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Unmanned Aerial Vehicles (UAVs) have been extensively utilised in the domain 

of Supply Chain Management. Nonetheless, its implementation in warehouse 

management is nascent, and the impact of UAV adoption requires thorough 

investigation. The effective execution of this novel technology relies on several 

significant elements that necessitate methodical methods and methodologies 

for a more accurate analysis. This study seeks to determine essential 

parameters for the implementation of UAVs in warehouse management. The 

proposed method amalgamates the Delphi technique, best-worst method, 

decision-making trial and evaluation laboratory, and analytic network process 

to enhance the shortcomings of conventional and advanced multi-criteria 

decision-making approaches. Two primary components, Operation and 

Technology, along with 10 subordinate factors, were identified. The method 

was utilised to identify the most significant factor influencing UAV adoption in 

warehouse management, establishing a basis for future research and 

practitioners to focus on these issues.

 
1. Introduction 

In contemporary business and supply chain management, the warehouse plays a crucial role at 
both the organizational and supply chain levels, primarily overseeing the receipt, picking, storage, 
and dispatch of inventory. Given the increasing competition within the business landscape, many 
organisations are focusing on enhancing and refining warehouse management processes to 
strengthen their competitive advantage and ensure long-term sustainability. One such innovative 
technology, the UAV, or drone, has been recognised for its potential to significantly improve the 
effectiveness and efficiency of logistics and warehouse operations [33]. 

UAVs have gained widespread application in both academic research and practical settings. As 
noted by Cho et al. [5], UAVs can support operational tasks and effectively manage large 
warehouses. The integration of UAVs into warehouse operations has been shown to significantly 
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enhance the speed of stock counting, with UAVs completing tasks up to 100 times faster than 
traditional methods. Similarly, inventory tracking via drones can process over 1,500 labels per hour, 
which is 3.75 times more efficient than manual counting using handheld RFID technology [22]. While 
the adoption of UAVs in warehouse management offers clear advantages for organisations, their 
successful implementation in real-world settings requires further improvement. Achieving optimal 
performance from UAVs hinges on several critical factors (CFs) [23], making the identification and 
understanding of these factors essential for successful integration into warehouse operations. 

Most existing studies have primarily focused on the development and potential improvements 
of UAV implementations in warehouse operations [5; 33]. However, these studies often lack 
specificity and prioritisation of the CFs that directly influence the success of new technology 
adoption within organisations [1]. Given the gaps in previous research, it is crucial to identify the 
CFs associated with UAV adoption in warehouse management. Accordingly, this study seeks to 
identify these CFs and examine their practical benefits for both academic and commercial sectors. 
We have systematically prioritised the identified CFs to assist researchers and practitioners in 
effectively selecting and managing these factors within the constraints of limited resources and 
organisational budgets. 

To achieve the objectives outlined, this study introduces a novel hybrid decision-making method 
tailored to the specific needs of the research. The proposed method integrates four decision-making 
approaches: Delphi, the Best-Worst Method, Decision-Making Trial and Evaluation Laboratory [31], 
and the ANP. Experts and scholars in relevant fields contributed to the identification and 
prioritisation of CFs. The structure of the paper is as follows: Section 2 reviews the literature on CFs 
related to UAV adoption in warehouse management and hybrid decision-making methods; Section 
3 outlines the methodology of the proposed model; Section 4 demonstrates the feasibility of the 
method through a case study; and Section 5 concludes with a summary of the key factors and 
recommendations for future research. 

 
2. Literature Review  

This section provides a comprehensive overview of the background, past developments, and 
opportunities for improvement by reviewing the literature on the CFs influencing UAV adoption in 
warehouse operations, as well as the hybrid decision-making methods used to identify and prioritise 
these factors. 

2.1 The CFs of UAV Adoption in Warehouse Management 
Malang et al. [18] highlighted the lack of studies specifically addressing the CFs of UAV adoption 

in warehouse management. Through an extensive review of 104 relevant articles, they identified 
and classified the CFs into five main categories: technology, operations, organization, legislation and 
standards, and society and mentality, as illustrated in Figure 1. The first major CF, technology, 
encompasses three sub-factors: hardware, software, and integrated systems and others. In the 
context of warehouse tasks, one of the key challenges is that drones are unable to precisely navigate 
and localise their positions indoors using global positioning systems (GPS) and global navigation 
satellite systems (GNSS), which are typically relied upon for outdoor navigation. 

To address the indoor navigation challenge, several past studies have focused on the 
development and improvement of UAV hardware components. Among the most recommended 
improvements are optical and camera-based sensors, as well as light detection and ranging (LiDAR) 
technology. Additionally, two hardware elements, namely warehouse hardware and 
communication networks, have been frequently suggested for enhancement. Regarding the 
software sub-factor, recommendations have been made to address indoor navigation issues and 
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optimise organisational resources. Three types of software algorithms have been proposed: (1) 
scheduling and path planning algorithms, (2) localisation and navigation algorithms, and (3) 
warehouse management algorithms, such as barcode detection and object recognition. These 
advancements aim to improve UAV efficiency and effectiveness in warehouse environments. 

