energy consumption efficiency, hence flattening the curves of energy demand and 
reducing the instability of power supply systems, which affects less privileged communities more. 
Also, the number and dependency on fossil fuels can be reduced with the application of V2G, thus 
aiding the sustainability goals of the state [14][15][17]. 

Controlling the dynamic relations between EVs, the grid, and other parties takes considerable 
effort. Conventional styles of controlling lies cannot effectively cope with the V2G elements, which 
are emerging and complex simultaneously. Multi-agent reinforcement Learning (MARL) is a method 
that has proven valuable in enabling local decision-making and adaptive learning in versatile 
structures containing several agents. MARL can optimize V2G interactions in regions known for their 
intermittent and unstable energy systems [18-20]. Implementing MARL under V2G configurations 
can optimize energy security and improve the use of renewable resources while providing reliable 
energy for all within developing nations. This solves short-term energy management problems and 
complements the attainment of long-term sustainability objectives. 

 
1.1 Problem Statement 

The increasing adoption of EVs across the globe is a blessing and a curse about energy 
management, especially for developing nations. The ongoing upsurge in EVs would also raise 
possibilities for deploying these vehicles as mobile power sources using the V2G system. V2G systems 
permit EVs to connect to the grid, enabling them to obtain or return electricity. In places increasingly 
integrating renewable energy, such as solar and wind power, this can be essential for the grid's 
stability [21][22]. However, integrating V2G technology with existing energy grids is certainly not 
easy. Techniques for efficient energy control, grid stability, and economical operational modes 
should be developed to facilitate its integration [23]. 
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The growing global use of EVs has pros and cons regarding energy management, but this is more 
critical for developing countries. The ongoing high increase in the use of EVs will also create 
opportunities for deploying these vehicles as mobile power sources using the V2G system. V2G 
systems allow EVs to interface with the grid, meaning these vehicles can receive electricity or return 
power to the grid. In regions that have begun incorporating renewable energy sources, such as wind 
and solar development, this can be important for supporting the grid [21][22]. However, the 
challenge of embedding V2G technology within existing energy grids is perhaps the most frustrating 
issue. Energy system integration, economic and operational modes, and grid stability should be 
improved to allow for its incorporation [23]. 

MARL offers a potential way forward in this regard because it allows the decentralization of 
decision-making and adaptive learning in the context of a complex environment. By allowing every 

agent representing an EV [18-19], charging station, or grid component to learn and optimize its actions 

in real-time, MARL can assist in overcoming the drawbacks of conventional grid management models 

[1][5][27]. Nevertheless, the use of MARL in managing V2G and smart grid in developing countries is 

still a virgin area with great potential for improving energy resilience, enhancing renewable 

resources’ utilization, and promoting energy equity [28][29]. In this regard, this study seeks to fill this 

gap by investigating the use of MARL in V2G interactions and smart grid management in Thailand. 

This will help achieve more resilient, efficient, and sustainable energy systems in developing 
countries. 

 
1.2 Research gap and challenges 

An issue that seems to plague research in this emerging area is the application of advanced 
management strategies like MARL, especially in developing countries such as Thailand. While there 
is an increasing interest in V2G technology and its possible role in improving grid reliability and energy 
efficiency, the literature points to a deficit of studies that explore MARL applications within this 
context [30]. Most of the studies carried out before were limited to developed areas that are more 
energy-rich and have advanced smart grid technology. It is, therefore, pertinent to note that there is 
considerable research on the potential application of MARL in optimizing V2G interactions in 
underdeveloped countries where energy systems are unstable and stretched [31,32]. 

This area faces one major constraint the advanced intricacies and inherent dynamism of V2G 
systems. In some developing countries, energy demand and supply are rather ready to be 
compromised because energy grids are more or less weak, forcible fluctuations in demand and supply 
caused by underdeveloped facilities to sustain sustainability, unreliability of energy output from 
renewable sources, or other economic factors [23]. This complexity poses a challenge in employing 
the existing grid management technology, which is traditionally centered, considering that there is 
greater real-time decentralization in V2G interactions. Interestingly, even the grid integrated with 
EVs creates more chaos or uncertainty since the EVs’ availability or participation depends upon 
several factors, such as charging habits, user types, transfer requirements, and others [24][33]. 

Another challenge is associated with the MARL algorithms' scalability and adaptability. Even 
though MARL is a promising framework for decentralized decision-making that allows for multiple 
autonomous agents, its practice concerning V2G systems usage is still underdeveloped. The 
scalability of MARL has not been validated; however, it is used for the automation of large-scale 
distributed energy resources such as EVs within the V2G system [33-34]. Moreover, the adoption of 
MARL to the specific circumstances of developing countries characterized by limited data, 
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information technology power, and infrastructure for technology adoption is another challenge that 
should be tackled [35]. 

In addition, the socio-economic and regulatory contexts in developing nations introduce another 
level of difficulty. The deployment of V2G technology and MARL solutions, for instance, calls for the 
availability of technical support, policies, legal frameworks, and economic incentives which as 
aforementioned are sometimes absent in these areas. It is vital to comprehend the non-technological 
aspects in relation to the practical realization of V2G and MARL systems in order to secure the viability 
of such systems and their effectiveness [27-28] [36-37]. 

 
Table 1 Summary of Problem Statement and Research Gaps 

Aspect Problem/Challenge 

V2G Technology Integration 

Complex integration of V2G into existing energy infrastructures requires 
advanced management strategies to ensure stability, efficiency, and cost-
effectiveness [38].  

Developing Countries' 
Challenges 

Inadequate grid infrastructure, frequent power outages, and reliance on fossil 
fuels make V2G integration more challenging. 

Thailand's Energy 
Landscape 

Rapidly increasing energy demand with a national commitment to integrating 
renewable energy requiring innovative V2G solutions [39]. 

MARL for V2G Optimization 
MARL offers the potential for decentralized decision-making in complex energy 
systems but remains underexplored in developing countries [40-41]. 

Scalability and Adaptability 
of MARL 

Limited validation of MARL’s scalability in managing large-scale V2G systems, 
particularly in resource-constrained developing countries [18-19][42]. 

Non-technical Challenges 
Socio-economic and regulatory factors play a significant role in successfully 
deploying V2G and MARL systems in developing regions [43-44]. 

 
1.3 Objectives and Scope of the Paper 

This study aims to address these research gaps by analyzing how MARL can be implemented in 
V2G systems in Thailand – a developing country setting. The study will assess how MARL can be 
modified to suit the V2G interaction management in settings with limited infrastructure, scarce 
financial resources, and regulatory restrictions. The study attempts to fill this knowledge gap by 
assessing the use of ADMARL in enhancing the V2G systems in developing countries, supporting the 
larger picture of improving energy systems in a sustainable manner all over the world [1][5][18][19]. 

The focus of this paper is to examine the application of adaptive MARL as an approach to enhance 
interactions of vehicles with the grid (V2G) and the management of the smart grid in Thailand. The 
specific objectives are: 

1. To create a MARL centered on the V2G system, taking into account the peculiarity of Thailand's 
energy system. 

2. To determine the parameters of the V2G interaction and develop an environment for their 
simulation that includes state spaces of grid management, action spaces, and reward functions. 

3. To analyze the efficiency of the presented MARL system in optimizing V2G interactions, 
including the comparison with classical approaches to optimization. 

4. Interpret the results in a way that relates them to Thailand's present and future smart grid and 
energy management structure in terms of practical and policy changes that can be made. 

The scope of the paper covers the analysis of the available resources on V2G technology, MARL 
for energy management, and related literature available in Thailand. It also includes designing and 
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building a simulation framework, metrics and comparisons to evaluate performance, and 
comprehensive analyses of the results obtained about the energy situation within Thailand. 
1.4 Contribution 

This research makes several key contributions to the field of smart grid management and V2G 
technology, particularly within the context of developing countries. The study focuses on the 
innovative application of MARL to optimize V2G interactions, with a specific case study in Thailand. 
The contributions of this research are as follows: 

Application of MARL to V2G Optimization: While existing literature has explored V2G technology 
and smart grid management in various contexts, the application of MARL to optimize V2G 
interactions remains underexplored, especially in developing countries. We undertake this effort to 
bridge this gap by illustrating the application of MARL in dealing with the challenges posed by the 
complex dynamics between EVs, the grid, and other energy actors. The study employs MARL to 
demonstrate how the distributed decision-making approach in V2G systems improves grid system 
stability, energy efficiency, and renewable energy integration [15] [45-48]. 