The final sub-factor of technology, integrated systems, refers to the collaboration of various 
systems and technologies, such as UAVs and RFID [11], aerial vehicles (AVs) and automated guided 
vehicles (AGVs) [28], or UAVs and block chain [3]. The integration of these systems is recommended 
to address the complex operational requirements of both warehouse management and drone 
missions. The second major critical factor, operations, comprises seven sub-factors: (1) area or 
distance of operation, (2) mission time, (3) costs, (4) drone operation, (5) warehouse operations, (6) 
environment, and (7) item or inventory. These factors are crucial for optimizing UAV performance 
in warehouse settings and ensuring efficient operations. Among the various sub-factors, the area or 
distance of operation is the most frequently highlighted within the operational category. This factor 
significantly influences the success of UAV adoption in warehouses, impacting aspects such as the 
number of UAVs in operation, drone speed, delivery time, and battery size.  

Mission time is another critical determinant of UAV utilization success. Several studies have 
proposed approaches to reduce mission time, including expanding the drone fleet, increasing UAV 
speed, reducing energy consumption, and optimizing UAV paths and schedules.  The third sub-
factor, operational costs, is a fundamental consideration for businesses and warehouses. While 
many studies have identified the overall costs of operations as a critical factor, few have specifically 
addressed the types of costs involved, such as UAV hardware, inventory, and maintenance 
expenses. These detailed cost considerations are essential for the effective implementation of UAVs 
in warehouse operations. 

The operation of drones is one of the most frequently mentioned sub-factors within the 
operational category, encompassing aspects such as the number of UAVs in operation, drone 
control, and breakdowns. In contrast, the warehouse operational factor addresses the compatibility 
between warehouses and UAVs, the types of warehouses and their characteristics, and the 
warehouse processes involved.  Environmental conditions, such as light, noise, humidity, and 
climate, are identified as direct influences on UAV performance. These environmental factors can 
significantly affect the operational efficiency and success of UAV adoption in warehouse settings. 
Inventory items, the final sub-factor of operations, focus on two primary aspects: the number of 
items and their weight and size. These factors are crucial for determining the feasibility and 
effectiveness of UAVs in managing warehouse inventories.  

Organizational factors also play a role in UAV adoption, primarily through the organization’s 
general processes. Past studies have highlighted two key aspects: firms' budgets and organizational 
maintenance systems. The fourth major factor, legislation and standards, is relatively under-
explored in the literature. However, there is a growing recognition of the need for regulations and 
standards governing UAV operations in indoor warehouses and private locations. Such legislation is 
essential for enhancing user confidence and ensuring industry acceptance of UAV technology. 
Finally, the societal and mental factor focuses on the impact of UAV adoption on the perceptions 
and mental attitudes of stakeholders and the broader society. This factor emphasizes the 
importance of addressing the legal and psychological dimensions to improve public trust and ensure 
the protection of all parties involved in UAV operations. 
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Fig. 1. Lists of CFs and Sub-CFs of UAV Adoption in Warehouse Management 

2.2 The Hybrid Decision Making Method for Selecting and Prioritizing UAV Factors 
The adoption of multi-criteria decision-making (MCDM) methods for selecting or prioritizing 

factors has been extensively studied across various fields. However, the prioritization of UAV-related 
factors, specifically in warehouse management, remains an underexplored topic. To date, only four 
studies [7; 8; 12]have concentrated on UAV-related factors, yet none of these studies have 
addressed the key success factors for UAV adoption in warehouse management. Among these, two 
studies employed MCDM methods: (1) AHP and TOPSIS [7], and (2) fuzzy AHP [10] to priorities UAV 
factors in military and defense operations. One study examined factors related to civilian-use UAVs 
using an adapted AHP method. However, AHP has been criticized for its fundamental limitation, 
notably its failure to account for the relationships between sub-criteria [29]. 

To address the limitations of AHP, the ANP was developed by Thomas Saaty [30]. The ANP 
method has been widely applied across various research fields [2; 16; 34]. However, it remains 
infrequently used for prioritizing UAV factors, despite the clear interdependencies between various 
drone operational factors. Given these interrelations, the adoption of ANP appears necessary for 
this area of study [12]. Notably, only one study by Kamat et al. [12] applied ANP in combination with 
another MCDM method to prioritize factors in humanitarian logistics. To date, there has been no 
scientific research focusing on the prioritization of factors influencing the adoption of UAVs in 
warehouse management. 

The successful implementation of UAVs in warehouse operations is closely tied to the 
prioritization of factors influencing their adoption. Many past studies applying AHP overlooked the 
key characteristics of UAVs. The results derived from AHP should focus on identifying the correct 
priorities for UAV-related factors. One study integrated MCDM to address this issue; however, 
MCDM still presents two main limitations: (1) an unsystematic process for the initial selection of 
factors, and (2) the inclusion of too many factors in the prioritization process. The first limitation 
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leads to inconsistent decision outcomes, particularly when consensus among the expert group is 
difficult to achieve. Several studies have sought to resolve this issue by incorporating additional 
decision-making methods, such as the Delphi technique. The Delphi method has been integrated 
into MCDM processes to support the systematic selection of attributes considered relevant to the 
problem at hand [14; 15; 19]. This approach enhances the decision process by ensuring a more 
systematic approach to initial screening and by mitigating biases that may arise from individual 
experts' opinions. 