Focus on Developing Countries: V2G and smart grid systems management has been the subject 
of study in mostly developed countries where the energy infrastructure is well integrated. However, 
attention in this study is directed to developing countries, where the energy systems are even weaker 
and likely to be interrupted. Casting the net to Thailand, in this case, helps to analyze the challenges 
and advantages of injecting V2G into areas with developing energy systems. This contribution is 
relevant as the developing countries are increasingly looking for solutions to the energy problem not 
based on fossil fuels [26] [49-58]. 

 Support for the Sustainable Energy Goals: The assessments confirm and complement initiatives 
oriented on the energy sector best practices in the context of the United Nations’ Sustainable 
Development Goals (SDGs), particularly the Clean Energy Goal. The research helps encourage the 
pursuit of sustainable and resilient energy systems as it illustrates how the use of MARL can make 
V2G interactions more energy efficient, enhance the integration of green energy sources, and reduce 
gas emissions. This is of particular concern for developing countries such as Thailand where 
sustainable energy has become one of the key objectives of the national development strategy 
[24][58].  

Practical Implications for Policy and Industry: The conclusions of this study bear practical 
importance for policymakers, energy suppliers, and the EV market. Looking at the positive and 
negative aspects of MARL application for V2G exploitation, this research may nurture the V2G 
concepts in the policy and strategy making for the attendant welcoming of the technology [59-60]. 
In addition, the study provides industries with ways to implement MARL-based approaches within 
their firms effectively, thus improving the performance and reliability of energy systems in 
developing nations [60-62]. 

This study also offers interesting contributions about specific technical, socio-economic, or 
regulatory aspects that must be considered to realize sustainable and resilient energy systems and 
their impact on theory and practice [63-66]. 

 
2. Literature Review 
2.1 Overview of V2G Technology and Smart Grid Systems 

Vehicle-to-grid (V2G) technology has captured the attention of many as energy innovation on the 
lower end of the wave. It allows EVs and power grids to connect in both directions regarding energy 
exchange. Through this integration EVs can capture surplus energy and send it back to the grid during 
high energy consumption, making the grid more effective and secure. V2G systems are much more 
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versatile as they help control frequency, balance load, and shear off-peak demand therefore making 
power systems more robust [67–68]. 

Considering such smart grid systems, advanced information and communication technologies 
(ICT) are embedded, allowing monitoring and management of electricity flow in real-time so that 
there is more balance within the grid. This feature enables the utilization of renewable resources 
such as solar wind and other distributed energy resources [69-70]. It also shifts how the power supply 
is used as smart grids allow for subject control to power demand, cutting back further on fossil fuel 
usage while improving energy security [71-72]. An integrated approach to V2G technology and smart 
grid systems assists in energy flow management, improves energy generation efficiency, and 
encourages energy savings. Studies have shown that V2G systems, in coordination with smart grids, 
can significantly help use intermittent renewable energy and balance energy demand [73-74]. 

 

 
Figure 1. Vehicle-to-Grid (V2G) Interaction Overview 

 
Figure 1 presents several constituents' interaction schemes that work as a single energy system 

unit. Electric vehicles are also connected to the power grid system, which is the central connecting 
element of the whole system so to speak. Communication and some other new technologies of 
modern times are integrated within the structure of the power grid in order to facilitate its operation 
and communication. These information technologies advance the system to the extent that the smart 
grids, the energy storage technologies, and the grid are connected to them. Moreover, the 
sophisticated technologies and the power grid also enable the integration of advanced energy 
resources into the system. This interrelated evolution brings out transformation and the continuous 
evolution of energy systems. 

Interactions within a smart grid system through V2G technology are represented in Figure 2. In 
this case, EVs are directly interfaced with the grid in such a way as to allow energy flow in both 
directions [1]. The power grid is augmented by an intelligent system that is enhanced by smart 
management features. This smart grid works in conjunction with RESs, thus increasing the grid’s 
ability to assimilate energy generation that is intermittent. Energy storage systems are also built 
inside the grid to pack surplus energy and retrieve it when required. Advanced ICT implements and 
addresses real-time data transfer processes, operative guidance, and management and control of 
several interactions with ancillary renewable generators and storage. V2G technology is visualized in 
the diagram as combined with other components, represented with arrows indicating the course of 
their interactions and how these components are interdependent in the general V2G system 
[45][60][63][74-75]. 

The recent developments made in V2G technology emphasize its advantages which include 
improvement in grid performance, decreased energy expenses, and maximized use of renewable 
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energy sources [76-77]. As a backbone for achieving any of these benefits, smart grids with advanced 
metering infrastructure and intelligent control systems allow for better integration of the grid and 
EVs [78]. 

 

 
Figure 2. Example of smart grid system by V2G 
 

2.2 Existing Optimization Approaches in V2G Interactions 
The second part is the V2G interaction optimization, which consists of creating EV charging and 

discharging strategies to bring maximum profit for the grid and EV owners, respectively. Conventional 
optimization methods engage mathematical programming, heuristic algorithms, and model 
predictive control (MPC) [16, 40, 41, 56,68]. These methods seek to achieve multidimensional goals 
such as cutting down expenses, lowering peak demand, and increasing the share of green energy. 

In particular, V2G optimization problems have been formulated and solved with the help of 
mathematical programming techniques such as Linear Programming and Mixed Integer Linear 
Programming methods (MILP). For example, Wang et al. [60] presented a mixed-integer linear 
programming model to optimize EV charging schedules across time under dynamically priced 
electricity and the availability of expanding renewable energy sources. MILP has also been used to 
plan grid integration under uncertain renewable energy generation and efficiently support supply-
demand management [78-79]. 

Heuristic algorithms, specifically genetic algorithms (GA) and particle swarm optimization (PSO), 
are also presented as solutions since they can work with a broader solution space and can provide 
satisfactory results with less effort [31][51][64][65]. Such studies later used hybrid techniques to 
enhance GA such as integration with different optimization procedures [80]. These techniques are 
used when it is necessary to solve several interrelated tasks simultaneously, for example, when the 
intended charging cost is to be minimized and the peak demand on the grid is also constrained. 

Model predictive control (MPC) is increasingly well-liked because it is well-suited for the dynamic 
and uncertain character of V2G relationships. According to the MPC frameworks, the current and 
future stages of the system are estimated to maximize control efforts. This feature allows for real-
time implementation of the control action [81 – 82].  MPC has an edge since it optimizes control 
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based on the variability in grid demand and energy prices on an online basis. Additionally, it has been 
coupled with deep learning models for better prediction and more optimization of control actions 
mäki [83]. Though most of these traditional methodologies are effective, they are computationally 
intensive and are unlikely to be easily scalable in the case of increasing EVs and the intricacy of smart 
grid systems. Recent developments in machine learning and artificial intelligence are, amongst other 
things, being investigated as solutions to these problems, enabling more scalable and adaptable 
strategies for V2G optimization [84]. 

 

 
Figure 3.  Optimization Approaches for Vehicle-to-Grid (V2G) Interactions 

 
 

The optimization techniques aimed at the V2G interactions have been shown in Figure 3. The 
outer rim includes the core node due to three sub-categories of his ‘Optimization of V2G Interactions’ 
covered during the study, namely ‘Mathematical applications, Heuristic, Model Predictive 
application’. There are three targets for each "Cost inimization” reduction of peak load, and 
‘Development of renewable resources inclusion.’ V2G systems can also benefit from these 
approaches, but it appears that there are other benefiting objectives of these methods, which are 
also system-orientated.  

 
2.3 Applications of MARL in Energy Management 

MARL offers a promising alternative to traditional optimization methods by leveraging the 
principles of reinforcement learning to enable agents (e.g., EVs or charging stations) to learn optimal 
strategies through interactions with the environment and other agents [1][5][18-19]. Research into 
MARL approaches has been revealing progress on the challenges of scaling and the complexity of the 
V2G optimization problem [85-86]. 

In the sphere of energy management, MARL has been used in various applications, including 
demand response, distributed energy resources management, and grid stability [86-87]. For example, 
the work done by Wang et al. [60]. developed a MARL-based framework for optimizing EVs' charging 
and discharging schedules, noting that grid stability and energy cost are improved dramatically 
relative to traditional methodologies. Likewise, Zhao et al. 2020 also utilized the MARL approach in 
coordinating the operations of distributed energy resources with improved system resilience and 
operational efficiency [38][41][46][49][88]. 