The second flaw in MCDM methods, involving excessive time and resource consumption when 
dealing with numerous factors, has been addressed through the application of the Best-Worst 
Method (BWM). BWM helps filter a large number of criteria or attributes to a manageable level. 
However, the integration of this method in UAV studies remains limited. Only two studies have 
applied this integrated approach to weight UAV-related factors, but these studies primarily yielded 
biased results, largely due to individual decisions. Some efforts have been made to combine BWM 
with other decision-making methods, such as the Delphi technique. While many studies have 
applied Delphi and BWM separately, their integration is rare in recent research. Moreover, there is 
a lack of integrated solutions for addressing the two main issues identified in the adapted MCDM 
process. A related approach integrated DEMATEL, BWM, and ANP Liu et al. [17], offering a solution 
for some fundamental decision-making challenges. However, this approach lacks a systematic group 
decision-making process for the initial selection of criteria and consumes significant time in 
identifying relationships among criteria after they have been eliminated.  

To address these issues and reduce bias from individual experts, this study proposes an 
integrated approach that combines the Delphi technique with BWM, rearranging the processes to 
use BWM before DEMATEL and ANP. This approach aims to improve the decision-making process 
by ensuring more systematic group input and optimizing time and resource use in the prioritization 
of UAV adoption factors. The details and procedures of the proposed method are presented in the 
following section. 

 
3. Materials and Methods  

The formulation of the research methodology is predicated on the enhancement of the 
fundamental constraints of previous methodologies. This research adheres to the integrated 
methodology proposed by [17]. We enhance the prioritization process and incorporate the Delphi 
approach. The comprehensive procedures of the newly proposed approach are depicted in Figure 
2. Figure 2 illustrates that the suggested hybrid decision-making process amalgamates four 
approaches: the Delphi technique, BWM, DEMATEL, and ANP. The details of four principal steps are 
elucidated as follows. 

3.1 Initial Identification of CFs of UAV Adoption in Warehouse Management using Delphi Technique 
The identification of CFs arises from the determinations of multiple field specialists through the 

Delphi method, which can be categorized into four stages. 

3.1.1 Identify a Problem and Expert in the Field 
This stage seeks to elucidate the issue being examined. A well-defined research topic and 

objectives are utilized to ascertain the criteria or credentials of specialists. The number of specialists 
in the survey panel is ten or more. 
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Fig.2. The Overall Processes of the Proposed Method 

3.1.2 The First-Round Inquiry 
The first-round inquiry is conducted through an open-ended questionnaire designed to provide 

broad questions to experts while ensuring that all relevant issues are covered. The results obtained 
from this initial round must be carefully analyzed, summarized, and used to refine and develop the 
second-round questionnaire. This iterative process ensures that the criteria and factors considered 
are relevant, comprehensive, and aligned with the objectives of the study, allowing for more 
focused and specific input in subsequent rounds of expert consultation. 

3.1.3 The Second-Round Inquiry 
The second-round enquiry is conducted via a questionnaire developed based on the results from 

the preceding enquiry. Respondents are asked to evaluate the significance of the CFs using a five-
point Likert scale. The responses are then analyzed to calculate the median and interquartile range 
(IR) values. For a CF to be selected for further analysis, its median must be equal to or greater than 
4.50, and its IR value must be equal to or less than 1.00 [24; 26]. 

3.1.4 The Third-Round Inquiry 
The third-round and subsequent round enquiries are conducted if the IR results remain 

unacceptable. These rounds follow a process similar to the second round, with the aim of improving 
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the consistency of the experts' responses or achieving acceptable IR values. The enquiry process will 
continue until all IR values meet the required criteria. 

3.1.5 Conclusion of Delphi Results 
The consistent results are utilized to identify the initial CFs. These extracted factors are then 

prioritized using other methods in the subsequent stages of the process. 

3.2 Filtering CFs using BWM 

3.2.1 Identifying the Best and Worst CFs 
The BWM is employed to filter the CFs identified in the Delphi approach. In this step, experts 

with extensive experience in UAV adoption and/or warehouse management are asked to select the 
best and worst CFs from the first major stage. 

3.2.2 Comparing the Worst CF with all Other Factors 
This phase evaluates and contrasts the most unfavorable CF against all other CFs utilizing the 1-

to-9 rating system. “One” indicates that the relevance of the compared component is equivalent to 
that of the least significant element, while “nine” denotes that the compared factor is considerably 
more significant than the least significant factor. 

3.2.3 Comparing the Best CF with all Other Factors 
In this step, the best CF is compared with all other CFs. A rating of "one" is assigned when the 

compared factor is considered equally important to the best factor, while a rating of "nine" signifies 
that the best factor is deemed significantly more important than the compared factor. 

3.2.4 Calculating Weights of all CFs 
Calculating weights of all CFs using the linear model, as shown in Eq. (1), 

𝑚𝑖𝑛 𝜉 

𝑠. 𝑡 |
𝑤𝐵

𝑤𝑗
− 𝑎𝐵𝑗

| <  𝜉; 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑗 

|
𝑤𝑗

𝑤𝑊
− 𝑎𝑗𝑊 < 𝜉; 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑗| 

∑𝑤𝑗

𝑗

= 1 

𝑤𝑗 > 0; 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑗, 

(1) 

WB denotes the weight of significance of the optimal component, while WW represents the 
weight of significance of the suboptimal element. The final weights are derived from the average 
values of the factors' weights obtained from several responses. Weights of significance are utilized 
to prioritize CFs. Consequently, the initial ten rankings of components are chosen for subsequent 
analysis. 