Newer works have broadened the scope of the use of MARL in the management of energy 
resources by introducing more complex interactions, such as V2G coordination in large-scale smart 
grid systems. For instance, a three-level MARL framework was developed to distribute energy among 
the multiple EV charging stations, improve load balancing, and reduce operational costs [89-90]. It 
also polled the incorporation of deep MARL to allow EVs to self-determine the optimal charging time 
that emanates from electricity prices and grid conditions, demonstrating enhanced scalability and 
adaptability in dynamic environments [91]. 
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The second promising area of development can be microgrid operations optimization using 
MARL. In this regard, the study carried out by Han et al. [23] illustrated how MARL could enhance the 
remote microgrid integration of CDREs and battery storage systems for efficient energy use and 
interruption resiliency. In addition, some studies have utilized cooperative MARL to strategize the 
charging pattern of a fleet of autonomous EVs, resulting in improved coordination and reduced 
energy expenditure [92]. 

MARL’s ability to be robust in dynamic environments and to learn about optimal policies in a 
distributed fashion makes it relevant for V2G interactions. Since policies are adapted based on the 
target status and input interactions at the current time, MARL agents are capable of quickly adjusting 
to fluctuations in demand, electricity prices, and the availability of renewable energy sources 
[49][68][93]. 

 
 

Figure 4. The Comparison of Traditional Optimization Methods and MARL in the Context of 
V2G Systems 

 
Figure 4 compares the traditional optimization strategies to the use of MARL for V2G systems. 

Further development of the figure shows that traditional optimization methods are related to specific 
goals like cost reduction, peak shaving, or renewable energy integration. In contrast, MARL is 
correlated via reinforcement learning concepts to optimal strategy development based on 
interaction with the environment and other agents. MARL resolves issues of complexities and 
limitations in scale, thereby underscoring its advantages in V2G optimization. Color classes were used 
within the image to help differentiate the approaches [67][94]. 

 
2.4 Case Studies or Related Work in Thailand 

V2G technology and MARL are becoming popular in Thailand as the country aims to improve its 
energy sustainability and resiliency of the electric grid. There have been several studies on the 
opportunities and challenges of V2G operationalization in Thailand. For instance, some studies 
assessed V2G for grid stability, showing the ability to use peak load shaving and nesting renewable 
energy [95]. Another study also reported the economic feasibility of V2G in Thailand, which pointed 
out some structural and policy changes that are vital to unlocking the potential of V2G [96]. Studies 
on MARL applications within the energy sector in Thailand are quite limited; however, preliminary 
studies suggest a good trend. Many Thais proposed a MARL-based methodology for managing 
distributed resources in Thailand, achieving increases in system performance and economy [96-97]. 
In the same context, Thai researchers employed MARL to facilitate demand response management 
and demonstrated with higher flexibility and responsiveness than the traditional methods [98]. 
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More studies have built on these conclusions looking into some of the applications on V2G and 
MARL systems in Thailand. For instance, Wattana & Wattana [99] examined the inclusion of V2G 
systems in the Thai city infrastructure with a special focus on the islands of the smart grid system into 
energy distribution networks. Besides, this research work will appraise the V2G system deployment 
progress and plans in rural Thailand and how the socio-economic, infrastructural and institutional 
factors affect it [98]. 

A different experiment, which is also remarkable, is the one that Suanpang and Jamjuntr 
conducted [100] in which they demonstrated how effective MARL algorithms are, particularly the 
Multi-Agent Deep Deterministic Policy Gradient (MADDPG), in trying to optimize the locations and 
the distribution of EV charging stations in smart cities. Their findings prove that MARL achieves 
significant improvements in mean charge waiting time, increases charging facility turnover (CFT), and 
boosts total savings, all of which lead to greater efficiency and satisfaction in EV charging 
infrastructures. This approach is consistent with ours, which seeks to employ Adaptive MARL on V2G 
interactions. The MDPG algorithm being by design collaborative and communicative, as noted by 
Suanpang and Jamjuntr [101], is most applicable in V2G scenarios involving multiple active agents 
such as EVs, charging stations, and grid operators to enhance energy distribution and cost efficiency 
while maintaining grid stability. Adopting the same MARL approach, our work seeks to widen the 
scope and attempt to look into the problems developing countries encounter in establishing V2G 
systems, such as infrastructure deficits, variability in the energy supply, and cost efficiency. 

In particular, the MARL techniques in regard to the encoding of local culture and distinct energy 
issues in Thailand were examined Zhou et al. [102] reported prospects of energy management 
enhancement through MARL application in the urban as well as rural territories thus making it a 
practice worth referencing in subsequent studies and strategic frameworks. Generally, these 
researches emphasize the potential of MARL and V2G technologies in changing the energy picture in 
Thailand for good. In particular, they lay the ground for applying Adaptive MARL in V2G interactions, 
calling for more efforts to address the peculiarities of the Thai environment and the opportunities 
therein [103]. 

 
2.5 Deterministic Optimization 

Deterministic optimization is a discipline that deals with optimization processes whose decision-
making is devoid of random variables and uncertainties. It stands in contrast with stochastic methods 
as it does not assume partial ignorance of any parameters and the system functions satisfactorily 
with the particular parameters. This approach is especially useful when accurate and feasible 
solutions are needed [100-103]. 

 
2.5.1 Overview of Deterministic Optimization Techniques 

Deterministic optimization techniques are commonly divided into three major categories: linear 
and nonlinear programming, integer programming, and dynamic programming. These techniques are 
appropriate for strategies aimed at optimization problems whereby the objective function and 
constraints are deterministic functions of the decision variables. 

Linear programming (LP): is an optimization process which aims to find the optimal value of a 
linear objective function subject to multiple linearly constraints. It finds applicability in different areas 
like resource allocation, logistics and in manufacturing. The Simplex method and interior-point 
methods are some of the algorithms more frequently used to solve LP problems in practice [103-
104]. 
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In nonlinear programming (NLP): one has to optimize nonlinear objective functions and/or 
constraints. One is contemplating the use of NLP methods when looking at the interactions of 
decision variables and finding them to be nonlinear. Various methods exist to solve NLP including the 
gradient descent, Newton’s method, and sequential quadratic programming (SQP) for manipulating 
such problems [105]. 

Integer Programming (IP) can be defined as a class of optimization problems where some or all 
of the decision variables are constrained to have integer values. This approach can be important in 
combinatorial optimization problems, e.g. scheduling and routing. There are applied such algorithms 
as branch-and-bound and branch-and-cut to devise solutions to integer programming problems [106-
107]. 

Dynamic Programming (DP) follows another reasoning: it solves problems assuming multiplicity 
of decision steps. It involves separating complex problems into less complex subproblems and 
determining solutions to these subproblems. The working principle of optimality by Bellman is a 
central concept in dynamical programming [108]. 

 
2.5.2 Applications in Energy Management 

In energy management, deterministic optimization techniques have been employed to solve 
various problems, such as energy scheduling, load forecasting, and grid management. For example, 
LP has been used to optimize the operation of power systems by minimizing generation costs while 
meeting demand and operational constraints [109]. NLP has been applied to model and optimize 
complex energy systems with nonlinear behavior, such as integrated renewable energy systems 
[111]. IP techniques are often used in tasks like optimal placement of energy storage systems and 
network design [112]. DP is useful in energy management for optimizing energy usage over time, 
taking into account future states and decisions. 

 

2.5.3 Limitations and Challenges 
One essential understanding that intelligent heuristics brings to the forefront is the acceptance 

that specific problems cannot be resolved through deterministic optimization but rather through the 
problem-solving strategies adopted by people. There are certain limitations to these deterministic 
optimization approaches despite their advantages. For instance, their implementation requires 
accurate and specific data that may not always be feasible or precise in real-world situations. 
Meanwhile, there are challenges relating to the scalability of deterministic techniques and algorithms 
when handling high-level problems with complicated restrictions. Therefore, it is inevitable that we 
will resort to stochastic or heuristic optimization along with the deterministic approach in most 
practical applications. 

 
2.6 Heuristic Approaches 

Heuristic approaches are problem-solving methods that use practical, non-optimal strategies to 
find sufficiently good solutions within a reasonable timeframe, particularly for complex or large-scale 
problems where traditional optimization techniques may be infeasible. Unlike exact optimization 
methods that guarantee an optimal solution, heuristics aim to find a good enough solution based on 
experience, intuition, or rules of thumb. These approaches are especially useful in scenarios where 
the problem space is vast and the exact methods are computationally prohibitive. 

 
2.6.1 Overview of Heuristic Approaches 

Heuristic methods are diverse and include several prominent techniques, such as: 
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Greedy Algorithms: make a series of choices, each of which looks best at the moment, with the 
hope of finding the global optimum. They are simple to implement and often yield good solutions 
quickly, but they do not guarantee the global optimum. Examples include Kruskal’s algorithm for 
finding the minimum spanning tree and the Huffman coding algorithm for data compression [112].   

Genetic Algorithms (GA): are inspired by the principles of natural evolution. They use mechanisms 
such as selection, crossover, and mutation to evolve a population of solutions toward an optimal or 
near-optimal solution. GAs is particularly effective for complex optimization problems with large 
search spaces. Applications include scheduling, routing, and engineering design [113]. 

Simulated Annealing (SA): Simulated annealing is a probabilistic technique inspired by the 
annealing process in metallurgy. It explores the solution space by probabilistically accepting worse 
solutions as it searches for a global optimum. SA is well-suited for problems where the search space 
has many local optima. It has been successfully applied to problems like the traveling salesman 
problem and function optimization [114-115].   

Tabu Search: is an iterative algorithm that guides the search process by maintaining a list of 
recently visited solutions, known as the tabu list, to avoid revisiting them. This approach helps to 
escape local optima and explore the search space more effectively. Tabu search is used in various 
optimization problems such as scheduling and resource allocation [116].   

Ant Colony Optimization (ACO) is inspired by ants' foraging behavior and uses a colony of artificial 
ants to explore the solution space. Ants deposit pheromones on paths that lead to better solutions, 
which guides the search process. ACO has been successfully applied to combinatorial optimization 
problems, including routing and network design [117-118].   

 

2.6.2 Applications in Energy Management 
Heuristic approaches are increasingly applied in energy management to tackle complex 

optimization problems where exact methods are computationally infeasible. For instance: 
- Genetic algorithms have been used to optimize the scheduling of power generation units and 

the configuration of energy systems, aiming to balance efficiency and cost [85][119].  
- Simulated Annealing has been employed to solve unit commitment problems in power systems, 

where the goal is to schedule the operation of generation units to meet demand at minimum cost 
[120]. 

- Tabu Search has been applied to optimize energy storage systems and demand response 
strategies, focusing on improving system performance while avoiding local optima [121].   

- Ant Colony Optimization has been used for routing and scheduling problems in smart grids, 
enhancing the efficiency of energy distribution and resource allocation [118].   

 
2.6.3 Advantages and Limitations 

Heuristic methods offer several advantages, including their ability to handle large and complex 
problem spaces and their flexibility in adapting to different problems. However, they also have 
limitations, such as not guaranteeing optimal solutions and potentially requiring careful parameter 
tuning to achieve good performance [118-120]. 

 
2.7 Related Study 
 2.7.1 Related Studies 

In optimizing V2G systems and smart grid management, several studies have explored various 
aspects of these technologies, often focusing on different methodologies, case studies, and 
applications.  
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A number of research works have focused on the optimization of V2G systems, increasing the 
stability of the grid, lowering the price of energy and the integration of renewable energy sources. 
By way of example, Zhang et al. [40][49][68] developed an optimization model of V2G systems using 
dynamic pricing and demand response management to control the load and minimize the costs of 
operating the system. Their framework made it possible to enhance the reliability and efficiency of 
the grid with appropriate energy management of EVs' bidirectional energy flow. 

In the same way, Liu et al. [38] investigated the integration of the V2G technology into smart grid 
systems for improved energy storage and distribution. They also used optimization approaches to 
coordinate the EV charge and discharge schedules, leading to efficiency meeting engagements 8 6 0 
and peak load reduction. Their investigations underlined the activities of V2G in leveling the energy 
demand and increasing the operational efficiency of the grid system [12][36][38]. 

 
2.7.2 Application of MARL in Smart Grids 

Among the solutions developed for the smart grid management issues, one of the most successful 
is the MARL. For example, Aladdin et al. [87] devised a MARL method for energy management in 
smart grids, integrating a decentralized approach with multiple autonomous agents optimizing 
energy distribution and consumption. Their method worked well on energy systems' dynamic and 
stochastic characteristics, thus enhancing the grid's operational efficiency and reliability. In another 
work, Chen et al. [31 - 32] applied MARL principles to the distribution of numerous intelligent energy 
managers in a smart grid for optimized operational characteristics of the distributed energy resources 
(DERs). They showed how MARL presented an optimal way of coordinating the operation of DERs so 
that energy costs were lowered while the system's resilience was improved compared to 
conventional methods. Their works emphasized the taming of complexity in multi-agent 
environments and the capability of MARL to respond to changes in the environment in real time [64 
- 65] 

 
2.7.3 Case Studies in Developing Countries 

The integration of V2G and MARL technologies within the context of developing countries is the 
focus of the latest studies, which have produced promising results. When considering the case of 
Thailand, attempts have been made to identify such problems and opportunities when these 
technologies are rolled out within the country. Preedakorn et al. [95] performed an analysis of V2G 
effects on grid stability in Thailand, offering prospects of lowering peak load demand and enhancing 
the use of renewable sources of energy. Their research also pointed to the absence of favorable 
policies and the development of supporting infrastructure as the reasons why V2G has a limited 
impact within the Thai energy structure. The two came up with studies on V2G implementation 
possibilities in Thailand, stressing insufficient policy and infrastructural support. Their studies pointed 
to the expected possibility of V2G usage, which would enhance energy access conditions as well as 
the integration of renewable energy sources, but they also emphasized that proper addressing of the 
challenges at hand is necessary [26][28][95][99]. 

The current work extends the coverage of Suanpang and Jamjuntr [1] [5] [100-101] work, where 
they developed the EV charging optimization using Multi-Agent Reinforcement Learning with 
emphasis on the Multi-Agent Deep Deterministic Policy Gradient algorithm. The potential of the 
MARL stands out in integration of EV charging station placement and EV charging station allocation 
in smart cities such that the charge waiting time is less, charging facilities turnover better, and savings 
are higher. In this case, they justify Adaptive MARL for use in V2G interactions noting the cooperation 
involved in MADDPG which will enhance the proper coexistence of all agents, EVs, Charging Stations 
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and Grid Operators among others. Although similar MARL techniques are suggested in the paper, it 
is intended to solve the problems typical for developing countries like Thailand in the implementation 
of V2G systems. Such problems are associated with infrastructure, energy supply stability and prices. 
It should be noted that the outcomes from Suanpang and Jamjuntr [1] [5] [100-101] corroborate the 
potential for Adaptive MARL in V2G applications and provide the main justification for conducting 
this study. It emphasizes that the MARL enables the improvement of the functional and ecological 
efficiency of transport systems and energy systems within intelligent cities, which is crucial for 
developing countries. Efficient management of the smart grid, along with management of V2G 
interactions, helps achieve energy access, integration of renewable energy, and fortification of the 
grid. 

 
3. Methodology 
3.1 Research Framework  

Figure 5 presents a diagram of the framework of the study, together with an explanatory 
description, which is very significant in this regard. It allows the program to be designed to course 
the boundaries of the research, beginning from the challenge at hand, V2G technology, and smart 
grid management issues in the context of integrating developing countries. Next, the framework 
identifies the relevant newspaper studies and the issues that need to be studied, focusing on new 
approaches such as (MARL). Given this situation, essential research purposes are set to fill in these 
gaps and determine the study's outcome. The research focus, which is on MARL, as the key 
component of the methodology, is intended to solve problems associated with V2G optimization and 
smart grid management in the context of developing economies such as Thailand. The framework 
further cross-cut other aspects, such as social-economic and policy ones, to formulate technically 
sound and economically benefitable solutions. An actual setting in Thailand is employed to 
experiment and verify the effectiveness of MARL in a true-world scenario. The analysis and the results 
also aim to appreciate MARL's role in the grid's stability and energy efficiency. The expected outputs 
are expected to enhance the achievement of the pyramidal goal of creation, which emanates from 
reducing emissions, increasing the use of renewable sources, and improving efficiency. Finally, the 
research has practical contributions to policies and the industry by providing a roadmap for 
implementing V2G technology and smart grid management in developing countries, allowing visibility 
of how it would work in practice. 
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Figure 5: Research Framework for Adaptive MARL in V2G Optimization 

 
3.2 Description of the MARL Framework 

To investigate the V2G interactions in this research, agents using the decentralized MARL 
framework will be developed. The agents can either be EVs or charging stations, and they learn to 
take actions that will optimize cumulative rewards over time.  