3.3 Identifying Relationships between Factors with DEMATEL Method 
The chosen CFs from the preceding stage are evaluated for their interconnections. This method 

is essential as the connections among elements are a fundamental attribute of strategic and tactical 
management. The interconnections among CFs directly influence the significance, weight, and 
priorities of each component. A component that significantly influences others, whether positively 
or negatively, will possess greater importance than one that does not impact others. This study 
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employs DEMATEL as MCDM can ascertain both associations and their strengths [32]. DEMATEL is 
the appropriate strategy for examining relationships and independence among a limited set of 
components [9]. It is utilized to ascertain relationships amongst CFs and their related magnitudes. 
A senior manager from the warehouse, possessing expertise in drone implementation, is solicited 
for their insights. The subsequent sub-steps are performed to analyses and acquire data in 
accordance with the DEMATEL protocol. 

3.3.1 Identifying Relationships and Influences between Factors by Expert 
The identifying technique adhered to the comparative scales outlined in a systematic 

questionnaire. In the case of several involved experts, the obtained comparison results from each 
expert are applied for constructing a 𝑛 × 𝑛 matrix (𝑛 is a number of criteria of study), which can be 

presented in the form of matrix 𝑋𝑘 = [𝑥𝑖𝑗
𝑘 ]

𝑛 𝑥 𝑛
 , where 𝑘 is an expert with 1 ≤ 𝑘 ≤ 𝐻, and 𝐻 is a 

number of experts. 

3.3.2 Constructing the Initial Direct-Relation Matrix and the Normalized Initial Direct-Relation Matrix 
The results generated from the preceding phase are utilized to compute an initial direct-relation 

matrix or an average matrix (matrix A), in accordance with Eq. (2). 
 

𝐴 =  
1

𝐻
∑ [𝑥𝑖𝑗

𝑘 ]
𝑛 𝑥 𝑛

𝐻
𝑘=1                     

 (2) 
 
The highest value chosen from the aggregated values of each row of matrix A (s) is utilized to 

normalize matrix A. The procedure for building the normalized initial direct-relation matrix (matrix 
D) must be executed, since it can be computed using Eq.(3). 

𝐷 =  
𝐴

𝑆
                      

 (3) 
Where 𝑠 = max (max

1≤𝑖≤𝑛
∑ 𝑎𝑖𝑗

𝑛
𝑗=1 , max

1≤𝑗≤𝑛
∑ 𝑎𝑖𝑗

𝑛
𝑗=1 ). 

3.3.3 Constructing the Total Relation Matrix 
We utilized the normalized initial direct-relation matrix from the preceding stage to construct 

the total relation matrix. The (T) may be expressed in Eq. (4). 
𝑇 =  𝐷 + 𝐷2 + 𝐷3 + 𝐷𝑛 = 𝐷(1 − 𝐷)−1                 

 (4) 
 
Where 𝐼 is identity matrix, the total relation matrix can be used for calculating the dispatcher 

and receiver groups. The identifications of these clusters start from computing the summation of 
values in each column (𝑐𝑗) and each row (𝑟𝑖) of matrix 𝑇. When j=i, the sum of (𝑟𝑖 + 𝑐𝑖) represents the 

total effects of caused and received by criterion 𝑖. (𝑟𝑖 + 𝑐𝑖) represents the degree of importance that 
criterion 𝑖 contributes to the system, whereas (𝑟𝑖  −  𝑐𝑖 ) shows the net effect that criterion 𝑖 
contributes to the system. When the value of (𝑟𝑖 − 𝑐𝑖)  is positive, it means the criterion 𝑖 is a net 
dispatcher. However, when the value of (𝑟𝑖 − 𝑐𝑖) is negative, the criterion 𝑖 is a net receiver [29]. 

3.3.4 Constructing the Network Relationship Map (NRM) between Criteria 
A threshold value is established by calculating the average values of all members in the total 

relation matrix. The results are then used to construct a causal diagram, which is divided into two 
axes. These axes represent the various relationships between criteria, with one axis reflecting the 
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causes and the other reflecting the effects, allowing for a clearer understanding of the interactions 
within the system. Such as  (1) a horizontal axis indicating (𝑟𝑖 + 𝑐𝑗), and (2) a vertical axis indicating 

(𝑟𝑖 − 𝑐𝑗). However, only criteria or factors with influence levels greater than the threshold value are 

selected and displayed in the NRM.  

3.3.5 Constructing the Normalized Total Relation Matrix 
This step identifies the key factor weights before integrating with the ANP, offering a more 

accurate representation of real-life situations compared to traditional MCDM methods. The 
normalized total relation matrix is calculated using the previous section's matrix and a threshold 
value. Values below the threshold are reset to zero. Each row of the resulting matrix is normalized 
by the total of its row. The outcomes are then used to determine the weights and priorities of factors 
through integration with the ANP. 

3.4 Indicating the Weights of Factors and their Priorities through the ANP Method 
The main limitation of ANP using reciprocal values is its inability to accurately determine cluster 

weights in real-world situations [30]. To address this, some DEMATEL outputs are integrated with 
the ANP. The details of the adapted ANP are outlined below. 

3.4.1 The Construction of Unweighted Super Matrix and Weighted Super Matrix 
The unweighted and weighted super matrices are derived using the traditional ANP method 

through pairwise comparisons, with further details provided in [29]. The general form of the 
unweighted super matrix is shown in Eq. (5). 

 

𝑊 =

𝑒11

𝑒12

𝑐1 ⋮
𝑒1𝑚1

𝑒21
𝑒22

𝑐2 ⋮
𝑒2𝑚2

⋮ ⋮
𝑒𝑛1

𝑒𝑛2

𝑐𝑚 ⋮
𝑒𝑛𝑚𝑛

[
 
 
 
 
 
 
𝑤11 𝑤12 … 𝑤1𝑛

𝑤21 𝑤22 … 𝑤2𝑛

  …  
  …  
⋮ ⋮ … ⋮
  …  

𝑤𝑛1 𝑤𝑛2 … 𝑤𝑛𝑚]
 
 
 
 
 
 

                  

 (5) 
Where 𝑐𝑚 denotes the 𝑚th major factor, 𝑒𝑛𝑚 is the 𝑚th sub-factor in the 𝑛th major factor. 𝑊𝑖𝑗 

is the principal eigenvector of the influence of the sub-factors in the jth major factor compared to 
the ith major factor. To obtain the weighted super matrix, the normalized total relation matrix from 
the DEMATEL process is multiplied by the unweighted super matrix of the ANP. 

3.4.2 The Calculation of Limit Super Matrix and the Identification of Weights of Factors 
The limit super matrix is obtained by raising the weighted super matrix to limiting powers, 

following the traditional ANP approach. Eventually, the values in each column converge, 
representing the importance weights of the corresponding factors. These values are then used to 
priorities the factors and inform the final analysis. 
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4. Results and Discussion 
The research procedure has been applied to a real case of selecting and prioritizing CFs for 

utilizing UAVs in warehouse management. This section outlines the implementation details to 
illustrate the proposed methodology. 

4.1 Delphi-Based Technique for Identifying the Initial Set of CFs 
In the first stage of the Delphi technique, ten experienced experts provided their opinions on 

the CFs for UAV adoption in warehouse management. The qualifications of the experts are shown 
in Table 1. Most experts had over five years of experience, with 40% having direct experience with 
UAV adoption in warehouse activities or related projects, 30% being UAV experts in other fields, and 
30% possessing knowledge of UAV systems without direct experience. In the first-round enquiry, 
experts were asked to identify CFs using an open-ended questionnaire. These CFs were summarised 
into five major CFs (MCFs) and 17 sub-factors (SCFs), which were then used in a second-round 
questionnaire. Experts rated the significance of the CFs on a 1-to-10 scale, following the Delphi 
approach. 

Table 1 
Knowledge and Experience of Experts Participating in the Study 

Expert Management Level 
Experience /  Knowledge 
Warehouse  
Management 

Drone Application in Warehouse 
Management 

Expert 1 Top More than Ten Years Direct Experience 
 Expert 2 Top Between Five to Ten Years 

Expert 3 Middle Between Five to Ten Years 
Expert 4 Middle Between Five to Ten Years 
Expert 5 Middle Between Five to Ten Years Indirect Experience 
Expert 6 Middle Between Five to Ten Years 
Expert 7 Middle Between Five to Ten Years 
Expert 8 Middle Between Five to Ten Years No Experience, but Knowledgeable 

in UAV Operations or Systems Expert 9 First-Line Between Five to Ten Years 
Expert 10 First-Line Lower Than Three Years 

 
Most expert responses were congruent, though some inconsistencies were noted in a few CFs. 

Experts were asked to reassess their ratings in the third-round enquiry, using additional data (e.g., 
median values, first and third quartile values). In the end, all responses aligned, meeting the 
acceptable level (IR<1.00). The selected CFs, four major factors, and 13 sub-factors (Median>4.5) 
with significant results are summarised in Table 2. 

Table 2 
CFs of UAV Adoption in Warehouse Management Obtained from Delphi Technique 

CFs Acronym 
Type of CFs* 

Median IR 
MF SF 

Technology MCF1   4.5 1 
Hardware SCF1   4.5 1 
Software SCF2   5 0.75 
Integrated Systems SCF3   5 0 
Compatibility and Completeness SCF4   5 0.75 
User Friendly SCF5   5 1 
Operation MCF2   5 0.75 
Area or Distance of Operation SCF6   5 0 
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Table 2 
CFs of UAV Adoption in Warehouse Management Obtained from Delphi Technique(cont…) 

CFs Acronym 
Type of CFs* 
MF            SF Median IR 

Mission Time SCF7   4 1 
Costs SCF8   5 1 
Drone Operation SCF9   5 1 
Warehouse SCF10   4.5 1 
Environment SCF11   4 1 
Items and Inventories SCF12   4.5 1 
Organization MCF3   4.5 1 
Budgets SCF13   5 1 
Maintenance System SCF14   4.5 1 
Legislation and Standards MCF4   4.5 1 
Standard Systems SCF15   5 1 
Laws and Regulations SCF16   4 0.75 
Society and Mental MCF5   4 1 
Mental of Stakeholders SCF17   4 0.75 

4.2 BWM-Based Technique for Filtering Related CFs 
In this stage, experts continued to screen the CFs from the previous step. They were asked to 

identify the best and worst factors before comparing them to all others. Comparisons were made 
at the sub-factor level, as the filtered SCFs would directly influence the selection at the major factor 
level, as shown in Table 3. Moreover, the results were used to calculate the weights of factors based 
on each expert’s opinion.  