At any time step (t), Agents’ observations include the grid demand (𝐷𝑡), EV battery state (𝐵𝑡),  
and the energy cost (𝑃𝑡). Every agent then makes an observation of the current state and chooses 
an action (𝑎𝑡) from its action space (𝒜 = {charge,discharge,idle}). 

Afterward taking action (𝑎𝑡), the environment transitions to a new state (𝐷𝑡+1, 𝐵𝑡+1, 𝑃𝑡+1) and 
the agent receives a reward (𝑅𝑡) according to the reward function 𝑅𝑡 = 𝑓(𝐷𝑡, 𝐵𝑡, 𝑃𝑡 , 𝑎𝑡). The aim is 
to obtain clarity on policies that will increase the expected cumulative utility over time. 

 
 



Decision Making: Applications in Management and Engineering 

Volume 7, Issue 1 (2024) 494-530 

509 
 

 

3.3 Environment Design for V2G Interactions 
The environment allows simulating dynamics such as grid load lay, EV charging consumption, or 

energy price changes. Such dynamical processes are represented in the model as stochastic processes 
or derived from the observation data: 

- Grid demand (𝐷𝑡) is impacted by usage and outside elements. 
- EV battery level (𝐵𝑡) fluctuates according to whether charging or discharging has occurred. 
-Energy prices (𝑃𝑡) are not constant change in relation to a situation in the market. 
The nature of the environment is represented mathematically through equations of state 

evolution dynamics given as: 
𝐷𝑡+1 = 𝑔𝐷(𝐷𝑡)                                                                                                              (1)            
𝐵𝑡+1 = 𝑔𝐵(𝐵𝑡, 𝑎𝑡)                                                                                                        (2) 
𝑃𝑡+1 = 𝑔𝑃(𝑃𝑡)                                                                                                                  (3) 

 
where 𝑔𝐷(⋅), 𝑔𝐵(⋅), and 𝑔𝑃(⋅) define the functions controlling demand, battery level, and energy 

prices, respectively. 
 

3.4 Agent Architecture and Learning Algorithm 
Every agent employs a Deep Q-Network (DQN) in a bid to approximate the action-value function 

𝑄π(𝑠, 𝑎), where s is the state, and a is the action. The DQN architecture is designed around a fully 
connected neural network model comprising: 

- Input layer: State Representation (𝑠 = (𝐷𝑡, 𝐵𝑡, 𝑃𝑡)) 
- Hidden layers: Dense layers with 𝑅𝑒𝐿𝑈 activation functions 
- Output layer: Action values for each action in (𝒜) 
While training, agents can utilize experience replay by storing and sampling experiences in the 

form (𝑠, 𝑎, 𝑟, 𝑠′), from the replay buffer. The fusion of target network prediction and temporal 
difference error is done by adjusting the network's weights in the Q-learning update rule. 

Δθ = α [𝑟 + γ max
𝑎′

𝑄 (𝑠′, 𝑎′; θ−) − 𝑄(𝑠, 𝑎; θ)] ∇θ𝑄(𝑠, 𝑎; θ)                                                                             (4)  
 
where 𝜃 are the network parameters, 𝛼 is the learning rate, 𝛾 is the discount factor, and 𝜃− are 

the target network parameters periodically updated. 
State Representation, Action Space, and Reward Function 
The state representation (𝑠) includes normalized values of(𝐷𝑡), (𝐵𝑡), and (𝑃𝑡). For instance, (𝐷𝑡) 

and (𝐵𝑡) are scaled to the range [0, 1], while (𝑃𝑡) is normalized based on historical price data.  
The action space (𝒜) consists of discrete actions: charging (𝑎𝑡 = charge), discharging (𝑎𝑡 =

discharge), and idling (𝑎𝑡 = idle). 
The reward function (𝑅𝑡) guides agent behavior: 

 
𝑅𝑡 = −α𝑃𝑡 + β(1 − 𝐵𝑡) − γ|𝐷𝑡 − 𝐵𝑡|                                                                                                                     (5) 

 

where  α, β, and γ are weighting factors balancing cost, battery usage, and demand fulfillment. 
 

3.5 Simulation Setup and Parameters 
Simulation parameters include the number of EVs, time step duration, and exploration strategy: 
- Number of EVs (𝑁𝐸𝑉) determines system scale and complexity. 
- Time step ( Δ𝑡 )  governs the granularity of state transitions. 
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-Incorporating ε-greedy exploration strategies into the standard devises supervised learning 
upper bounds on the regret of a policy, thus adjusting the agent's action choices. 

Multiple episodes ( 𝐸 ), of the simulation are performed, at which energy exchange, grid stability, 
and economic benefits are among the evaluated metrics. 

This methodology offers a broader context for the application of MARL towards the optimization 
of V2G interactions, enabling the testing of various approaches in smart grid management situations. 

Figure 2 shows the Adaptive Multi-Agent Reinforcement Learning flow chart, MARL frameworks 
for Vehicle-to-Grid V2G interactions, and smart grid management. It starts with gathering data from 
the electric vehicles' EVs and grid sensors, then moves on to state representation and action selection 
with the use of MARL agents. The agents liaise with the environment by promoting the most optimal 
energy transaction between EVs and the grid. The system provides an output, policy revisions are 
implemented, and progress is made toward ephemerally determined targets. Learning continues, 
which is necessary to improve the models utilized. The flowchart stresses the further knots as 
integrating adaptive learning techniques to increase the grid's stability, introduce energy efficiency, 
and enhance the overall system's performance. 

 

 
Figure 6: Flowchart of Adaptive Multi-Agent Reinforcement Learning for V2G Interactions and 

Smart Grid Management 
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Figure 7:  Training Rewards 

 
Figure 7 presents the average reward that the agents collected all the episodes’ rewards received 

during the training. It assists in evaluating the performance of the agents in the course of training, 
that is, to what degree they are improving their policies with respect to the evaluation provided by 
the experience they gained. 

 

 
Figure 8. Epsilon Decay 

 
Figure 8 indicates the decay of the exploration rate over the episodes. The epsilon value is the 

exploration rate in the epsilon greedy strategy, and its decay shows that the agent is increasingly 
adopting exploitation over exploration as it becomes more experienced. 
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Figure 9. Episode Times 

 
Figure 9 represents the time taken to accomplish every episode in this case. It highlights the 

effectiveness and computational efforts of the training process while showing the progression of an 
episode's duration. 

 
Figure 10. Final States 

 
Figure 10 graphs all the state variables changing over the course of the training: demand charge 

level and price, which are representative of the final states at the end of each episode. It shows how 
these state variables change and reach equilibrium over the course of training, intimately presenting 
the dynamic of the environment. 
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Figure 11. Average Rewards Over Episodes 

 
Figure 11 illustrates the mean rewards that the agents received during the episodes. It aids in 

evaluating the general performance and efficiency of the Q-learning algorithm in optimizing the 
agents’ actions for more positive results. 

 
 

4. Results  
4.1 Performance Metrics and Evaluation Criteria 

The effectiveness of the MARL-based optimization framework for V2G interactions was evaluated 
on the basis of a comprehensive set of performance evaluation metrics and criteria. These metrics 
gave the decision-makers a more rounded assessment of the technical and economic aspects of the 
framework’s impacts and its implications on energy systems and EV users. Further, a comparison with 
other optimization methods was also done to present a fairground with regard to the improvements 
made by MARL methods. 

These baseline strategies were proposed since they represent traditional optimization 
approaches that several people are accustomed to, in addition to their known limitations in solving 
dynamic and intricate scenarios such as the modern energy grid. Although rule-based and heuristics 
methods remained the mainstay in V2G systems, they were features that were often too rigid to cope 
with changing prerequisites. On the other hand, MARL provides such a continuum and versatility that 
could address current grid states, current user needs or even the price of energy. This observation 
further justifies the enhancement brought about by MARL in managing uncertainties and optimizing 
of multi-agents in a decentralized configuration. 

The following assessment performance indicators were chosen for evaluation: 
• Mean total amount of energy exchanged: this index evaluated the amount of energy moved 

to and from EVs and grid, showing how well the energy resources of the V2G system were 
exploited. In other words, efficient energy management through optimal V2G interactions 
and increased energy exchange rates is expected. 
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• Grid's Load or Wind Power Variation: this parameter measures the effect of V2G activities on 
the grid's stability by assessing the balance between supply and demand. In this case, it was 
extremely important that the system based on MARL not only sustain but also improve the 
grid's stability. 

• Economic Savings: his metric evaluated cost savings resulting from better energy resource 
management due to changing electricity prices. The MARL framework is intended to lessen 
the overheads of grid operators and EV owners by enabling smart EV-grid energy exchanges. 
Evaluating the economic output of MARL against traditional approaches did assist in drawing 
attention to MARL's merits in energy management and cost efficiency. 

These metrics complemented the evaluation of the technical performance and economic indices 
of the V2G optimization system, which is based on the MARL concept. 

 
4.2 Comparison with Traditional Optimization Methods 

In this segment of the article, the authors reviewed the utility of the MARL-based optimization 
framework for V2G interactions with a Deterministic Optimization approach and a Heuristic 
Approaches, two of the more traditional approaches to optimization. The two methods have been in 
support of V2G optimization for a while now hence they provide a standard for evaluating the 
improvements that MARL offers. 

 

4.2.1 Rationale for Selecting Traditional Methods for Comparison: 
1. Established Benchmarks in V2G Systems: have been dominated by conventional techniques like 

deterministic optimization and heuristic methods. As they are widely used, it is evident that they serve as 
dependable benchmarks, allowing clear assessments of the advances that MARL brings. 

2. Inherent Limitations in Dynamic Environments: as some well-defined rules or models mostly govern 
conventional approaches, they tend to be less applicable in the case of modern energy grids, which are 
constantly changing and complex. On the other hand, MARL algorithms are intended to respond in real-time 
to changes in the grid, the energy price, or user preferences. Noting these deficiencies allows us to emphasize 
the strengths of the MARL, i.e. its flexibility and adaptability. 

3. Baseline for Evaluating Adaptive Learning Capabilities: the deterministic and heuristic methods can, 
however, be described as having structured optimizations based on rules but have the disadvantage of being 
unable to adapt to changing conditions. This characteristic made them perfect for baselines while assessing 
how the continuous learning and distributed decision-making of the MARL model significantly increases 
performance in the context of V2G interactions. 

 

4.2.2 Comparison with Traditional Methods: 
Deterministic Optimization: These methods rely on computational algorithms to determine best practices 

in the charging and discharging batteries and systems. These strategies, although appealing in an ideal 
environment, do exhibit weaknesses in real-time carrying out operations.  

MARL Advantage: Through its decentralized form, MARL directly addresses real-time variation in energy 
demand, pricing, and central control, making it far more flexible and capable than other static deterministic 
methods. 

Heuristic Approaches: Adopt a rule of thumb or approximated algorithm extremes that are not dynamic 
enough to learn from past interactions but remain rather simple and computationally efficient. This leads to 
progressively inefficient decisions. 

MARL Advantage: With MARL, over time, EV agents are able to learn optimal policies, which leads to better 
energy exchanges, greater grid stability, and better economics. Heuristic methods are unable to do this—they 
always optimize for a specific point in time. 

 

4.3 Key Performance Indicators 
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To evaluate the MARL-based framework in relation to heuristic and deterministic approaches, Total Energy 
Exchanged, Grid Stability Index, and Economic Savings were selected as the key performance indicators (KPIs). 
The aforementioned variables are the clearest usable when evaluating the performance of each approach in 
V2G systems. The numerical results of the research are contained in the table below and after describing such 
results, the various aspects concerning management of a smart grid are reviewed. 

 
Table 2. A comparison of Reference Key Performance Indicators (KPIs) among MARL optimization and 
traditional approaches. 

Metric 
MARL 

Approach 
Deterministic 

Optimization Heuristic Approaches 

Total Energy Exchanged (MWh) 1250 1100 1150 

Grid Stability Index 0.87 0.84 0.85 

Economic Savings (%) 22% 19% 16% 

 

4.4 Results and Implications for V2G and Smart Grid Management 
4.4.1 Total Energy Exchanged (MWh)   

• MARL (1250 MWh): Tied for the most significant energy transfer, this model illustrates how energy 
exchanges between the EVs and the grid can be managed to optimize resource utilization in response 
to demand and energy availability at a given point in time. 

• Deterministic Optimization (1100 MWh): Even if they proved effective, deterministic approaches in 
several cases overrelied on transferring energy as planned in advance. 

• Heuristic Approaches (1150 MWh): The myriad of heuristic approaches employed outperformed the 
deterministic approaches but still could not match the performance of MARL. 

 

4.4.2. Grid Stability Index 
• MARL (0.87): The MARL approach improved grid stability by maintaining supply and demand in a 

balanced state in real-time, thereby reducing variability and improving reliability. 
• Deterministic Optimization (0.84): These methods performed well but had difficulties responding to 

severe grid disturbances, which lowered stability somewhat. 
• Heuristic Approaches (0.85): Heuristic methods offered low to moderate grid stability but never came 

close to MARL's real-time learning and adaptation capabilities. 

 
4.4.3. Economic Savings (%) 
• MARL (22%): By concentrating on energy management by the price level, MARL has achieved the 

greatest cost benefits, which in turn have lowered operating costs for grid operators and EV owners. 
• Deterministic Optimization (19%): These approaches were inflexible, resulting in limited scope for cost 

reduction. 
• Heuristic Approaches (16%): Due to their characteristics, heuristic methods provided the most savings 

for dynamic pricing in this case. 
The comparison established that MARL transcends the other conventional methods in all key performance 

indicators, utilizing less energy and contributing to grid reliability and economic benefits. The research clearly 
showed that MARL's adaptability and learning capacity for real-time retention makes it an effective 
mechanism in the management of V2G systems in volatile environments. 

 

4.4.4 Scalability and Flexibility 
MARL’s proposed agent-based model did not suffer from any inefficiency and grid imbalance while 

increasing the number of EVs. On the contrary, existing methods were overwhelmed by the scale of interaction 
in decentralized structures. The versatility of MARL made it a viable approach for future V2G and smart grid 
applications. 
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4.5 Specific Findings Relevant to the Context of Thailand 
• Scenario 1: Grid demand patterns variations: Test the transferability of the MARL framework when 

faced with unanticipated changes in grid demand optimizing energy exchange more efficiently than 
deterministic and heuristic methods. 

 
Figure 12.  Training Rewards with Varying Grid Demand Patterns 

 
The training performance of a deep Q-network (DQN) agent in a V2G Smart Grid Environment is 

depicted in Figure 12 in scenarios of different demand levels. The demand levels presented were 
three distinct patterns - Stable, moderate, and high- which were supposed to evaluate the 
performance of the agent in a situation with different levels of electricity consumers and with varying 
time opportunities. Each line depicts the reward that has been collected over the course of multiple 
episodes of the training process and notes how the agent was able to enhance the grid management 
capabilities during the changing time of demand. 

 
Scenario 2: Adaptive pricing of electricity systems: Explain how MARL responds to dynamic 

changes in electricity prices to achieve economic efficiencies and ensure power system security. 
Figure 13 depicts the DQN agent’s training performance in a V2G environment in which the 

project factors the variation of electric energy prices. The study integrated three patterns of 
electricity prices—namely, Peak Hours, Off-Peak Hours, and Price Spikes—to assess the agent’s 
adjustment and learning efficiency. Each line shows the total reward score for all training episodes, 
showing how the agent reacts to various economic forces in the electricity market. 
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Figure 13 Training Rewards with Different Electricity Price Patterns 

 

Scenario 3: Enhanced integration of V2G infrastructure with more EVs taking part: Evaluating the 
performance of MARL systems in controlling expanding fleets of EVs, with the growing quantity of 
participating EVs ensuring efficiency in grid integration and utilization. 

 

 
Figure 14.  Performance of MARL-based V2G with an Increasing Number of EVs 
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Figure 14 demonstrates the training performance of a MARL framework in a V2G Smart Grid 
setting. The number of EVs engaged in the grid operations varied from 1 EV to 100 EVs. It can be 
observed from each line graph the cumulative rewards gained during the training episodes, showing 
how the MARL agents improved the energy usage and grid demand balance with an increase in the 
number of EVs. Such systematic evaluation enabled the understanding of MARL deployment to boost 
the energy efficiency grid robustness and economic advantage in the growing energy environment 
of Thailand. 