Table 3 
Comparisons between Best/Worst Sub-Factors 

Expert  
no. 

Best (B) and  
Worst (W)  
Sub-Factors 

B/W Sub-Factors Compared to Other Sub-CFs. 
(No. of Sub-CF Shown Below) 

1 2 3 4 5 6 8 9 10 12 13 14 15 

1 B SCF2 9 1 8 8 8 8 7 8 8 8 7 8 8 
W SCF13 3 2 2 3 2 2 2 2 3 2 1 2 2 

2 B SCF3 1 1 1 1 3 2 2 2 3 4 4 3 5 
W SCF15 7 7 8 7 7 6 5 6 6 6 5 7 1 

3 B SCF5 3 6 4 4 1 6 7 7 7 8 6 6 7 
W SCF14 4 4 3 4 5 5 4 5 4 5 3 1 3 

4 B SCF10 5 6 5 5 5 3 2 3 1 3 6 7 7 
W SCF15 6 7 6 6 5 8 8 7 9 5 3 3 1 

5 B SCF1 1 3 4 3 5 7 8 7 8 7 8 9 7 
W SCF14 8 7 6 7 5 3 2 3 2 3 2 1 4 

6 B SCF5 4 5 8 6 1 6 7 6 8 7 8 8 9 
W SCF3 5 5 1 5 4 6 6 5 5 6 5 4 6 

7 B SCF2 4 1 5 5 5 4 8 6 7 7 6 4 6 
W SCF13 6 9 7 7 7 6 3 5 5 5 1 6 4 

8 B SCF1 1 5 6 3 5 5 5 8 6 7 7 7 4 
W SCF15 6 7 6 8 8 5 6 7 8 8 8 7 1 

9 B SCF3 4 4 1 5 4 5 3 7 7 7 8 7 5 
W SCF14 6 6 5 6 6 5 5 6 7 6 4 1 4 

10 B SCF2 3 1 2 2 2 3 4 6 6 3 5 5 5 
W SCF15 8 8 7 8 7 7 7 7 7 8 7 7 1 

 
These weights were then averaged to determine the initial importance of the factors. Figure 3 
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displays the average weights obtained from the BWM. The top ten CFs with the highest weight 
values were selected as initially significant and were subsequently used in the next stage for further 
analysis. 

 

 
Fig.3. The priorities of CFs obtained from BWM 

4.3 DEMATEL-based Technique for Obtaining Relationships between CFs 
From the previous stages, two MCF and ten SCF have been selected, as summarized in Table 4. 

In conjunction with the unique attributes of DEMATEL, a specialist was recruited at this phase to 
ascertain the correlations among components. We anticipated that the invited expert met the 
requisite criteria of our study, since he is a senior executive at a premier logistics and warehouse 
service provider. He possesses more than a decade of direct experience in logistics and the 
implementation of UAVs in warehouse projects. Initially, the expert discerned the impacts of 
variables via the organized questionnaire.  

Table 4 
The Selected CFs and Sub-CFs 

Major Factors (Acronym) Minor Factors (Acronym) 
Technology (MCF1) Hardware (SCF1) 

Software (SCF2) 
Integrated Systems (SCF3) 
Compatibility and Completeness (SCF4) 
User Friendly (SCF5) 

Operation (MCF2) Area or Distance of Operation (SCF6) 
Costs (SCF8) 
Drone Operation (SCF9) 
Warehouse (SCF10) 
Items and Inventories (SCF12) 

The findings collected are presented in Table 5-7, which may also display the average matrices. 
To calculate the initial direct-relation matrix, the greatest value derived from the aggregated values 
in the last column of each row was utilized to divide all values in the average matrix. 

Table 5 
The Selected CFs and Sub-CFs 

 MCF1 MCF2 Sum 
MCF1 0 2 2 
MCF2 4 0 4 
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Table 6 
Influences between SCF in Technology Cluster 

 SCF1 SCF2 SCF3 SCF4 SCF5 Sum 
SCF1 0 4 3 3 3 13 
SCF2 4 0 4 4 4 16 
SCF3 3 4 0 3 3 13 
SCF4 3 4 3 0 3 13 
SCF5 3 4 3 3 0 13 

Table 7 
Influences between SCF in Operation Cluster 

 SCF6 SCF8 SCF9 SCF10 SCF12 Sum 
SCF6 0 4 3 4 4 15 
SCF8 4 0 2 3 3 12 
SCF9 3 2 0 3 2 10 
SCF10 3 2 3 0 3 11 

 
The comprehensive relation matrix can be derived using Eq.4 from the original direct-relation 

matrices and their corresponding identity matrix, as illustrated in Tables 8-10. The threshold values 
for each matrix were initially computed using the average values of all members within their 
respective matrices. The decision maker established the threshold values (α). Consequently, the 
components exhibiting influence levels over the threshold value were incorporated into the NRM, 
as illustrated in Figure 4. 