 
Figure15.  Illustration of Vehicle-to-Grid (V2G) Interactions 

 
Figure 15 shows how EVs supply their stored energy back to the grid as a form of energy flow 

within a V2G arrangement and also indicates how much energy is exchanged. The V2G system 
emphasizes the grid as the large blue square with coordinates (0, 0). Five EVs are shown at certain 
coordinates with green circles showing the amount of energy exchanged, ranging from 6kWh to 
10kWh with a factor of 20. The energy flow towards the grid from the EVs is shown using dashed 
black arrows which are marked with kWh figures representing the energy value. In the “Illustration 
of V2G Interactions”, the labeled axes (X Position and Y Position), the dashed grid background, and 
plot limits set from -1 to four on both axes rectify the application of the plot. In addition, a legend in 
the upper right corner is provided, allowing us to distinguish between grid and EVs as to their volume 
and the amount of energy exchanged, clearly describing the position and interaction between 
elements within the V2G system. 

 
4.4 Decision-Making Framework for Adaptive Multi-Agent Reinforcement Learning in V2G 
Optimization 

As it follows from the previous scenarios, regarding the V2G optimization, the decision-making 
framework had to be outlined, which would cope with the electrical grid’s self-sustaining demand, 
the differences in electricity prices, and the outbreak of EVs in the coming future. The framework 
allowed for adaptive decisions in the bright grid environment such that an insatiable exchange occurs 
between the EVs and the grid. 
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In this section, researchers presented the DMF designed to enhance V2G interactivity in a smart 
grid environment by using MARL adaptabilities. The framework was built to overcome the 
overwhelming complexity of V2G systems, especially the need to make real-time decisions that 
consider the grid's responsiveness, electricity cost, and the number of EVs that would be available. 

 
Figure 16.  Decision-Making Framework for Adaptive Multi-Agent Reinforcement Learning in 

V2G Optimization 

 
Figure 16 shows the modeled system in terms of the overall decision-making process within the 

MARL framework. It shows the system's evolution through the components required to ensure 
optimal energy exchange between EVs and the grid. The framework was organized as follows: 

Input Layer: This layer receives information in real-time from the grid and EVs regarding demand 
changes, electricity rate changes, the number of EVs participating in V2G, etc. Such data is the input 
to the MARL agents. 

Decision Layer: The MARL agents examine the input data and make decisions relative to the state 
as represented, e.g., the current grid demand or number of available EVs. The current state of the 
agents is evaluated, after which the agents make decisions regarding charging, discharging, or 
unmoving and the time of carrying out the decisions. This layer includes necessary and relevant 
measures in decision-making, including reward structures, action, and state representations. 

Learning and Adaptation: MARL agents learn the new grid conditions using reinforcement 
learning algorithms. This framework incorporates continuous explorations and policy changes to 
improve the agents' decision-making. 

Action Execution: Based on the decisions made through the MARL agents, EVs are directed to 
either feed energy supply into the grid or remove energy from the grid, with the aim of achieving the 
highest level of the grid and economic profitability. 

Feedback Loop: Rewards or penalties are imposed as feedback helps the agents make sense of 
their decisions. This feedback is, in return, used to influence subsequent decision-making processes. 

Evaluation Layer: This layer measures the performance of the MARL agents' decision-making 
structures by evaluating grid stability, economic savings, and total energy exchanged as key 
indicators. The evaluation results inform any further changes in the decision-making framework. 

 
5. Discussion 
5.1 Discussion of Results 

From the findings, it was evident that the MARL framework outperformed the conventional 
methods in V2G interaction optimization through the integration of a significant contribution over 
both deterministic optimization and heuristics approaches in the relevant criteria. The volume of 
total energy exchanged through Distributed Generation with EVs in MARL was 1250 MWh which was 
better than the one obtained through deterministic optimization which was 1100 MWh and heuristic 
methods, which recorded 1150 MWh these results are a measure of how effective energy flows 
between the EVs and the grid are managed [40][41][63][68][95]. In addition, MARL managed to 
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register an in-grid stability index of 0.87, which is higher than the index obtained from deterministic 
optimization of 0.84 and heuristic approaches of 0.85, which are lower than MARL, thus showing the 
potential of MARL in operating a stable and reliable grid [99]. 

Furthermore, MARL proved to be even more economically viable as it had 22% lower costs than 
the heuristic methods and 19% lower than the deterministic optimization [31][44][64][65][75][120], 
which illustrates the cost control capability of MARL even with the presence of price uncertainty. 
These economic benefits correspond with Sun et al. (2021) findings, which determined that with the 
assistance of MARL in the energy trading within V2G systems, EV owners' revenue improved by 20%, 
while the costs of the overall grid lowered by 15%. One more key benefit is MARL’s generalizability 
and applicability in environments with multiple grid demand patterns, complicated electricity pricing 
schemes, and the proliferation of electric vehicles. In the management of dynamic scenarios such as 
electric vehicles integration in the power system, Wang et al. [60] pointed out its adaptability, while 
Xie, Ajagekar, and You [122] verified that MARL helps to improve the resilience of the grid by 
consensus on EV’s charging and discharging for peak demand management drives the greatest effect. 
Additionally, in the area of V2G control, Hosny et al. [82] demonstrated the predominance of MARL 
over up-to-date means, offering up to a 10% decrease in energy loss, together with prompt 
interaction during grid distortion. Likely, Zafar et al. [123] also highlighted firstly the high 
performance of the method based on the MARL and secondly, the ability to retain it even with a 50% 
increase in EVs number. 

Finally, the environmental benefits of the MARL system, when applied to V2G optimization, are 
worth mentioning. This study showed that the application of MARL reduced carbon emissions by 25% 
compared to the traditional methods due to their efficiency in networking EV charging cycles and 
increasing renewable energy penetration into the grid [21] [31-32]. These findings all support the 
idea of the potential of the MARL concept as a game-changing asset in the V2G framework, as it 
would enhance energy management, grid stability, economic viability, scalability, and ecological 
footprint. 

 
5.2 Theoretical Discussion 

Research has shown that V2G could be made efficient through the use of Multi-Agent 
Reinforcement Learning (MARL) due to its decentralized learning framework to deal with dynamic 
and complex environments [21] [31-32]. Unlike deterministic models which employed a strict 
framework of heuristics and scheduling with no ability to learn, MARL was self-correcting and ever-
evolving in the face of feedback [124]. Such dynamic adaptability also helps MARL in the course of 
time to learn and enhance the policies more appropriate to the electric grid with a specific structure 
and energy price fluctuations. The review team’s evaluation of the V2G design functionalities 
expected the DQNs embedded within the MARL ecosystem to enable the function approximation of 
action-value functions techniques in relation to high-dimensional state spaces. This ability is 
indispensable in unison with the complex interactions of grid demand and levels of EV battery 
systems together with energy price variation [47] [119]. 

Also, incorporating target networks as well as experience replays made training more stable and 
learning more efficient, which contributed to the high robustness of the MARL, even in learning 
scenarios of diverse nature [48]. These studies have also pointed out that the decentralized structure 
of the MARL is very useful for large-scale V2G systems as it permits individual agents to make 
autonomous decisions [46]. This independence greatly cuts down the computation effort based on 
centralized optimizations, thus increasing the scalability and applicability of MARL in realistic 
complexes [12][26][32][38][60][65][91]. 
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The other significant theoretical benefit of MARL was its ability to use temporal abstraction to 
extend its planning horizon. This is made possible by using hierarchical reinforcement learning which 
enables the system to obtain strategies at various time scales [87]. In this way, MARL would be able 
to predict changes in the demand and price of energy in the future, thus managing energy in a more 
effective and timely manner. The use of Proximal Policy Optimization (PPO) within the frameworks 
of MARL also augmented its capacity to optimally explore and exploit strategies with agents not only 
examining new strategies but also developing existing ones with regard to what has worked [125]. 
Lastly, the capability of MARL to simultaneously address issues such as cost reduction, energy, and 
grid stability also exhibited its effectiveness in enhancing V2G interactions [63][81]. This multi-
objective optimization was suitable for the increasingly sophisticated nature of tending smart grids 
where there were many conflicting objectives. 

 
5.3 Implications 

The results had a number of consequences concerning V2G systems as well as control of smart 
grids. The high effectiveness of MARL in optimizing V2G engagements clearly indicates that such 
systems ought to be introduced in almost all interactions with the power grid, thereby improving the 
existing regulatory approaches and enabling enhanced flexibility and better economic/operational 
results in grid management [84]. But more than theoretical versatility, MARL's ability to take into 
consideration the shifts in demand and price also highlighted its suitability for integration into smart 
grid systems. It facilitated more effective energy management, enhanced stability, and lower costs, 
increasing the energy infrastructure's resilience and sustainability [90]. Furthermore, the ability of 
MARL to be used at scale in managing large fleets of EVs also pointed to the potential for widespread 
use of the technology while enabling the growth of electric mobility and ensuring the overall stability 
of the grid as EVs proliferate [126]. 

Besides, the introduction of MARL in V2G systems enabled a transition from the centralized 
control model toward the decentralized autonomous decision model, where individual EVs or other 
grid components have the ability to make real-time energy management decisions at the local level. 
This might eliminate some of the centralized control structures, improve the time response, and 
allow more granular optimization levels [47][102]. Improved efficiency in real-time decision-making 
would also be important for peak load management as it helps reduce the strain on the grid systems 
during high-demand periods [81][124]. 

There are also important environmental implications for MARL since it promotes the integration 
of renewable sources into V2G systems. Since charging and discharging rates can be modulated 
according to available generation from renewable sources, there would be more harnessing of green 
energy, leading to more usage of green energy sources and a reduction in the use of fossil fuels, 
which would, in turn, lead to a decrease in carbon emissions [122-123]. Moreover, the economic 
advantages achieved from trying MARL-based systems, such as low operational costs and effective 
energy trading schemes, make it possible for V2G systems to be economically efficient, which would 
hasten the rate of uptake of electric vehicles and smart grid systems technologies [46][124]. 

At last, MARL scalability in V2G systems presented significant prospects for developing future 
smart cities. Electric vehicles become more prevalent as urban centers expand, making efficient and 
flexible energy management systems imperative. The capacity of MARL to cope with a large 
population of EVs and an unstable grid indicates that it would be one of the basic technologies of the 
energy systems in the cities of the future, enabling seamless integration of electric vehicles with the 
grid and enhancing sustainable urban development [125]. 
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5.4 Limitations & Future Study 
The simulated number of electric vehicles seems to work well in MARL. Still, real-world situations 

are likely to have more complex and numerous fleets. Hence, future work is warranted to enable the 
scaling of MARL in larger systems and to offer solutions for the problems of computable resources 
and system integration [127]. Besides, while the scenarios were based on historical data, routine 
dynamics and/or unexpected events involving MARL approaches should be evaluated in future 
studies [128]. This work applied electricity prices and grid requirements for the particular scenarios; 
thus, further research is needed to assess the extent to which MARL can apply to and operate 
effectively in other areas and grid conditions [86]. Also, it is reasonable to extend the search for 
complex MARL algorithms and hybrid approaches, where MARL is combined with other machine 
learning methods, to broaden the optimization potential and eliminate the existing constraints [129]. 
To sum up, MARL has much potential in maximizing V2G interactions and managing smart grids. 
However, the practicalities of real-world applications require further attention and research 
[47][102]. 

Additional work should also address the issue of communication among several agents in large-
scale V2G systems where autonomous decision-making might cause agents to undertake divergent 
actions. Developing clear communication channels and coordination mechanisms could help 
eliminate this problem, making operations and energy exchanges more seamless [125]. Future 
research can benefit from utilizing more complex decision-making frameworks that include weather 
trends, predictions of renewable energy, and physical and economic constraints [125]. Furthermore, 
extending the MARL paradigm to incorporate region-specific factors, including the policy 
environment and the characteristics of incentives, may enhance its potential utility [21]. 

Finally, the investigation in this study did not provide details on the energy storage capabilities 
and the degradation of EV batteries. The ability of MARL to trade off optimal energy exchange and 
battery degradation will be critical for the viability of V2G deployment in the future 
[38][41][49][51][70][81][102]. Given the changes in EV battery chemistry, developments in the future 
should investigate how these advancements affect the performance of MARL and adjust the learning 
curves accordingly [87]. 

 
6. Conclusion 

The work applied Multi-Agent Reinforcement Learning (MARL) to drive the optimization of V2G 
interactions while boosting energy efficiency and stability of the power grid in Thailand. The results 
showed that MARL successfully coped with the variability in energy demand and market prices, which 
amplified the overall energy exchange compared to conventional ways [100-103]. In particular, the 
MARL is encouraging as it is changeable and permits energy flows during real-time according to grid 
situations and demand while also avoiding pumping up-on peak load problems [85][87]. Hence, MARL 
was predicted to achieve economic savings through enhanced energy cost management and an 
overall reduction in fossil and other non-renewable sources, therefore lessening environmental 
degradation [125]. In addition, some of the grid stability evaluation metrics, energy exchange 
efficiency, and grid stability index incorporate energy utilization across EV fleets and manage the grid 
within limits, which appears possible with MARL [60][65][91][129]. It, in turn, meant that MARL could 
be fundamental in formulating robust, efficient energy management systems that meet Thailand's 
targets on smart grids. 

This research also provided some notable contributions to smart grid management and V2G 
interactions. First, it also showcased the feasibility and efficiency of MARL in the improvement of V2G 
interactions, providing an alternative and fresh perspective for urban energy management 
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[44][49][50][110][129]. This revealed the possibilities of MARL and emphasized its practical adoption 
in the real world [21] [31-32]. In addition, the author suggested how MARL-based developments 
could be embedded within Thailand's energy policies and stressed the grid's sustainability and 
resilience [130]. These insights were of great importance to the policymakers looking for ways to 
improve the efficiency and stability of the energy grid. In addition, the study further developed MARL 
methods for complex dynamic systems and offered new methods and frameworks that could be 
tailored and developed in future research [47][119]. This foundational work provided a basis for 
further research on adaptive energy management and paved the way for the adoption of new 
technology for great advancement in the field. 

The research has its limitations, such as scaling issues, as, in general, it is not straightforward to 
scale MARL solutions to larger fleets of EVs in a more diverse grid context [124]. The computational 
resources needed for real-time decision-making in larger systems and how the MARL algorithms will 
remain efficient and effective in such conditions are important [102]. Also, integration and data 
collection presented obstacles when making decisions based on real-time relevance, as a deep 
dependency on the data was needed. Unreliable or partial specificity of information may reduce 
MARL systems’ efficiency. Thus, studies on data management and integration are needed [97]. 

Future studies should be focused on the development of strong MARL frameworks that can 
handle complex EV fleet dynamics as well as varying grid conditions [78] [80] [110] [122]. This 
includes developing algorithms so that system performance is not compromised while responding to 
changing operational conditions and also as the system becomes more complex. Nevertheless, 
another option for future research is the study of MARL for adaptation and control of decentralized 
systems for enhanced integration of renewable energy sources [87]. This may be in the form of 
enhancing the efficiency of renewable energy use in V2G systems to minimize the need to use non-
renewable energy sources and thus be more environmentally friendly. Lastly, it is very important to 
partner with the relevant stakeholders to design policies that will help encourage V2G integration 
and improve smart grid resilience [74][90]. This includes offices of government authorities, energy 
suppliers, and representatives of industry stakeholders to facilitate the development and effective 
implementation of V2G solutions based on MARL. 

The insights of this research had important effects on the energy management policies in 
Thailand. It has been suggested that there are policies that encourage V2G uptake, taking into 
account both the economic gains as well as the environmental consequences [1][5][95][97][99-102]. 
Such policies may include subsidies and tax deductions for EV owners willing to participate in the V2G 
programs and even funds allocated to infrastructure development. The strategies of the study 
included modernizing Thailand's functional outline for the grid infrastructure to support V2G 
technologies while incorporating MARL-based solutions, including investing in smart grid 
technologies and upgrading the existing grid systems to accommodate bidirectional energy transfers 
[84]. In addition, this study endorsed the projects for carbon emissions reductions and other energy-
sustainable targets achieved by promoting renewable energy sources utilization and the adoption of 
V2G systems in order to enhance the grid and decrease the stress on peak demand [86]. 

Finally, this study provided a new perspective on the possibilities of MARL V2G systems in energy 
management across Thailand and explored the boundaries of its effective management practices. 
The study demonstrated policy implications aimed at smart grid technology change by demonstrating 
the cost, environmental, and operational effectiveness of MARL V2G systems [46][124][130]. 
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