Table 8 
The Total Relation Matrix of MCF 

 MCF1 MCF2 𝒓𝒊 + 𝒄𝒊 𝒓𝒊 - 𝒄𝒊 
MCF1 1.0000 1.0000 -1.0000 5.0000 
MCF2 2.0000 1.0000 1.0000 5.0000 

Note: α = 1 

Table 9 
The Total Relation Matrix of SCF in Technology Cluster 

 SCF1 SCF2 SCF3 SCF4 SCF5 𝒓𝒊 + 𝒄𝒊 𝒓𝒊 - 𝒄𝒊 
SCF1 0.9649 1.3333 1.1228 1.1228 1.1228 0.0000 11.3333 
SCF2 1.3333 1.3333 1.3333 1.3333 1.3333 0.0000 13.3333 
SCF3 1.1228 1.3333 0.9649 1.1228 1.1228 0.0000 11.3333 
SCF4 1.1228 1.3333 1.1228 0.9649 1.1228 0.0000 11.3333 
SCF5 1.1228 1.3333 1.1228 1.1228 0.9649 0.0000 11.3333 

Note: α = 1 

Table 10 
The total Relation Matrix of SCF in Operation Cluster 

 SCF6 SCF8 SCF9 SCF10 SCF12 𝒓𝒊 + 𝒄𝒊 𝒓𝒊 - 𝒄𝒊 
SCF6 1.0072 1.0455 0.9960 1.1656 1.1103 0.3205 10.3291 
SCF8 1.0633 0.7093 0.8218 0.9758 0.9301 0.3561 8.6445 
SCF9 0.8799 0.7116 0.5920 0.8471 0.7586 -0.3401 7.9182 
SCF10 0.9416 0.7624 0.8092 0.7372 0.8589 -0.6391 8.8580 
SCF12 1.1122 0.9155 0.9102 1.0228 0.8056 0.3028 9.2299 

Note: α = 1 
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Fig.4. NRM of MCF and their Inner SCF 

 

From the outputs of DEMATEL, the total relation matrix of the MCF level was further normalized. 
Table 11 represents the outputs provide the weights of relationships among clusters. The influence 
magnitudes of MCF1 and MCF2 on one another, as indicated in Table 11, are distinct. The DEMATEL 
method may more accurately reflect the actual weighting identification scenario compared to the 
conventional ANP approach. The ANP offers a unique benefit at the sub-factor level by accounting 
for the interrelationships across sub-factors across several categories. Consequently, the ANP was 
utilized to ascertain the unweighted variables. The ANP outcomes presented in Table 12 were 
derived from the computation of the unweighted super Matrix. 

Table 11 
The Transpose of Normalized Total Relation Matrix 

 MCF1 MCF2 
MCF1 0.33 0.50 
MCF2 0.67 0.50 

Table 12 
The Unweighted Super Matrix 

 SCF1 SCF2 SCF3 SCF4 SCF5 SCF6 SCF8 SCF9 SCF10 SCF12 

SCF1 0.000 0.517 0.354 0.148 0.119 0.000 0.375 0.127 0.000 0.000 

SCF2 0.502 0.000 0.354 0.426 0.460 0.000 0.168 0.377 0.000 1.000 

SCF3 0.290 0.226 0.000 0.231 0.201 0.000 0.180 0.194 0.000 0.000 

SCF4 0.101 0.124 0.131 0.000 0.220 0.000 0.096 0.121 0.000 0.000 

SCF5 0.107 0.134 0.161 0.195 0.000 0.000 0.180 0.181 0.000 0.000 

SCF6 0.000 0.180 0.000 0.000 0.000 0.000 0.250 0.333 0.297 0.667 

SCF8 0.113 0.100 0.250 1.000 0.250 0.163 0.000 0.000 0.163 0.333 

SCF9 0.257 0.353 0.750 0.000 0.750 0.000 0.000 0.000 0.000 0.000 

SCF10 0.298 0.168 0.000 0.000 0.000 0.297 0.000 0.000 0.000 0.000 

SCF12 0.333 0.199 0.000 0.000 0.000 0.540 0.750 0.667 0.540 0.000 

The weights of the clusters and the unweighted super matrix in Table 11-12 were multiplied to 
derive the weighted super matrix. The global weights of all factors were obtained by calculating the 
limit super matrix through exponentiation of the weighted super matrix until convergence was 
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achieved. The outcomes of the limit super matrix are presented in Table 13.  

Table 13 
The Weighted Super Matrix 

 SCF1 SCF2 SCF3 SCF4 SCF5 SCF6 SCF8 SCF9 SCF10 SCF12 

SCF1 0.000 0.083 0.083 0.083 0.083 0.000 0.100 0.100 0.000 0.000 

SCF2 0.083 0.000 0.083 0.083 0.083 0.000 0.100 0.100 0.000 0.500 

SCF3 0.083 0.083 0.000 0.083 0.083 0.000 0.100 0.100 0.000 0.000 

SCF4 0.083 0.083 0.083 0.000 0.083 0.000 0.100 0.100 0.000 0.000 

SCF5 0.083 0.083 0.083 0.083 0.000 0.000 0.100 0.100 0.000 0.000 

SCF6 0.000 0.133 0.000 0.000 0.000 0.000 0.250 0.250 0.333 0.250 

SCF8 0.167 0.133 0.333 0.667 0.333 0.333 0.000 0.000 0.333 0.250 

SCF9 0.167 0.133 0.333 0.000 0.333 0.000 0.000 0.000 0.000 0.000 

SCF10 0.167 0.133 0.000 0.000 0.000 0.333 0.000 0.000 0.000 0.000 

SCF12 0.167 0.133 0.000 0.000 0.000 0.333 0.250 0.250 0.333 0.000 

The weights of factors from Table 14 were used to prioritize the ranks of all factors, as shown in 
Figure 5. According to the results in Figure 5, the top ten CFs were ranked by the weight obtained 
from our proposed method. The cost factor (SCF8) received the highest weight, followed by the 
Items and inventories factor (SCF12), Area or distance of operation factor (SCF6), and Software 
factor (SCF2), each with an importance weight greater than 0.1. The remaining CFs, ranked in 
descending order, include Warehouse (SCF10), Drone operation (SCF9), Hardware (SCF1), Integrated 
systems (SCF3), Compatibility and completeness (SCF4), and User-friendly (SCF5). 

Table 14 
The Limit Super Matrix 

 SCF1 SCF2 SCF3 SCF4 SCF5 SCF6 SCF8 SCF9 SCF10 SCF12 

SCF1 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

SCF2 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 

SCF3 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

SCF4 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

SCF5 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

SCF6 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 0.153 

SCF8 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 

SCF9 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 

SCF10 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 

SCF12 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 0.170 

 
Fig.5. The Final Priorities and Weights of CFs 
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The focus on the cost factor (SCF8) highlights the importance of financial feasibility in 
implementing UAVs in warehouses, aligning with the broader goal of business profitability for both 
organizations and customers. As with other emerging technologies, UAV adoption is primarily driven 
by its financial viability and the business returns [6]. The impacts of this factor have been discussed 
in various contexts, such as inventory management costs [20], maintenance costs [13], delivery costs 
[21], and overall warehouse costs [4]. Past studies consistently emphasize that the success of UAVs 
in warehouse management is not only based on operational effectiveness but also on the associated 
costs and financial considerations. The second significant factor is Items and Inventory (SCF12), 
which directly influences the feasibility and success of UAV adoption. Among these factors, the size, 
dimensions, and weight of items are crucial, as larger and heavier items increase the likelihood of 
UAV adoption failure in warehouse operations [18; 27]. Additionally, a large inventory quantity 
requires companies to invest in larger UAV fleets, impacting financial feasibility [25]. Therefore, 
companies must carefully assess the suitability of their items and inventory to ensure successful 
UAV implementation in warehouse management. 

 It can be observed that operational factors have a greater influence on drone adoption than 
technological factors. Notably, the top three ranked CFs are all operationally related. This suggests 
that CFs under MCF2, which are more controllable, are given more focus by researchers and 
practitioners than those under MCF1. Operational factors are internal criteria that organizations can 
control, whereas factors like hardware, software, and integrated systems (MCF1) are external and 
often developed by outside parties. Therefore, the success of UAV adoption largely depends on how 
well an organization manages its operational factors to maximize profitability. The better the 
organization optimizes warehouse operations, the greater the returns from adopting UAVs. 

 
5. Conclusion  

The use of UAVs in warehouse management offers significant benefits for both organizations 
and customers, reducing costs and time while enhancing customer satisfaction, operational 
efficiency, and competitive advantage. However, successful adoption depends on several critical 
factors. This study aims to identify and prioritize these factors using a hybrid multi-criteria decision-
making method that integrates the Delphi technique, BWM, DEMATEL, and ANP, addressing 
challenges such as inconsistent decision-making and time/resource constraints. Through four 
stages, the Delphi technique gathered expert opinions on initial factors, BWM filtered the most 
influential factors, DEMATEL analyzed their interrelationships, and ANP determined their final 
weights and priorities. The analysis identified ten critical factors, with cost being the most influential, 
followed by items and inventory, and the area or distance of operation. Cost encompasses financial 
aspects related to inventory management, maintenance, and delivery, while items and inventory 
impact UAV flight capacity and often require higher investment. Operational area or distance is also 
a major consideration. These factors highlight the importance of operational aspects for businesses 
to consider. In conclusion, the prioritized factors emphasize the need for research and practitioners 
to focus on these determinants for successful UAV adoption, while businesses must also consider 
potential barriers. The proposed method addresses inconsistent expert decision-making and 
enables efficient factor identification, though the study's reliance on expert opinion without 
empirical validation of interrelationships is a limitation. Future research should include a broader 
range of experts and industries to empirically validate these relationships through comparative 
studies. Ultimately, this study contributes to defining the key requirements for UAV adoption in 
warehouse and SCM, and future research should explore these factors to enhance understanding 
and implementation strategies. 
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